Концепции современного естествознания

История, панорама и основная тенденция развития естествознания. Структурные уровни организации материи: микро-, макро- и мегамиры. Разновидность симметрии и асимметрии в природе – свойства материального мира. Современные концепции происхождения жизни.

Рубрика Биология и естествознание
Вид курсовая работа
Язык русский
Дата добавления 02.01.2014
Размер файла 36,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

1. Предмет естествознания. История, панорама и тенденции развития

2. Структурные уровни организации материи: микро-, макро- и мегамиры

3. Разновидность симметрии и асимметрии в природе - свойства материального мира. Понятие симметрии и асимметрии в биологии

3.1 Асимметрия в живой природе

3.2 Асимметрия как разграничивающая линия между живой и неживой природой

3.3 Понятие симметрии и асимметрии в биологии

4. Современные концепции происхождения жизни

5. Биосфера как живая самоорганизующая система

Список использованных источников

1. Предмет естествознания. История, панорама и тенденции развития

естествознание симметрия асимметрия природа

Стремление человека к познанию окружающего мира выражается в различных формах, способах и направлениях исследовательской деятельности. Каждая из основных частей объективного мира -- природа, общество и человек -- изучается своими отдельными науками. Совокупность научных знаний о природе формируется естествознанием. Этимологически слово «естествознание» происходит от соединения двух слов: «естество», что означает природа, и «знание», т.е. знание о природе.

В современном употреблении термин «естествознание» в самом общем виде обозначает совокупность наук о природе, имеющих предметом своих исследований различные природные явления и процессы, а также закономерности их эволюции. Кроме того, естествознание является самостоятельной наукой о природе как едином целом и в этом качестве позволяет изучить любой объект окружающего нас мира более глубоко, чем это может сделать одна какая-либо из естественных наук в отдельности. Поэтому естествознание наряду с науками об обществе и мышлении является важнейшей частью человеческого знания. Оно включает в себя как деятельность по получению знания, так и ее результаты, т.е. систему научных знаний о природных процессах и явлениях.

Роль естествознания в жизни человека трудно переоценить. Оно является основой всех видов жизнеобеспечения -- физиологического, технического, энергетического. Кроме того, естествознание служит теоретической основой промышленности и сельского хозяйства, всех технологий, различных видов производства. Тем самым оно выступает важнейшим элементом культуры человечества, одним из существенных показателей уровня цивилизации.

Отмеченные характеристики естествознания позволяют сделать вывод, что оно является подсистемой науки и в этом качестве связано со всеми элементами культуры -- религией, философией, этикой и др. С другой стороны, естествознание -- самостоятельная область знания, обладающая собственной структурой, предметом и методами.

Понятие «естествознание» появилось в Новое время в Западной Европе и стало обозначать всю совокупность наук о природе. Корни этого представления уходят в Древнюю Грецию, во времена Аристотеля, который первым систематизировал имевшиеся тогда знания о природе в своей «Физике». Однако эти представления были достаточно аморфными, и поэтому сегодня под естествознанием понимается так называемое точноеестествознание -- знание, соответствующее не только первым четырем, но и последнему, пятому критерию научности. Важнейшей характеристикой точного естествознания является экспериментальный метод, дающий возможность эмпирической проверки гипотез и теорий, а также оформление полученного знания в математических формулах.

Существуют два широко распространенных представления о предмете естествознания:

- естествознание -- это наука о Природе как единой целостности;

- естествознание -- совокупность наук о Природе, рассматриваемой как целое.

На первый взгляд, эти определения отличны друг от друга. Одно говорит о единой науке о Природе, а другое -- о совокупности отдельных наук. Тем не менее на самом деле отличия не столь велики, так как под совокупностью наук о Природе подразумевается не просто сумма разрозненных наук, а единый комплекс тесно взаимосвязанных естественных наук, дополняющих друг друга.

Являясь самостоятельной наукой, естествознание имеет свой предмет исследования, отличный от предмета специальных (частных) естественных наук. Спецификой естествознания является то, что оно исследует одни и те же природные явления сразу с позиций нескольких наук, выявляя наиболее общие закономерности и тенденции. Только так можно представить Природу как единую целостную систему, выявить те основания, на которых строится все разнообразие предметов и явлений окружающего мира. Итогом таких исследований становится формулировка основных законов, связывающих микро-, макро- и мегамиры, Землю и Космос, физические и химические явления с жизнью и разумом во Вселенной.

В школе изучаются отдельные естественные науки -- физика, химия, биология, география, астрономия. Это служит первой ступенью познания Природы, без которой невозможно перейти к осознанию ее как единой целостности, к поиску более глубоких связей между физическими, химическими и биологическими явлениями. Это и есть главная задача настоящего курса. С его помощью мы должны более глубоко и точно познать отдельные физические, химические и биологические явления, занимающие важное место в естественно-научной картине мира; а также выявить скрытые связи, создающие органическое единство этих явлений, что невозможно в рамках специальных естественных наук.

Мы уже говорили о структуре науки, представляющей собой сложную разветвленную систему знаний. Естествознание -- не менее сложная система, все части которой находятся в отношениях иерархической соподчиненности. Это означает, что систему естественных наук можно представить в виде своеобразной лестницы, каждая ступенька которой является фундаментом для следующей за ней науки, и в свою очередь, основывается на данных предшествующей науки.

Основой, фундаментом всех естественных наук, бесспорно, является физика, предметом которой являются тела, их движения, превращения и формы проявления на различных уровнях. Сегодня невозможно заниматься ни одной естественной наукой, не зная физики. Внутри физики выделяется большое число подразделов, различающихся специфическим предметом и методами исследования. Важнейшим среди них является механика -- учение о равновесии и движении тел (или их частей) в пространстве и времени. Механическое движение представляет собой простейшую и вместе с тем наиболее распространенную форму движения материи. Механика явилась исторически первой физической наукой и долгое время служила образцом для всех естественных наук. Разделами механики являются:

- статика, изучающая условия равновесия тел;

- кинематика, занимающаяся движением тел с геометрической точки зрения;

- динамика, рассматривающая движение тел под действием
приложенных сил.

Также в механику входят гидростатика, пневмо- и гидродинамика.

Механика -- физика макромира. В Новое время зародилась физика микромира. В ее основе лежит статистическая механика, или молекулярно-кинетическая теория, изучающая движение молекул жидкости и газа. Позже появились атомная физика и физика элементарных частиц. Разделами физики являются термодинамика, изучающая тепловые процессы; физика колебаний (волн), тесно связанная с оптикой, электричеством, акустикой. Названными раз-делами физика не исчерпывается, в ней постоянно появляются новые физические дисциплины.

Следующей ступенькой является химия, изучающая химические элементы, их свойства, превращения и соединения. То, что в ее основе лежит физика, доказывается очень легко. Для этого достаточно вспомнить школьные уроки по химии, на которых говорилось о строении химических элементов и их электронных оболочках. Это пример использования физического знания в химии. В химии вьщеляют неорганическую и органическую химию, химию материалов и другие разделы.

В свою очередь, химия лежит в основе биологии -- науки о живом, изучающей клетку и все от нее производное. В основе биологических знаний -- знания о веществе, химических элементах. Среди биологических наук следует выделить ботанику (предмет -- растительное царство), зоологию (предмет -- мир животных). Анатомия, физиология и эмбриология изучают строение, функции и развитие организма. Цитология исследует живую клетку, гистология -- свойства тканей, палеонтология -- ископаемые останки жизни, генетика -- проблемы наследственности и изменчивости.

Науки о Земле являются следующим элементом структуры естествознания. В эту группу входят геология, география, экология и др. Все они рассматривают строение и развитие нашей планеты, представляющей собой сложнейшее сочетание физических, химических и биологических явлений и процессов.

Завершает эту грандиозную пирамиду знаний о Природе космология,изучающая Вселенную как целое. Частью этих знаний являются астрономия и космогония, которые исследуют строение и происхождение планет, звезд, галактик и т.д. На этом уровне происходит новое возвращение к физике. Это позволяет говорить о циклическом, замкнутом характере естествознания, что, очевидно, отражает одно из важнейших свойств самой Природы.

Структура естествознания не ограничивается названными выше науками. Дело в том, что в науке идут сложнейшие процессы дифференциации и интеграции научного знания. Дифференциация науки -- это выделение внутри какой-либо науки более узких, частных областей исследования, превращение их в самостоятельные науки. Так, внутри физики выделились физика твердого тела, физика плазмы.

Интеграция науки -- это появление новых наук на стыках старых, процесс объединения научного знания. Примерами такого рода наук являются: физическая химия, химическая физика, биофизика, биохимия, геохимия, биогеохимия, астробиология и др.

Таким образом, построенная нами пирамида естественных наук значительно усложняется, включая в себя большое количество дополнительных и промежуточных элементов. Необходимо также отметить, что система естествознания отнюдь не является незыблемой, в ней не только постоянно появляются новые науки, но и меняется их роль, периодически происходит смена лидера в естествознании. Так, с XVII в. до середины XX в. таким лидером, бесспорно, была физика. Но сейчас эта наука почти полностью освоила свою область действительности, и большая часть физиков занимается исследованиями, носящими прикладной характер (то же касается химии). Сегодня бум переживают биологические исследования (особенно в пограничных областях -- биофизике, биохимии, молекулярной биологии). По некоторым данным, в середине 1980-х г. в биологических науках было занято до 50% ученых США, 34% -- в нашей стране. США, Великобритания без возражений финансируют самые разные биологические исследования. Так что XXI в., очевидно, станет веком биологии.

Будучи составной частью науки и культуры, естествознание имеет такую же длительную и сложную историю. Естествознание нельзя понять, не проследив историю его развития в целом. Согласно мнению историков науки, развитие естествознания прошло три стадии и в конце XX в. вступило в четвертую. Этими стадиями являются древнегреческая натурфилософия, средневековое естествознание, классическое естествознание Нового и Новейшего времени и современное естествознание XX в.

Развитие естествознания подчиняется данной периодизации. На первой стадии происходило накопление прикладной информации о природе и способах использования ее сил и тел. Это так называемыйнатурфилософский этап развития науки, характеризующийся непосредственным созерцанием природы как нерасчлененного целого. При этом идет верный охват общей картины природы при пренебрежении частностями, что характерно для греческой натурфилософии.

Позднее к процессу накопления знаний добавляется теоретическое осмысление причин, способов и особенностей изменений в природе, появляются первые концепции рационального объяснения изменений природы. Наступает так называемый аналитический этап в развитии науки, когда идут анализ природы, выделение и изучение отдельных вещей и явлений, поиски отдельных причин и следствий. Такой подход характерен для начального этапа развития любой науки, а в плане исторического развития науки -- для позднего Средневековья и Нового времени. В это время методики и теории объединяются в естествознание как целостную науку о природе,происходит череда научных революций, каждый раз кардинально меняющих практику общественного развития.

Итогом развития науки становится синтетическая стадия, когда ученые воссоздают целостную картину мира на основе уже познанных частностей.

2. Структурные уровни организации материи: микро-, макро -, мегамиры

В современной науке в основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета и т.д. может быть рассмотрен как система - сложное образование, включающее составные части, элементы и связи между ними. Элемент в данном случае означает минимальную, далее неделимую часть данной системы.

Совокупность связей между элементами образует структуру системы, устойчивые связи определяют упорядоченность системы. Связи по горизонтали - координирующие, обеспечивают корреляцию (согласованность) системы, ни одна часть системы не может измениться без изменения других частей. Связи по вертикали - связи субординации, одни элементы системы подчиняются другим. Система обладает признаком целостности - это означает, что все ее составные части, соединяясь в целое, образуют качество, не сводимое к качествам отдельных элементов. Согласно современным научным взглядам все природные объекты представляют собой упорядоченные, структурированные, иерархически организованные системы.

В самом общем смысле слова «система» обозначает любой предмет или любое явление окружающего нас мира и представляет собой взаимосвязь и взаимодействие частей (элементов) в рамках целого. Структура - это внутренняя организация системы, которая способствует связи ее элементов в единое целое и придает ей неповторимые особенности. Структура определяет упорядоченность элементов объекта. Элементами являются любые явления, процессы, а также любые свойства и отношения, находящиеся в какой-либо взаимной связи и соотношении друг с другом.

В понимании структурной организации материи большую роль играет понятие «развитие». Понятие развития неживой и живой природы рассматривается как необратимое направленное изменение структуры объектов природы, поскольку структура выражает уровень организации материи. Важнейшее свойство структуры - ее относительная устойчивость. Структура - это общий, качественно определенный и относительно устойчивый порядок внутренних отношений между подсистемами той или иной системы. Понятие "уровень организации" в отличие от понятия "структура" включает представление о смене структур и ее последовательности в ходе исторического развития системы с момента ее возникновения. В то время как изменение структуры может быть случайным и не всегда имеет направленный характер, изменение уровня организации происходит необходимым образом.

Системы, достигшие соответствующего уровня организации и имеющие определенную структуру, приобретают способность использовать информацию для того, чтобы посредством управления сохранить неизменным (или повышать) свой уровень организации и способствовать постоянству (или уменьшению) своей энтропии (энтропия - мера беспорядка). До недавнего времени естествознание, и другие науки могли обходиться без целостного, системного подхода к своим объектам изучения, без учета исследования процессов образования устойчивых структур и самоорганизации.

В настоящее время проблемы самоорганизации, изучаемые в синергетике, приобретают актуальный характер во многих науках, начиная от физики и кончая экологией.

Задача синергетики - выяснение законов построения организации, возникновения упорядоченности. В отличие от кибернетики здесь акцент делается не на процессах управления и обмена информацией, а на принципах построения организации, ее возникновения, развития и самоусложнения (Г.Хакен). Вопрос об оптимальной упорядоченности и организации особенно остро стоит при исследованиях глобальных проблем - энергетических, экологических, многих других, требующих привлечения огромных ресурсов.

3. Разновидность симметрии асимметрии в природе - свойства материального мира. Понятие симметрии и асимметрии в биологии

Внимательно приглядевшись к обступающей нас природе, можно увидеть общее даже в самых незначительных вещах и деталях. Форма листа дерева не является случайной: она строго закономерна. Листок как бы склеен из двух более или менее одинаковых половинок, одна из которых расположена зеркально относительно другой. Симметрия листка упорно повторяется, будь то гусеница, бабочка, жучок и т.п.

Радиальнолучевой симметрией обладают цветы, грибы, деревья, фонтаны. Здесь можно отметить, что на не сорванных цветах и грибах, растущих деревьях, бьющем фонтане или столбе паров плоскости симметрии ориентированы всегда вертикально.

Таким образом, можно сформулировать в несколько упрощенном и схематизированном виде общий закон, ярко и повсеместно проявляющийся в природе: все, что растет или движется по вертикали, т.е. вверх или вниз относительно земной поверхности, подчиняется радиально-лучевой симметрии в виде веера пересекающихся плоскостей симметрии. Все то, что растет и движется горизонтально или наклонно по отношению к земной поверхности, подчиняется билатеральной симметрии, симметрии листка. Этому всеобщему закону подчиняются не только цветы, животные, легкоподвижные жидкости и газы, но и твердые, неподатливые камни. Этот закон влияет на изменчивые формы облаков. В безветренный день они имеют куполовидную форму с более или менее ясно выраженной радиально-лучевой симметрией.

Влияние универсального закона симметрии является по сути дела чисто внешним, грубым, налагающим свою печать только на наружную форму природных тел. Внутреннее их строение и детали ускользают из-под его власти.

3.1 Асимметрия в живой природе

Молекулярная асимметрия была обнаружена и открыта Л. Пастером, которому удалось выделить левые и правые кристаллы винной кислоты. Асимметрия кристаллов кварца--в его оптической активности. В отличие от молекул неживой природы молекулы органических веществ имеют ярко выраженный асимметричный характер.

Если считать, что равновесие характеризуется состоянием покоя и симметрии, а асимметрия связана с движением и неравновесным состоянием, то понятие равновесия играет в биологии не менее важную роль, чем в физике. Всеобщий закон биологии -- принцип устойчивого термодинамического равновесия живых систем, определяет специфику биологической формы движения материи. Действительно, устойчивое термодинамическое равновесие (асимметрия) является основным принципом, который не только охватывает все уровни познания живого, но и выступает в качестве ключевого принципа постановки и решения происхождения жизни на земле.

Понятие равновесия может быть рассмотрено не только в статическом аспекте, но и в динамическом. Симметричной считается среда, находящаяся в состоянии термодинамического равновесия, среда с высокой энтропией и максимальным беспорядком частиц. Асимметричная среда характеризуется нарушением термодинамического равновесия, низкой энтропией и высокой упорядоченностью структуры.

При рассмотрении целостного объекта картина меняется. Симметричные системы, например кристаллы, характеризуются состоянием равновесия и упорядоченности. Но асимметричные системы, которыми являются живые тела, также характеризуются равновесием и упорядоченностью с тем только различием, что в последнем случае имеем дело с динамической системой.

Таким образом, устойчивое термодинамическое равновесие (или асимметрия) статической системы есть другая форма выражения устойчивого динамического равновесия, высокой упорядоченности и структурности организма на всех его уровнях. Такие системы называются асимметричными динамическими системами. Здесь нужно только указать, что структурность носит динамический характер.

Понятие равновесия тоже не является только статическим, имеется и динамический аспект. Состояние симметрии и движения не есть нарушение равновесия вообще, а есть состояние динамического равновесия. Здесь можно говорить о мере симметрии вообще, подобно тому, как в физике оперируют понятием движения.

3.2 Асимметрия как разграничивающая линия между живой и неживой природой

Пастером было установлено, что все аминокислоты и белки, входящие в состав живых организмов, являются «левыми», т.е. отличаются оптическими свойствами. Объяснить происхождение «левизны» живой природы он пытался асимметрией, глобальной анизотропией пространства.

Вселенная есть асимметричное целое, и жизнь в таком виде, в каком она представляется, должна быть функцией асимметрии Вселенной и вытекающих отсюда следствий. В отличие от молекул неживой природы молекулы органических веществ имеют ярко выраженный асимметричный характер. Придавая большое значение асимметрии живого вещества, Пастер считал ее именно той единственной, четко разграничивающей линией, которую в настоящее время можно провести между живой и неживой природой, т.е. тем, что отличает живое вещество от неживого. Современная наука доказала, что в живых организмах, как и в кристаллах, изменениям в строении отвечают изменения свойств.

Для неживой природы характерно преобладание симметрии, при переходе от неживой к живой природе на микроуровне преобладает асимметрия. Асимметрия на уровне элементарных частиц -- это абсолютное преобладание в нашей части Вселенной частиц над античастицами.

Все это говорит о большом значении симметрии и асимметрии в живой и неживой природе, показывает их связь с основными свойствами материального мира, со структурой материальных объектов на микро-, макро- и мегауровнях, со свойствами пространства и времени как форм существования материи. Накопленные наукой факты показывают объективный характер симметрии и асимметрии как одних из важнейших характеристик движения и структуры материи, пространства и времени, наряду с такими характеристиками, как прерывное и непрерывное, конечное и бесконечное.

Развитие современного естествознания приводит к выводу, что одним из наиболее ярких проявлений закона единства и борьбы противоположностей является единство и борьба симметрии и асимметрии в структуре симметрии и в процессах, имеющих место в живой и неживой природе, что симметрия и асимметрия являются парными относительными категориями.

Таким образом, симметрия играет роль в сфере математического знания, асимметрия -- в сфере биологического знания. Поэтому принцип симметрии -- это единственный принцип, благодаря которому есть возможность отличать вещество биогенного происхождения от вещества неживого. Парадокс: мы не можем ответить на вопрос, что такое жизнь, но имеем способ отличать живое от неживого.

3.3 Понятие симметрии и асимметрии в биологии

На явление симметрии в живой природе обратили внимание ещё в Древней Греции пифагорейцы (5 в. до н. э.) в связи с развитием ими учения о гармонии. В 19 в. появились единичные работы, посвященные симметрии растений (французские учёные О. П. Декандоль, О. Браво), животных (немецкий -- Э. Геккель), биогенных молекул (французские -- А. Вешан, Л. Пастер и др.). В 20 в. биообъекты изучали с позиций общей теории симметрии (советские учёные Ю. В. Вульф, В. Н. Беклемишев, Б. К. Вайнштейн, голландский физикохимик Ф. М. Егер, английский кристаллографы во главе с Дж. Берналом) и учения о правизне и левизне (советские учёные В. И. Вернадский, В. В. Алпатов, Г. Ф. Гаузе и др.; немецкий учёный В. Людвиг). Эти работы привели к выделению в 1961 особого направления в учении о симметрии -- биосимметрики.

Наиболее интенсивно изучалась структурная симметрия биообъектов. Исследование симметрии биоструктур -- молекулярных и надмолекулярных -- с позиций структурной симметрии позволяет заранее выявить возможные для них виды симметрии, а тем самым число и вид возможных модификаций, строго описывать внешнюю форму и внутреннее строение любых пространственных биообъектов. Это привело к широкому использованию представлений структурной симметрии в зоологии, ботанике, молекулярной биологии. Структурная симметрия проявляется прежде всего в виде того или иного закономерного повторения. В классической теории структурной симметрии, развитой немецким учёным И. Ф. Гесселем, Е.С. Федоровым и другими, вид симметрии объекта может быть описан совокупностью элементов его симметрии, т. е. таких геометрических элементов (точек, линий, плоскостей), относительно которых упорядочены одинаковые части объекта. Например, вид симметрии цветка флокса -- одна ось 5-го порядка, проходящая через центр цветка; производимые посредством её операции -- 5 поворотов (на 72, 144, 216, 288 и 360°), при каждом из которых цветок совпадает с самим собой. Вид симметрии фигуры бабочки -- одна плоскость, делящая её на 2 половины -- левую и правую; производимая посредством плоскости операция -- зеркальное отражение, «делающее» левую половинку правой, правую -- левой, а фигуру бабочки совмещающей с самой собой. Вид симметрии радиолярии Lithocubus geometricus, помимо осей вращения и плоскостей отражения содержит ещё и центр симметрии. Любая проведённая через такую единственную точку внутри радиолярии прямая по обе стороны от неё и на равных расстояниях встречает одинаковые (соответственные) точки фигуры. Операции, производимые посредством центра симметрии, -- отражения в точке, после которых фигура радиолярии также совмещается сама с собой.

В живой природе (как и в неживой) из-за различных ограничений обычно встречается значительно меньшее число видов симметрии, чем возможно теоретически. Например, на низших этапах развития живой природы встречаются представители всех классов точечной симметрии -- вплоть до организмов, характеризующихся симметрией правильных многогранников и шара. Однако на более высоких ступенях эволюции встречаются растения и животные в основном т. н. аксиальной (вида n) и актиноморфной (вида n (m) симметрии (в обоих случаях n может принимать значения от 1 до ?). Биообъекты с аксиальной симметрией (лист плюща, медуза Aurelia insulinda, цветок плюща) характеризуются лишь осью симметрии порядка n. При повороте этих фигур вокруг оси симметрии равные части каждого из них совпадут друг с другом соответственно 1, 4, 5 раз (оси 1, 4, 5-го порядка). Лист плюща асимметричен. Биообъекты актиноморфной симметрии (бабочка; лист кислицы; симметрии соответственно 1Чm, 3Чm. Бабочке свойственна двусторонняя, или билатеральная, симметрия) характеризуются одной осью порядка n и пересекающимися по этой оси плоскостями m. В живой природе наиболее распространены симметрия вида n = 1 и 1Чm = m, называется соответственно асимметрией и двусторонней, или билатеральной, симметрией.

Асимметрия характерна для листьев большинства видов растений, двусторонняя симметрия -- до известной степени для внешней формы тела человека, позвоночных животных и многих беспозвоночных. У подвижных организмов такая симметрия, по-видимому, связана с различиями их движения вверх-вниз и вперёд-назад, тогда как их движения направо-налево одинаковы. Нарушение у них билатеральной симметрии неизбежно привело бы к торможению движения одной из сторон и превращению поступательного движения в круговое. В 50--70-х гг. 20 в. интенсивному изучению (прежде всего в СССР) подверглись т. н. диссимметрические биообъекты (диссимметрические D- и L-биообъекты: 1. цветки анютиных глазок; 2. раковины прудовика; 3. молекулы винной кислоты; 4. листья бегонии.). Последние могут существовать по крайней мере в двух модификациях -- в форме оригинала и его зеркального отражения (антипода). При этом одна из этих форм (неважно какая) называется правой или D (от лат. dextro), другая -- левой или L (от лат. laevo). При изучении формы и строения D- и L-биообъектов была развита теория диссимметризующих факторов, доказывающая возможность для любого D- или L-объекта двух и более (до бесконечного числа) модификаций (Лист липы, иллюстрирующий возможность существования диссимметрических объектов более чем в двух модификациях. Для листа липы диссфакторы -- это 4 морфологических признака: преимущественные ширина и длина, асимметричные жилкование и загиб главной жилки. Так как каждый из диссфакторов может проявляться двояко -- в (+) или (-) --формах -- и соответственно приводить к D- или L-мoдификациям, то число возможных модификаций будет 24 = 16, а не две); одновременно в ней содержались и формулы для определения числа и вида последних. Эта теория привела к открытию т. н. биологической изомерии (разных биообъектов одного состава.

При изучении встречаемости биообъектов было установлено, что в одних случаях преобладают D-, в других L-формы, в третьих они представлены одинаково часто. Бешаном и Пастером (40-е гг. 19 в.), а в 30-х гг. 20 в. советским учёным Г. Ф. Гаузе и другими было показано, что клетки организмов построены только или преимущественно из L-amинокислот, L-белков, D-дезоксирибонуклеиновых кислот, D-сахаров, L-алкалоидов, D- и L-терпенов и т. д. Столь фундаментальная и характерная черта живых клеток, названная Пастером диссимметрией протоплазмы, обеспечивает клетке, как было установлено в 20 в., более активный обмен веществ и поддерживается посредством сложных биологических и физико-химических механизмов, возникших в процессе эволюции. Советский учёный В. В. Алпатов в 1952 на 204 видах сосудистых растений установил, что 93,2% видов растений относятся к типу с L-, 1,5% -- с D-ходом винтообразных утолщений стенок сосудов, 5,3% видов -- к типу рацемическому (число D-сосудов примерно равно числу L-сосудов).

При изучении D- и L-биообъектов было установлено, что равноправие между D-и L-формами в ряде случаев нарушено из-за различия их физиологических, биохимических и др. свойств. Подобная особенность живой природы была названа диссимметрией жизни. Так, возбуждающее влияние L-amинокислот на движение плазмы в растительных клетках в десятки и сотни раз превосходит такое же действие их D-форм. Многие антибиотики (пенициллин, грамицидин и др.), содержащие D-amинокислоты, обладают большей бактерицидностью, чем их формы c L-amинокислотами. Чаще встречающиеся винтообразные L-kopнеплоды сахарной свёклы на 8--44% (в зависимости от сорта) тяжелее и содержат на 0,5--1% больше сахара, чем D-kopнеплоды.

Изучение наследования признаков у D- и L-форм показало, что их правизна или левизна может быть наследственной, ненаследственной или имеет характер длительной модификации. Это означает, что по крайней мере в ряде случаев правизну-левизну организмов и их частей можно изменить действием мутагенных или немутагенных химических соединений. В частности, D-штаммы (по морфологии колоний) микроорганизма Bacillus mycoides при выращивании их на агаре с D-сахарозой, L-днгитонином, D-винной кислотой можно превратить в L-штаммы, а L-штаммы можно превратить в D-штаммы, выращивая их на агаре с L-винной кислотой и D-аминокислотами. В природе взаимопревращения D- и L-форм могут происходить и без вмешательства человека. При этом смена видов симметрии в эволюции происходила не только у диссимметрических организмов. В результате возникли многочисленные эволюционные ряды симметрии, специфичные для тех или иных ветвей древа жизни. Сущность жизни

4. Современные концепции происхождения жизни

Вопросы о происхождении и сущности жизни стали предметом интереса человека очень давно. Они наряду с вопросами о происхождении Вселенной и человека составляют фундамент нашего мировоззрения. Необходимо отметить, что на самом деле это не два вопроса, а один, сформулированный в двух своих аспектах. И действительно, невозможно узнать, как появилась жизнь на Земле, если не знать, что это такое. В то же время нельзя ответить на вопрос, что такое жизнь, не рассматривая вопрос о ее происхождении. При попытке определить сущность жизни на научном уровне возникают значительные трудности, поскольку есть признаки, общие как для живой, так и для неживой природы, при этом выделить какой-либо существенный и единственный критерий жизни современной науке пока не удалось.

В современной науке жизнь и живое являются объектом исследования многих естественно-научных дисциплин, начиная с биологии и смежных с нею отраслей научного знания и завершая философией, математикой, рассматривающих абстрактные модели феномена живого, а также физикой, определяющей жизнь с позиций физических закономерностей. Ключевым вопросом многих из этих исследований является вопрос о сущности жизни, рассматриваемый различными естественно-научными направлениями и философскими школами по-разному.

Долгое время в науке существовало два основных подхода к решению этого вопроса -- механицизм и витализм. Механистический материализм, характерный для классической науки Нового времени, не признавал качественной специфики живых организмов и представлял жизненные процессы как результат действия химических и физических процессов. Поэтомумеханицизм отождествлял живые организмы со сложными машинами. Однако такой подход неверен в самой своей основе, ведь аналогия между живым существом и машиной не объясняет причину целесообразности живого организма. Целесообразность машин связана с тем, что они целенаправленно создаются человеком для выполнения определенных работ, и потому имеют соответствующее устройство. Но оценивать жизнь с таких позиций, оставаясь в рамках материалистического мировоззрения, нельзя, иначе нам придется признать существование творца всего живого -- Бога. Таким образом, механицизм и его более поздняя разновидность -- редукционизм всякий раз беспомощно останавливались перед проблемой сущности жизни.

Противоположной точкой зрения выступал витализм (от лат. vitalis -- жизненный), который объяснял качественное отличие живого от неживого наличием в живых организмах особой «жизненной силы», отсутствующей в неживых предметах и не подчиняющейся физическим законам. Такое решение проблемы сущности жизни тесно связано с признанием факта творения ее Богом, иным разумным началом и т.д.

На обыденном уровне мы все интуитивно понимаем, что представляет собой живое, а что -- неживое. Однако при попытке четко сформулировать определение жизни возникают большие трудности, так как сущность жизни понимается и определяется неоднозначно.

Большинство ученых убеждено, что жизнь представляет собой особую форму существования материального мира. До конца 1950-х гг. в научной и философской литературе общепринятым было знаменитое определение Ф. Энгельса, согласно которому жизнь есть способ существования белковых тел, состоящий в постоянном самообновлении их химических составных частей. Но постепенно стало очевидным, что субстратная основа жизни не сводится только к белкам, а функциональная -- к присущему белковым телам обмену веществ. Также ученым удалось точно установить, что качественное Отличие живого от неживого заключено в структуре их соединений, в строении и связях, особенностях функций, характеристике и организации протекающих в организме процессов. Кроме того, жизнь отличается динамичностью и лабильностью. Но при этом можно говорить о полном тождестве химических элементов, входящих в состав живого и неживого.

На основании новых данных во второй половине XX в. появились новые определения жизни. Например, определение канадского биолога Г. Селье, в соответствии с которым жизнь понимается как процесс непрерывной адаптации организмов к постоянно изменяющимся условиям внешней и внутренней среды. При этом организм оказывается способным поддерживать стабильность всех своих структур и функций, несмотря на воздействие различных внешних факторов.

Современная биология в вопросе о сущности жизни все чаще идет по пути перечисления основных свойств живых организмов. При этом акцент делается на то, что только совокупность данных свойств может дать представление о специфике жизни. Таково определение жизни Б.М. Медникова. Он называет жизнью активное, идущее с затратой энергии поддержание и воспроизведение специфических структур, обладающих следующими свойствами: наличие генотипа и фенотипа; репликация генетических программ матричным способом; неизбежность ошибок на микроуровне при репликации, приводящих к мутациям; многократное усиление этих изменений в ходе формирования фенотипа и их селекция со стороны факторов внешней среды.

В этом определении акцент сделан на то, что жизнь связана с воспроизведением характерной для каждого вида упорядоченности. При этом организм воспроизводит себя и поддерживает свою целостность за счет использования элементов окружающей среды с более низкой упорядоченностью. Чужая упорядоченность организму не нужна, так как это будет означать воспроизведение чуждых для него структур, что приведет к гибели данного организма. Именно это происходит, когда в клетку проникает вирус, заставляющий ее развиваться по его генетической программе. Так возникают болезни, могущие привести к гибели всего организма. Поэтому любой организм имеет иммунную систему, защищающую его от проникновения «чужаков». Сбой в работе иммунной системы очень опасен для любого организма, хотя в некоторых случаях (например, при пересадке органов) иммунитет приходится подавлять искусственно, чтобы избежать отторжения пересаженного органа.

Даже в процессе питания, когда мы поглощаем части растений и животных, в первую очередь идет разрушение чужой упорядоченности. При этом белки расщепляются до аминокислот, сложные углеводы -- до моносахаридов, нуклеиновые кислоты -- до нуклео-тидов. И лишь после этого организм из этих элементарных «кирпичиков» живого строит те белки и нуклеиновые кислоты, которые необходимы ему. Так что организмы берут извне не готовую упорядоченность, а энергию (растения -- свет, животные -- малоокис-ленные соединения для их сжигания в процессе дыхания), с помощью которой они воссоздают свою специфическую структуру.

Очевидным фактом в вопросе сущности жизни является то, что живые организмы существенно отличаются от неживых систем. Эти отличия придают жизни качественно новые свойства. Живым организмам присущи определенные специфические свойства. Часто эти свойства в той или иной степени характерны и для неживой природы, что подчеркивает единство эволюционных процессов. Однако проявление этих свойств и их совокупность не схожи у живых и неживых объектов. Именно совокупность и характер проявления свойств как раз и определяют сущность жизни. Поэтому для того, чтобы понять сущность жизни, необходимо, прежде всего, установить путем сравнительного анализа, что такое живое и чем оно отличается от неживого.

5. Биосфера как живая самоорганизующая система

Биосфера -- вместилище жизни, сложная, целостная система, динамическое равновесие которой проявляется множеством параметров. Само слово «биосфера» произошло от слов «био» и «сфера» -- это область активной жизни, охватывающей нижнюю часть атмосферы, верхнюю часть литосферы и гидросферу.

В биосфере живые организмы (живое вещество) и среда их обитания органически связаны между собой и взаимодействуют друг с другом, образуя целостную динамическую систему. В.И. Вернадский писал: «Биосфера -- это среда нашей жизни, это та «природа», которая нас окружает, о которой мы говорим в разговорном языке. Человек прежде всего своим дыханием, проявлением своих функций, неразрывно связан с этой «природой», хотя бы. он жил в городе или в уединенном домике». «Человек ... как и все живые организмы, как всякое живое вещество, есть определенная функция биосферы... составляет определенную закономерность строения биосферы».

Биосфера, или биомасса Земли, -- это совокупность всех живых существ в природе, которая имеет свои границы. Верхний предел биосферы ограничен сильнейшим солнечным и космическим излучением, поражающим все живое. Нижний предел -- высокими температурами недр Земли.

Возникновение учения о биосфере обычно связывают с именем знаменитого французского натуралиста Ж.Б. Ламарка, который ввел термин «биология». Однако определение биосферы как особой оболочки Земли и само ее название было предложено австралийским геологом Э. Зюсом. Именно Э. Зюсом в 1875 г. был введен термин «биосфера». Однако подробного освещения существа и роли биосферы мы у Зюса не находим. Ж.Б. Ламарк значительно раньше и глубже подошел к анализу взаимоотношений организмов со средой их обитания и гибели, что непосредственно предшествовало современному пониманию биосферы.

Более глубоко и широко биосфера представлена в трудах В.И. Вернадского. Его учение о биосфере как активной оболочке Земли, в которой совокупная деятельность живых организмов проявляется как геохимический фактор планетного масштаба, появилось в 1926 г. Теория биосферы, разработанная В.И. Вернадским, оказывается необходимой естественнонаучной предпосылкой для создания теоретических основ экологии человека и, кроме того, важнейшим средством стратегии и тактики научных исследований по проблеме экологии человека и различным аспектам преобразования окружающей среды.

Список использованных источников

1. Вернадский В.И. Избранные труды по истории науки М., 1981.

2. Доброе Г.М. Наука о науке. Киев, 1989.

3. Дубнищева Т.Я. Концепции современного естествознания. Новосибирск, 1997.

4. Ильин В.В., Калинкин Л.Т. Природа науки. М., 1985.

5. Косарева Л.М. Рождение науки Нового времени из духа культуры. М., 1997.

6. Кузнецов В.И., Идлис Г.М., Гутина В.Н. Естествознание. М., 1996.

7. Микулинский С.Р. Очерки развития историко-научной мысли. М., 1988.

8. Поликарпов В. С. История науки и техники. Ростов-на-Дону, 1999.

9. Физическое знание: его генезис и развитие. М.. 1993.

10. Философия и методология науки. М., 1996.

Размещено на Allbest.ru

...

Подобные документы

  • Естественнонаучная и гуманитарная культуры. Предмет и метод естествознания. Динамика естествознания и тенденции его развития. История естествознания. Структурные уровни организации материи. Макромир. Открытые системы и неклассическая термодинамика.

    книга [353,5 K], добавлен 21.03.2009

  • Эволюция научного метода и естественнонаучной картины мира. Развитие научных исследовательских программ. Пространство, время и симметрия. Системные уровни организации материи. Порядок и беспорядок в природе. Панорама современного естествознания.

    курс лекций [47,6 K], добавлен 15.01.2011

  • Научный метод познания. Принципы симметрии и законы сохранения. Специальная и общая теория относительности. Структурные уровни и системная организация материи. Порядок и беспорядок в природе. Панорама современного естествознания. Биосфера и человек.

    тест [32,4 K], добавлен 17.10.2010

  • Цель и предмет курса "Концепции современного естествознания", основные термины и понятия. Специфические черты науки, виды культуры. История становления научных знаний. Естественнонаучная картина мира. Внутреннее строение Земли. Законы химии и биологии.

    шпаргалка [136,9 K], добавлен 12.02.2011

  • Естественнонаучная и гуманитарная культуры и история естествознания. Корпускулярная и континуальная концепции описания природы. Порядок и беспорядок в природе, хаос. Пространство и время, принципы относительности, симметрии, универсального эволюционизма.

    курс лекций [545,5 K], добавлен 05.10.2009

  • Особенности естественнонаучного познания, его методы и история формирования. Панорама современного естествознания, тенденции его развития. Структурные уровни функционирования материи. Оболочки Земли, их роль и организация. Происхождение и сущность жизни.

    курс лекций [63,7 K], добавлен 22.11.2010

  • Естествознание как система научных знаний о природе, обществе и мышлении взятых в их взаимной связи. Формы движения материи в природе. Предмет, цели, закономерности и особенности развития, эмпирическая, теоретическая и прикладная стороны естествознания.

    реферат [25,4 K], добавлен 15.11.2010

  • Наука как часть культуры, ее критерии и структура. Методы и подходы научного познания. Сущность современных концепций физики, химии и космологии. Земля как предмет естествознания. Теории происхождения жизни, эволюции органического мира. Феномен человека.

    учебное пособие [3,2 M], добавлен 21.09.2010

  • Специфика живого вещества и проблемы изучения живой природы в естествознании. Концепции происхождения жизни на планете и эволюции живых организмов. Зарождение и развитие Солнечной системы. Теория структурных уровней организации биотической материи.

    контрольная работа [49,2 K], добавлен 06.10.2012

  • Формы научного знания. Атомистическое учение Левкиппа и Демокрита. Электромагнитная физическая картина мира. Общая характеристика звезд, их виды и эволюция. Свойства живых организмов. Концепции происхождения человека. Понятие информации в кибернетике.

    контрольная работа [47,7 K], добавлен 24.03.2011

  • Цель естествознания: гипотезы, анализ вопроса. Математика как отправная точка естествознания. История развития химических концепций. Эволюционная химия. Динамическая биохимия. Генная инженерия: предпосылки ее возникновения, история развития.

    контрольная работа [43,8 K], добавлен 28.01.2008

  • Требования образовательных стандартов по дисциплине "Концепции современного естествознания". Изучение и понимание сущности фундаментальных законов природы, составляющих каркас современных физики, химии и биологии. Методология современного естествознания.

    лекция [26,7 K], добавлен 24.11.2017

  • Исторические этапы познания природы, логика и закономерности развития науки. Понятие научной картины мира и теория относительности. Антропный принцип космологии и Учение Вернадского о ноосфере. Современные концепции экологии, задачи и принципы биоэтики.

    шпаргалка [64,8 K], добавлен 29.01.2010

  • Цели и задачи курса "Концепции современного естествознания", место данной дисциплины в системе других наук. Классификация наук, предложенная Ф. Энгельсом. Взаимосвязь физических, химических и биологических знаний. Виды атмосферных процессов в природе.

    контрольная работа [28,8 K], добавлен 13.06.2013

  • Роль научных работ Гагилея и Ньютона в создании классической механики и экспериментального естествознания. Объяснение Пригожиным и Стенгерсов процесса возникновения диссипативных структур в открытых неравновесных системах. Этапы развития жизни на Земле.

    контрольная работа [27,5 K], добавлен 07.12.2010

  • Исаак Ньютон как основатель классической физики. Открытия в области естествознания, которые широко используются в разнообразных областях нашей жизни. Свойства кварков, короткодействующие типы взаимодействия, суть идеи корпускулярно-волнового дуализма.

    контрольная работа [38,8 K], добавлен 04.01.2011

  • Рассмотрение стадий исторического развития естествознания. Отказ от созерцательности и наивной реалистичности установок классического естествознания. Усиление математизации современного естествознания, сращивание фундаментальных и прикладных исследований.

    реферат [30,2 K], добавлен 11.02.2011

  • Изучение основ естествознания Нового времени. Многообразие и единство мира, геометрия Вселенной. А.Л. Чижевский о влиянии Солнца на природные и общественные процессы. Эволюционно-синергетическая парадигма. Дарвинистский вариант глобального эволюционизма.

    реферат [245,2 K], добавлен 26.12.2014

  • Предмет и структура естествознания. Понятие естествознания как совокупности наук о природе. История естествознания и интеграция наук от времен древнегреческой натурфилософии, в средневековой культуре, новое время, эпоху глобальной научной революции.

    реферат [54,1 K], добавлен 29.12.2009

  • Понятие симметрии - неизменности структуры, свойств, формы материального объекта относительно его преобразований. Симметрии, выражающие свойства пространства и времени, физических взаимодействий. Примеры симметрии в неживой природе, ее обратимость.

    презентация [312,0 K], добавлен 18.10.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.