Матеріальні основи спадковості

Нуклеїнові кислоти і білки, їх будова. ДНК як носій генетичної інформації, механізм реплікації ДНК. Хімічний склад, будова та морфологія хромосом; організація хроматину; каріотип. Клітинний цикл; мітоз як механізм безстатевого розмноження еукаріот.

Рубрика Биология и естествознание
Вид лекция
Язык украинский
Дата добавления 29.11.2012
Размер файла 329,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Лекція 2

Тема: Матеріальні основи спадковості

План

1. Нуклеїнові кислоти і білки, їх будова (на самоопрацювання)

2. ДНК як носій генетичної інформації. Механізм реплікації ДНК

3. Хромосоми, хімічний склад. Будова та морфологія хромосом. Організація хроматину. Каріотип

4. Клітинний цикл. Мітоз як механізм безстатевого розмноження еукаріот. Генетичне значення мітозу (на самоопрацювання)

5. Ендорепродукція: ендомітоз, політенія, амітоз

Згідно з хромосомною теорією спадковості успадковані ознаки закладені в матеріальних одиницях, генах, які розташовуються в хромосомах клітинного ядра, які, у свою чергу, складаються з білків та універсальних носіїв генетичної інформації -- молекул ДНК (дезоксирибонуклеїнової кислоти).

За хімічною природою ДНК є складні високомолекулярні біополімери, мономерами яких є нуклеотиди, молекули яких складаються з залишків азотистої основи, вуглеводу (дезоксирибоза) та фосорфної кислоти (Евері, Мак-Леода і Мак-Карті, 1944 р.). Тому нуклеїнові кислоти можна ще назвати полінуклеотидами. Різних азотистих основ, що входять до складу нуклеотидів, всього чотири: пурини - аденін (А), гуанін (Г) і пірімідіни - цитозин (Ц), тимін (Т).

Дослідженнями встановлено, що безперервна послідовність пурінових і пірімідінових основ уздовж ланцюга ДНК утворює гени, міжгенні інтервали, знаки початку і кінця зчитування інформації в межах гена; визначає спадковий характер синтезу специфічних білків клітини і, отже, спадковий характер обміну речовин.

Фізична структура молекули ДНК була з'ясована в 1953 році. Згідно моделі фізичної структури, яку запропонували Дж.Уотсон і Ф.Крик, ДНК є подвійною спіраллю, а компліментарна взаємодія між двома нитками цієї спіралі здійснюється між пурином одного нуклеотиду і піримідином іншого завдяки слабкому водневому зв'язку. Утворення зв'язків в молекулі ДНК здійснюється за принципом компліментарності, тобто додатковості (Ц з'єднується лише з Г, а А - лише з Т). Принцип компліментарності лежить в основі механізму копіювання генетичної інформації (реплікації ДНК) і передачі нащадкам.

У клітинах еукаріотів (наприклад, тварин, рослин або грибів) ДНК знаходиться в ядрі клітини у складі хромосом, а також в деяких клітинних органелах (мітохондріях і пластидах). У клітинах прокаріотів (бактерій і архей) кільцева або лінійна молекула ДНК, так званий нуклеоїд, знаходиться в цитоплазмі і служать матеріальними носіями цитоплазматичної спадковості. У них і у нижчих еукаріот (наприклад дріжджів) зустрічаються також невеликі автономні кільцеві молекули ДНК, так звані плазміди. Крім того, одно- або дволанцюжкові молекули ДНК можуть утворювати геном ДНК-вірусів.

Процес самовідтворення (авторепродукції) молекул ДНК називається реплікацією і відбувається при активній участі ферментів. Особливі розплітаючі білки послідовно як би проходять уздовж системи водневих зв'язків, що сполучають азотисті основи обох полінуклеотидних ланцюгів, і розривають їх. Одиночні полінуклеотидні ланцюги ДНК, що утворилися в результаті, добудовуються згідно з принципом компліментарності за допомогою ферменту ДНК-поліиерази за рахунок вільних нуклеотидів, які завжди знаходяться в цитоплазмі і ядрі. Навпроти гуанілового нуклеотиду стає вільний цитозіловий нуклеотид, а навпроти цитозілового, у свою чергу, гуаніловий і так далі. У ланцюзі, що знов утворився, виникають вуглеводно-фосфатні і водневі зв'язки. Таким чином, в ході самовідтворення ДНК з однієї молекули синтезуються дві дочірні, які є точними копіями материнської ДНК.

Реплікація забезпечує копіювання генетичної інформації і передачу її з покоління в покоління, генетичну ідентичність дочірніх клітин, що утворюються в результаті мітозу, і сталість числа хромосом при діленні клітини.

Хромосома (від греч. chroma - колір, забарвлення, soma - тіло) -- це велика молекулярна структура, де міститься близько 90% ДНК клітини (відкриті С. Флеммінг, Е. Страсбургер, Е. Ван Бенеден, названі В. Вальдейером, 1888 р.). Хромосоми отримали назву від того, що в період мітотичного поділу, коли вони конденсуються, -- добре забарвлюються основними барвниками. Вміст ДНК в ядрах соматичних клітин в два рази більше, ніж в ядрах зрілих статевих клітин. Ці два типи клітин відрізняються один від одного і за числом хромосом. Число хромосом - п в соматичних клітинах і кількість ДНК - з (від англ. content - вміст) в них позначають як диплоїдне (2n хромосом, 2с ДНК), а в зрілих статевих клітинах як гаплоїдне (n хромосом, з ДНК).

Всі хромосоми містять дуже довгий безперервний полімеризований ланцюг ДНК (єдину ДНК-молекулу), що містить гени, регуляторні елементи та проміжні нуклеотидні послідовності. Хромосоми еукаріот складаються з лінійної макромолекули ДНК, що намотана на специфічні білки-гістони, формуючи матеріал під назвою «хроматин». В клітинах прокаріот звичайно міститься єдина хромосома, яка, на відміну від еукаріот, є кільцевою та позбавленою гістонів. Втім, це правило не є абсолютним: існують бактерії з більше, ніж одною хромосомою; у деяких бактерій хромосоми є лінійними; у кількох видів архей виявлені специфічні гістони. Молекули гістонів утворюють групи - нуклеосоми.

Хромосоми можуть перебувати в двох структурно-функціональних станах: в конденсованому (спіралізованому) та деконденсованому (деспіралезованому). В інтерфазі хромосоми живої клітини невидимі, спостерігати можна лише гранули хроматину, бо в цей період хромосоми частково або повністю деконденсовані. Це є їхнім робочим станом, бо в більш дифузному хроматині активніші процеси синтезу. Під час мітотичного поділу клітини, коли відбувається конденсація хроматину, хромосоми добре помітні.

Будова хромосом. Розглядаючи будову хромосоми, у першу чергу слід зауважити, що за масою розрізняють два типи хромосом: s-хромосоми, побудовані з однієї хроматиди, і d-хромосоми, що мають у своєму складі 2 хроматиди. Після поділу клітини в дочірніх клітинах є s-хромосоми, а в інтерфазі відбувається дуплікація (подвоєння) ДНК і хромосоми набувають подвійної маси, перетворюються в d-хромосоми.

Морфологію хромосом прийнято описувати на прикладі метафазної хромосоми, коли вона найбільш конденсована і складається з двох хроматид. Така хромосома є паличкоподібною структурою, утвореною з двох субодиниць конденсованої ДНК разом з білковими глобулами. Розміщені хроматиди одна поряд з другою і з'єднані лише в одній ділянці, названій первинною, або центричною перетяжкою, яка ділить хромосому на два плеча. На центричній перетяжці d-хромосоми знаходиться центромера (центромер), з обох сторін якої містяться дископодібні структури - кінетохори (від грец. kinetos -- рухомий, chora -- простір) ), до яких під час поділу клітини кріпляться нитки веретена поділу.

Місце розташування центромери для кожної пари хромосом постійне, воно обумовлює їхню форму. Залежно від розташування центромери виділяють три типи хромосом: метацентричні, субметацентричні і акроцентричні. Метацентричні хромосоми мають плечі майже однакової довжини; в субметацентричних плечі нерівні; акроцентричні хромосоми мають палочковидну форму з дуже коротким, майже непомітним другим плечем. білок генетичний клітинний хромосома

Можуть виникати і телоцентричні хромосоми - як результат відриву одного плеча, коли центромера розташована на кінці хромосоми. В нормальному каріотипі такі хромосоми не зустрічаються.

Теломери -- це кінцеві ділянки хромосом, що мають специфічні особливості -- полярність (монополярність). При хромосомних абераціях (перебудовах), коли хромосоми розриваються, окремі їх ділянки ніколи не з'єднуються з кінцем теломера.

Деякі хромосоми мають глибокі вторинні перетяжки, що відділяють окремі ділянки хромосоми - супутники. Називаються такі хромосоми організаторами ядерець, оскільки вони беруть участь в утворенні ядерець після мітотичного поділу клітини. У людини вторинні перетяжки є на довгому плечі 1, 9 та 16 хромосом та на кінцевих ділянках коротких плечей 13, 14, 15, 21, 22 хромосом.

Супутники (трабанти, або сателіти) - це круглі або видовжені тільця, що мають різні розміри і форму, з'єднані з рештою хромосоми тонкою хроматиновою ниткою.

Хроматин отримав свою назву за здатність добре фарбуються основними барвниками; у вигляді грудочок він розсіяний в нуклеоплазмі ядра і є інтерфазною формою існування хромосом. Хроматин складається в основному з ниток ДНК (40% маси хромосоми) і білків (близько 60%), які разом утворюють нуклеопротеїдні комплекси. Виділяють гістонові і негістонові білки.

Ділянки хромосом, які конденсуються при мітозі і деконденсуються в інтерфазі, називаються еухроматиновими ділянками хромосом (складаються з еухроматину), а такі ділянки, що залишаються конденсованими в інтерфазі, носять назву гетерохроматинових ділянок (складаються з гетерохроматину). Еухроматинові ділянки є активними ділянками хромосом, бо в них розміщено найбільше генів (складаються з еухроматину). Гетерохроматин виконує переважно структурну функцію (організація просторової структури молекули ДНК) і займає одні й ті самі ділянки в гомологічних хромосомах (хромосоми однієї пари, однакові за формою та будовою). Еухроматин відрізняється меншою щільністю, і з нього можна робити зчитування генетичної інформації.

Хромомери. В плечах хромосом видно товстіші та інтенсивніше забарвлені ділянки - хромомери, які чергуються із міжхромомерними нитками. Внаслідок цього хромосома може нагадувати низку нерівномірно нанизаного намиста.

Каріотип - це хромосомний комплекс біологічного виду зі всіма його особливостями: числом хромосом, їх формою, наявністю видимих під світловим мікроскопом деталей будови окремих хромосом.

Кількість хромосом та характерні особливості їхньої будови - видова ознака (правилом постійності числа хромосом: в представників одного виду число хромосом в ядрах всіх клітин постійне).

При порівнянні хромосомних наборів чоловічих та жіночих осіб одного виду спостерігається відмінність в одній парі хромосом. Ця пара отримала назву статевих хромосом, або гетерохромосом. Решта пар гомологічних пар хромосом, однакових в обох статей, мають загальну назву аутосоми.

Ендорепродукція (від грец. endos -- усередині і лат. reproductio -- відтворення) -- сукупність процесів, які приводять до відтворення генетичного матеріалу (нарощування вмісту ДНК) усередині клітини. Формами ендорепродукції є ендомітоз, політенія та ін.

Ендомітоз (від грец. endos -- усередині і mitos -- нитка) -- різновид мітозу, при якому відбувається внутрішньоядерне збільшення числа хромосом (кількості ДНК) кратне по відношенню до гаплоїдного набору. Це найчастіше наступає після зникнення веретена поділу і завершується формуванням ядерної оболонки навколо подвоєного числа хромосом, яке дорівнюватиме 4n. При повторенні ендомітотичного процесу число хромосом у тій же клітині збільшиться до 8n і т.д. Таким чином, при ендомітозі збільшується кількість хромосом у кратне число разів, що веде до поліплоїдії. Природна поліплоїдія, як наслідок ендомітозу, трапляється в клітинах тварин і рослин. Гігантськими поліплоїдними клітинами є деякі нейрони тритона, шовковидільної залози шовкопряда. Ендомітоз (і поліплоїдію) можна штучно викликати колхіцином, який руйнує мітотичне веретено, тоді дочірні хромосоми не розходяться і клітина не вступає в мітоз.

Політенія (від грец. poli -- багато і tenia -- нитка) наступає тоді, коли кількість хромонем (і відповідно ДНК) збільшується, а хроматиди не розходяться, тоді хромосоми значно потовщуються і набувають гігантських розмірів. При політенії кількість хромосом залишається такою ж, але збільшується маса кожної хромосоми, зростає в ній кількість хромонем (тяжів дезоксирибонуклеопротеїдів), що веде до утворення політенних (гігантських) хромосом. Політенні хромосоми спостерігаються в клітинах слинних залоз деяких комах і служать для вивчення активних ділянок на хромосомах -- пуфів.

У деяких клітин спостерігається амітоз (від грец. а- -- заперечення і mitos -- нитка) - прямий поділ соматичних клітин, під час якого ядро ділиться шляхом перетяжки без попереднього утворення хромосом, за межами мітотичного циклу. Амітоз може супроводжуватись поділом клітини, а також обмежуватись поділом ядра без цитокінезу (без поділу цитоплазми), що призводить до утворення дво- і багатоядерних клітин. Амітоз зустрічається в різних тканинах у спеціалізованих, приречених на загибель клітинах, особливо в клітинах зародкових оболонок ссавців. Клітина після амітозу в подальшому не здатна вступити в нормальний мітотичний цикл.

На само опрацювання

Мітотичним циклом називається проміжок часу між закінченням одного клітинного ділення - мітоза і закінченням наступного. Таким чином, мітотичний цикл включає мітоз і проміжок між мітозами - інтерфазу. Інтерфаза складається з трьох періодів: центрального - фази синтезу ДНК (S), коли генетичний матеріал подвоюється, а також передсинтетичного (G1) і синтетичного (G2), після якого клітина вступає в мітоз (М). Після фази синтезу ДНК в G2-періоді, в мітозі, аж до анафази, в хромосомі виявляються дві нитки, звані сестринськими хроматидами.

Мітоз, або непряме ділення, - основний спосіб розмноження еукаріотичних клітин, що обумовлює можливість збільшення їх біомаси, росту і регенерацію. Мітоз складається з чотирьох фаз.

Перша - профаза - характеризується початком циклу компактизації хромосом, який продовжується протягом всієї цієї фази. Внаслідок цього хромосоми стають видимими під мікроскопом, причому вже в середній профазі мітоза вони представляються подвійними структурами - сестринськими хроматидами, закрученими одна довкола іншої. До кінця профази зникають ядерце і ядерна мембрана.

Друга - метафаза. Процес компактизації хромосом продовжується і веде до ще більшого укорочення їх довжини. Хромосоми вишиковуються по екватору клітини. Хроматиди сполучені між собою між собою в центромері, званою також первинною перетяжкою. З'являються нитки мітотичного веретена, які приєднуються до ценромерів. Кожна ценромера випробовує напругу, оскільки нитки веретена тягнуть її до протилежних полюсів.

Полюси клітини формуються спеціальними органелами - центросомами.

Третя - анафаза - починається з розриву ценромери, внаслідок чого сестринські хроматиди розходяться до різних полюсів клітки. З цієї миті кожна пара сестринських хроматид отримує назву дочірніх хромосом.

Четверта - телофаза. Хромосоми досягають полюсів клітини, з'являються ядерна мембрана, ядерце. Відбуваються деконденсація хромосом і відновлення структури інтерфазного ядра. Закінчується мітоз діленням цитоплазми і в типових випадках - відновленням вихідної біомаси дочірніх клітин.

Генетичне значення мітозу полягає в забезпеченні ідентичною генетичною інформацією двох дочірніх клітин. Це можливо лише завдяки циклу «конденсації - деконденсації», який дозволяє розподілити спадкові молекули в мінімальному об'ємі мітотичних хромосом. Інакше, враховуючи розміри клітини (десятки або сотні кубічних мікрометрів) і довжину декомпактизованої хромосоми (сантиметри), кожен клітинний поділ супроводжувався б хаотичним переплетінням хромосомного матеріалу. У еволюції еукаріотичних клітин, мабуть, ця обставина і послужила причиною становлення настільки складного генетичного процесу, як мітоз.

Размещено на Allbest.ru

...

Подобные документы

  • Структура дезоксирибонуклеїнової та рібонуклеїнової кислоти. Здатність молекул ДНК самовідтворюватися. Хромосоми еукаріот. Мітоз - основний спосіб розмноження еукаріотичних клітин. Стадії мейотичного ділення. Роль ядра в спадковості, генетичний код.

    реферат [1,9 M], добавлен 02.06.2011

  • Поняття і рівні регуляції експресії генів. Їх склад і будова, механізм формування і трансформування. Транскрипційний рівень регуляції. Приклад індукції і репресії. Регуляція експресії генів прокаріот, будова оперону. Огляд цього процесу у еукаріот.

    презентация [1,7 M], добавлен 28.12.2013

  • Предмет, історія розвитку і завдання мікробіології. Основні типи та склад бактеріальних клітин. Класифікація, морфологія, будова та розмноження клітин грибів та дріжджів. Відмінні ознаки і морфологія вірусів та інфекцій. Поняття та сутність імунітету.

    курс лекций [975,8 K], добавлен 22.02.2010

  • Хімічний склад вірусів, їх стійкість до навколишнього середовища. Класифікація вірусів, їх репродукція, проникнення в клітину. Реалізація генетичної інформації у вірусів. Збірка вірусних частинок, їх вихід з клітин. Групи вірусів, що викликають інфекції.

    курсовая работа [2,2 M], добавлен 10.12.2012

  • Макромолекулярні сполуки (білки, вуглеводи, нуклеїнові кислоти) як органічні речовини живого організму. Олігосахариди як розчинні у воді, солодкі на смак полімерні вуглеводи. Білки як високомолекулярні біополімери, мономерами яких є залишки амінокислот.

    реферат [37,9 K], добавлен 06.10.2013

  • Вивчення механізмів зміни, розмноження та реплікації генетичної інформації. Особливості організації, будови та функції клітин. Забезпечення редуплікації ДНК, синтезу РНК і білка. Характеристика еукаріотів та прокаріотів. Кінцеві продукти обміну речовин.

    реферат [1,0 M], добавлен 19.10.2017

  • Структурна організація, розвиток та походження клітини, її функції та компоненти. Метаболізм, відносини із середовищем; плазмолема. Клітинна теорія Пуркін'є, Шлейдена, Шванна. Будова та відмінності між клітинами рослин і тварин. Хімічний склад цитоплазми.

    презентация [9,2 M], добавлен 22.06.2014

  • Віруси, природа вірусів, загальна характеристика. Бактеріофаги: відкриття, походження, будова, хімічний склад, проникнення та вихід з клітини. Літичний цикл. Роль у природі, вплив на розвиток бактерій. Використання бактеріофагів у діяльності людини.

    реферат [1,1 M], добавлен 21.04.2015

  • Вивчення будови ядра як одного із структурних елементів еукаріотічеськой клітки, що містить генетичну інформацію в молекулах ДНК. Ядерна оболонка, ядерце, матрикс як структурні елементи ядра. Характеристика процесів реплікації і транскрипції молекул.

    презентация [756,9 K], добавлен 08.01.2012

  • Дослідження та визначення головних аспектів розвитку флори на Землі. Різноманіття існуючих нині і живших раніше на Землі рослин як результат еволюційного процесу. Вивчення механізмів зміни, розмноження та реплікації генетичної інформації рослинного світу.

    реферат [1,1 M], добавлен 12.03.2019

  • Основи анатомії і фізіології собаки. Форма і внутрішня будова органів та їх функції. Системи органів травлення, дихання, кровообігу та лімфоутворення, сечовиділення, розмноження. Будова і функції відділів головного мозку, обмін речовин та енергії.

    доклад [1,8 M], добавлен 19.03.2010

  • Віруси - паразитарні форми життя, які існують на внутрішньоклітинному і на генетичному рівнях. Характеристика вірусів: будова, розмноження, хвороби, які вони викликають. Відкриття та значення вірусів, механізм інфікування. Вірус імунодефіциту людини.

    контрольная работа [2,7 M], добавлен 24.05.2015

  • Історія відкриття та основні гіпотези походження клітинного ядра. Типи клітин та їх схематичне зображення. Форми, типи, будова, компоненти (хроматин, ядерце) ядра еукаріоти, його функції та загальна роль. Ядерний білковий скелет: каріоплазма та матрикс.

    презентация [1,1 M], добавлен 30.03.2014

  • Будова, фізичні та хімічні властивості білків. Для виявлення білків у різних матеріалах застосовують кольорові реакції, найважливішими з яких є ксантопротеїнова і біуретова. Елементарний склад, молекулярна маса білків. Застосування білків у промисловості.

    реферат [296,8 K], добавлен 09.11.2010

  • Історія запровадження рослини в культуру та особливості розмноження клематисів. Морфологічна будова та біоекологічні особливості рослини: життєві форми, коренева система та будова і форми листя й квітки. Закладка ділянки та її підготовка до посадки.

    реферат [61,9 K], добавлен 25.05.2012

  • Клас Плазуни - перші справжні наземні хордові тварини. Середовище існування, зовнішня будова, скелет, кровоносна, травна, дихальна, видільна та нервова системи. Органи чуття, розмноження та значення плазунів. Ознаки прогресивного розвитку класу Плазунів.

    презентация [15,0 M], добавлен 25.02.2013

  • Виявлення еволюційних гілок живих організмів. Загальна характеристика Археїв. Пошук і підбір оптимальних засобів для живлення археїв. Будова і склад клітинних стінок. Особливості кислотолюбивих археїв, що використовують для життя органічні сполуки.

    курсовая работа [52,7 K], добавлен 14.12.2014

  • Розвиток комах, особливості зовнішньої будови, середовища мешкання. Організація та поділ за функціями і способом життя бджоли. Види мурах, їх підряди та біологічна класифікація. Будова ротових апаратів хруща травневого. Анатомія та продукти бджіл.

    реферат [917,3 K], добавлен 16.04.2011

  • Метелики - одне з найпрекрасніших творінь живої природи. Найдрібніші метелики: молі й листовійки. Махаони та білани, зірочки, лимонниці та голубінки. Будова тіла лускокрилих, їх забарвлення, дивовижні перетворення розвитку, життєвий цикл та харчування.

    реферат [16,3 K], добавлен 30.08.2012

  • Ферменти, їх біологічна роль та хімічна природа. Рух цитоплазми, тургор, плазмоліз і деплазмоліз. Будова і функції ядра. Цитоплазма, будова і функції цитоскелета. Вплив несприятливих факторів на органоїди клітини. Клітинна теорія Шванна та Шлейдена.

    методичка [7,4 M], добавлен 10.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.