Эволюция жизни на Земле

Исследование этапов эволюции разных организмов в разных средах обособленно друг от друга. Анализ современных диалектико-материалистических представлений о естественном возникновении жизни. Эволюция биосферы, одноклеточных и многоклеточных организмов.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 27.05.2014
Размер файла 31,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МБОУ «СОШ №9 с углублённым изучением английского языка»

Эволюция жизни на земле

Работу выполнила: ученица 10 А класса

Айвазова Алики

Работу проверила: Чекункова Е.В.

Казань 2014

Содержание

Введение

Представления об эволюции жизни на земле

Эволюция жизни на Земле

Эволюция одноклеточных организмов

Эволюция многоклеточных организмов

Эволюция растительного мира

Эволюция животного мира

Эволюция биосферы

Заключение

Список использованной литературы

эволюция биосфера организм одноклеточный

Введение

Вопрос о том, когда на Земле появилась жизнь, всегда волновал не только ученых, но и всех людей. Ответы на него содержатся в священных писаниях практически всех религий. Хотя точного научного ответа на него до сих пор нет, некоторые факты позволяют высказать более или менее обоснованные гипотезы.

Теорий возникновения жизни на Земле существует огромное множество, среди них и гипотеза о зарождении жизни из кубика льда, и теория внеземного происхождения жизни, и даже возникновение жизни в местах вулканической активности.

Часто кажется, что организмы находятся всецело во власти среды: среда ставит им пределы, и в этих пределах они должны либо преуспеть, либо погибнуть. Но организмы и сами воздействуют на среду. Они изменяют ее непосредственно за недолгое свое существование и за долгие периоды эволюционного времени. Как известно, гетеротрофы поглощали питательные вещества из первичного «бульона» и что автотрофы способствовали появлению окислительной атмосферы, подготовив, таким образом, условия для возникновения и эволюции процесса дыхания.

Целью моей работы было раскрыть и понять суть процесса эволюции, одного из древнейших на нашей планете, ведь человек так же является его частью. Постепенная, сложная работа природы несомненно достойна внимания.

Задачей моего реферата было изучить этапы эволюции разных организмов в разных средах обособленно друг от друга. Именно такой метод изучения является для меня наиболее эффективным, ведь разбив все организмы на определенные группы и прослеживая эволюцию организмов в них можно затем сравнить результаты между собой и получить полную картину развития жизни на Земле.

Представления об эволюции жизни на земле

В теории абиогенеза два принципиально разных подхода: наивно-материалистические представления древних греков о самозарождении живых организмов из неживой природы и современные диалектико-материалистические представления о естественном возникновении жизни. В частности, Аристотель в принципе придерживался материалистических представлений об абиогенезе живых существ из неорганической природы. Однако его взгляды и взгляды его средневековых последователей превратились в механистические представления о самозарождении высокоразвитых органических форм (как растений, так и животных) непосредственно из неорганической материи (грязь, ил, пот и т.д.), а также о порождении одними формами других (например, гуси, овцы из плодов деревьев).

Первый удар по представлениям о самозарождении нанесли эксперименты флорентийского естествоиспытателя Франческо Реди, который доказал невозможность самозарождения мух в мясе. Наряду с опытными открытыми сосудами с мясом он использовал контрольные, завязанные марлей и недоступные для мух. В контрольных сосудах черви (личинки мух) не могли самозарождаться. Однако эти эксперименты Франческо Реди не смогли опровергнуть представления о самозарождении, устоявшиеся веками.

Спустя несколько лет после проведённых экспериментов Франческо Реди голландский учёный Антони Левенгук открыл микроскопические существа, "самозарождение" которых можно было наблюдать в капельке чистой воды. Это открытие Антони Левенгуком микромира дало толчок развитию представлений о самозарождении, но уже на уровне микромира. Не дали окончательного ответа и эксперименты итальянского учёного Ладзаро Спалланцани, продемонстрировавшего невозможность самозарождения микроскопических живых существ в питательных жидкостях и бульонах после их кипячения в запаянных ретортах. Несогласные с выводами Ладзаро Спалланцани учёные считали, что в его экспериментах был нарушен доступ в сосуды активного начала, якобы содержащегося в воздухе и необходимого для самозарождения. Только остроумные опыты выдающегося французского учёногомикробиолога Луи Пастера смогли убедить всех скептиков и сокрушить представления о самозарождении.

Впервые определение биогенеза было выведено на основании опытов Луи Пастера. Он нагревал бульон в колбе с длинным, дважды изогнутым кончиком, в котором оседали все споры микроорганизмов, содержащиеся в воздухе, поступавшем в колбу после кипячения бульона. Такая конструкция колбы не препятствовала доступу воздуха, т.е. "активного начала". Колба оставалась стерильной месяцами, но стоило смочить бульоном изогнутое колено, как в колбе начиналось интенсивное развитие микроорганизмов. Опыты Луи Пастера сыграли важную роль в развенчании представлений о самозарождении и помогли утвердиться гипотезе биогенеза. Был сформулирован закон "Всё живое из живого", который имел большое значение для развития биологической науки и в то же время более чем на полвека исключил возможность рассмотрения абиогенного (из неорганической природы) пути возникновения живой материи. Биогенез как гипотеза о происхождении жизни не даёт материалистического ответа на вопрос об истоках появления органической материи во Вселенной. Однако она может вполне материалистически объяснить возникновение жизни на Земле путём заселения её спорами микроорганизмов и других низших форм жизни [1].

Эволюция жизни на Земле

Попытки понять, как возникла и развивалась жизнь на Земле, появились у человека в глубокой древности. В античные времена и средневековье допускалась возможность самозарождения даже млекопитающих (например, мышей из тряпок). Зоолог Ф. Реди в XVII в. экспериментально доказал невозможность самозарождения скольконибудь сложных животных. Окончательно версия о самозарождении была развенчана Л. Пастером в середине XIX в.

Отрицание возможности самозарождения жизни в настоящее время не противоречит представлениям о принципиальной возможности развития органической природы и жизни в прошлом из неорганической материи. Теперь хорошо известно, что на определенной стадии развития материи жизнь может возникнуть как результат естественных процессов, совершающихся в самой материи.

Элементарные химические процессы на начальных этапах возникновения и развития жизни могли происходить не только на Земле, но и в других частях Вселенной и в различное время. Однако в изученной пока человеком части Вселенной только на Земле они привели к формированию и расцвету жизни.

Историю возникновения и развития жизни обычно делят на предбиологический (абиогенный, химический) и биологический этапы.

Первый этап был значительно продолжительнее. Возраст Земли исчисляется примерно в 5 млрд. лет. Жизнь существует на Земле, видимо, более 3 млрд. лет.

С возникновением жизни ее развитие пошло быстрыми темпами (ускорение эволюции во времени). Так, для этапа химической эволюции при возникновении жизни на Земле потребовалось 1,5--2 млрд. лет, тогда как до возникновения наземных растений и животных с момента появления жизни прошло не более 500 млн. лет; птицы и млекопитающие развились от наземных позвоночных за 100 млн. лет, приматы выделились за 12--15 млн. лет, для становления человека потребовалось около 5 млн. лет; эра же современной науки и техники в истории человека исчисляется в пределах 300 лет.

Настоящая глава посвящена краткому описанию многообразия органического мира Земли -- тем результатам эволюционного процесса, которые сейчас реально существуют в природе. При этом мы рассмотрим лишь самые крупные группы организмов и кратко охарактеризуем пути их эволюционного развития [4].

Эволюция одноклеточных

Самые ранние из бактерий (прокариоты) существовали уже около 3,5 млрд. лет на­зад. К настоящему времени сохранились два семейства бактерий: древние, или археобактерии (галофильные, метановые, термофильные), и эубактерии (все остальные). Таким образом, единственными живыми существами на Земле в течение 3 млрд. лет были при­митивные микроорганизмы. Возможно, они представляли собой одноклеточные существа, сходные с современными бактериями, например клостридиями, живущими на основе брожения и использования богатых энергией органических соединений, возникающих абиогенно под действием электрических разрядов и ультрафиолетовых лучей. Следовательно, в эту эпоху живые существа были потребителями органических веществ, а не их производителями.

Гигантский шаг на пути эволюции жизни был связан с возникновением основных биохимических процессов обмена -- фотосинтеза и дыхания и с образованием клеточной организации, содержащей ядерный аппарат (эукариоты). Эти «изобретения», сделанные еще на ранних стадиях биологической эволюции, в основных чертах сохранились у современных организмов. Методами молекулярной биологии установлено поразительное единообразие биохимических основ жизни при огромном различии организмов по другим признакам. Белки почти всех живых существ состоят из 20 аминокислот. Нуклеиновые кислоты, коди­рующие белки, монтируются из четырех нуклеотидов. Биосинтез белка осуществляется по единообразной схеме, местом их синтеза являются рибосомы, в нем участвуют иРНК и тРНК. По­дав­ляющая часть организмов использует энергию окисления, ды­хания и гликолиза, которая запасается в АТФ.

Рассмотрим подробнее особенности эволюции на клеточном уровне организации жизни. Наибольшее различие существует не между растениями, грибами и животными, а между организмами, обладающими ядром (эукариоты) и не имеющими его (прокариоты). Последние пред­ставлены низшими организмами -- бактериями и синезелеными водорослями (цианобактерии, или цианеи), все остальные организмы -- эука­риоты, которые сходны между собой по внутриклеточной организации, генетике, биохимии и метаболизму.

Различие между прокариотами и эукариотами заключается еще и в том, что первые могут жить как в бескислородной (облигатные анаэробы), так и в среде с разным содержанием кислорода (факультативные анаэробы и аэробы), в то время как для эукариотов, за немногим исключением, обязателен кислород. Все эти различия имели существенное значение для понимания ранних стадий биологической эволюции.

Сравнение прокариот и эукариот по потребности в кислороде приводит к заключе­нию, что прокариоты возникли в период, когда содержание кислорода в среде изменилось. Ко вре­мени же появления эукариот концентрация кислорода была высокой и относительно посто­янной.

Первые фотосинтезирующие организмы появились около 3 млрд. лет назад. Это были анаэробные бактерии, предшественники современных фотосинтезирующих бактерий. Предполагается, что именно они образовали самые древние среди известных строматолитов. Обеднение среды азотистыми органическими соединениями вызывало появление живых существ, способных использовать атмосферный азот. Такими организмами, способными существовать в среде, полностью лишенной органических углеродистых и азотистых соедине­ний, являются фотосинтезирующие азотфиксирующие синезеленые водоросли. Эти орга­низмы осуществляли аэробный фотосинтез. Они устойчивы к продуцируемому ими кисло­роду и могут использовать его для собственного метаболизма. Поскольку синезеленые водоросли возникли в период, когда концентрация кислорода в атмосфере колебалась, вполне допустимо, что они -- промежуточные организмы между анаэробами и аэробами.

С уверенностью предполагается, что фотосинтез, в котором источником атомов водорода для восстановления углекислого газа является сероводород (такой фотосинтез осуществ­ляют современные зеленые и пурпурные серные бактерии), предшест­вовал более сложному двустадийному фотосинтезу, при котором атомы водорода извлекаются из молекул воды. Второй тип фотосинтеза характерен для цианей и зеленых растений.

Фотосинтезирующая деятельность первичных одноклеточных имела три последст­вия, ока­завшие решающее влияние на всю дальнейшую эволюцию живого. Вопервых, фотосинтез освободил организмы от конкуренции за природные запасы абиогенных органических соединений, количество которых в среде значительно сократилось. Резвившееся посредством фотосинтеза автотрофное питание и запасание питательных готовых веществ в растительных тканях создали затем условия для появления громадного разнообразия автотрофных и гетеротрофных организмов. Вовторых, фотосинтез обеспечивал насыщение атмосферы достаточным количеством кислорода для возникновения и развития организмов, энергетический обмен которых основан на процессах дыхания. Втретьих, в результате фотосинтеза в верхней части атмосферы образовался озоновый экран, защищаю­щий земную жизнь от губительного ультрафиолетового излучения космоса.

Еще одно существенное отличие прокариот и эукариот заклю­чается в том, что у вторых центральным механизмом обмена является дыхание, у большинства же прокариот энергетический обмен осуществляется в процессах брожения. Сравнение метаболизма прокариот и эукариот приводит к выводу об эволюционной связи между ними. Вероятно, анаэробное брожение возникло на более ранних стадиях эволюции. После появления в атмосфере достаточного количества свободного кислорода аэробный метаболизм оказался намного выгоднее, так как при окислении углеводов в 18 раз увеличивается выход биологически полезной энергии в сравнении с брожением. Таким образом, к анаэробному метаболизму присоединился аэробный способ извлечения энергии одноклеточными организмами.

Когда же появились эукариотические клетки? На этот вопрос нет точного ответа, но значительное количество данных об ископаемых эукариотах позволяет сказать, что их возраст составляет около 1,5 млрд. лет. Относительно того, каким образом возникли эукариоты, существуют две гипотезы.

Одна из них (аутогенная гипотеза) предполагает, что эукариотическая клетка воз­никла путем дифференциации исходной прокариотической клетки. Вначале развился мембранный комплекс: образовалась наружная клеточная мембрана с впячиваниями внутрь клетки, из которой сформировались отдельные структуры, давшие начало клеточным органоидам. От какой именно группы прокариот возникли эукариоты, сказать невозможно.

Другую гипотезу (симбиотическую) предложила недавно аме­риканский ученый Маргулис. В ее обоснование она положила новые открытия, в частности обнаружение у пластид и митохондрий внеядерной ДНК и способности этих органелл к самостоятельному делению. Л. Маргулис предполагает, что эукариотическая клетка возникла вследствие нескольких актов симбиогенеза. Вначале произошло объединение крупной амебовидной прокариотной клетки с мелкими аэробными бактериями, которые превратились в митохондрии. Затем эта симбиотическая прокариотная клетка включила в себя спирохетоподобные бактерии, из которых сформировались кинетосомы, центросомы и жгутики. После обособления ядра в цитоплазме (признак эукариот) клетка с этим набором органелл оказалась исходной для образо­вания царств грибов и животных. Объединение прокариотной клетки с цианеями привело к образованию пластидной клетки, что дало начало формированию царства растений. Гипотеза Маргулис разделяется не всеми и подвергается критике. Большинство авторов придер­живается аутогенной гипотезы, более соответствующей дарвиновским принципам монофилии, дифференциации и усложнения организации в ходе прогрессивной эволюции [3].

Эволюция многоклеточных организмов

Шестьсот миллионов лет назад, в позднем докембрии (венде), начался расцвет многоклеточных организмов. Удивляет разнообразие вендской фауны: разные типы и классы животных появляются как бы вдруг, но число родов и видов небольшое. В венде возник биосферный механизм взаимосвязи одноклеточных и многоклеточных организмов первые стали продуктом питания для вторых. Обильный в холодных водах планктон, использующий световую энергию, стал пищей для плавающих и донных микроорганизмов, а также для многоклеточных животных. Постепенное потепление и рост кислорода привели к тому, что эукариоты, включая многоклеточных животных, стали заселять и карбонатный пояс планеты, вытесняя цианобактерии. Начало палеозойской эры принесло две загадки: исчезновение вендской фауны и кембрийский "популяционный взрыв" появление скелетных форм.

Эволюция жизни в фанерозое (последние 545 млн лет земной истории) процесс усложнения организации в растительном и животном мире. В кембрийском и ордовикском периодах существовали только морские организмы суша оставалась необитаемой. Хорошо сохранились отпечатки трилобитов из класса членистоногих. Бесскелетные существа черви, голотурии и животные с известковым или хитиновым скелетом почти не оставили следов. В ордовикском периоде к лилиям, звездам и голотуриям добавились морские ежи. В прибрежных морях появились древнейшие позвоночные бесчелюстные рыбообразные животные (панцирные рыбы). Из высших растений мхи и плауновые. На рубеже ордовика силура произошло первое в фанерозое великое вымирание. Исчезло 35 процентов семейств морских животных, около 60 процентов родов. Главным событием следующего силурийского периода было завоевание суши. Первыми это сделали споровые растения псилофиты, напоминающие плауны.

Девонский период время прогресса наземной флоры: на суше росли древнейшие представители хвощевых, плауновых, папоротниковых, первые голосеменные растения. За растениями на сушу потянулись и животные. Первыми наземными членистоногими стали многоножки. Затем появились насекомые.

Каменноугольный период время господства древовидных папоротников. Появляется климатическая зональность: флора северных территорий отличалась от тропической, а последняя от своеобразной гондванской флоры южных материков.

В пермском периоде увеличивается число видов рептилий. В конце наступает второе великое вымирание переход к мезозойской эре жизни. Исчезло около половины семейств и свыше 80 процентов родов.

В последний, меловой, период мезозойской эры происходят резкие изменения в наземной флоре (следующее великое вымирание): исчезло 50 процентов семейств и свыше 80 процентов родов. Появляются первые покрытосеменные растения. Уже растут современные нам дуб, бук, береза. В конце мелового периода четвертое великое вымирание исчезло 16 процентов семейств и около 50 процентов родов.

Последняя, кайнозойская, эра (эра новой жизни) наступила 65 млн лет назад. Принципиальных изменений в наземной флоре не было, но изза усиления климатической зональности растительность, ранее однообразная по всему миру, распалась на фитогеографические провинции. Фауна изменилась существенно: вымерли динозавры. Ведущая роль перешла к млекопитающим. В неогене, когда площади континентов почти полностью освободились от воды, наземная флора стала близка к современной. Похолодание еще резче отделяет тропическую флору от умеренной, а последнюю от арктической. Фауна суши также становится близкой к современной. Из среды приматов выделяется антропоидная ветвь, давшая человека [2].

Эволюция растительного мира

Разнообразие всех ранее и ныне живущих растений на нашей планете является результатом эволюционных процессов. Классификация всех существующих видов дает практически полное представление о том, как происходила эволюция растительного мира в различных систематических группах.

Весь растительный мир можно разделить на две основные группы - слоевищные или низшие и высшие растения. Низшие растения - это лишайники, водоросли, цианобактерии, актиномицеты и псилофиты.

К высшим видам можно отнести: различные мхи, разнообразные папоротники, хвощи и плауны, покрытосеменные и голосеменные растения. К этой же группе относятся вымершие и уже не существующие псилофиты.

Доказательство того, что происходила эволюция растительного мира - это многочисленные находки палеонтологов. Ископаемые останки древних растений находят повсеместно, среди них можно выделить строматолиты - это образования из остатков примитивных водорослей, которые обитали в океанах и морях. Отпечатки огромных папоротников, плаунов и хвощей до сих пор обнаруживают в залежах торфяников или угля.

Эволюция растительного мира проходила в несколько этапов. Первым этапом можно назвать появление самых первых микроорганизмов - одноклеточных водорослей цианобактерий, это произошло еще в архейскую эру.

Одноклеточные прокариоты имели автотрофное питание, именно благодаря жизнедеятельности прокариотов в атмосфере и появился кислород.

Следующий этап это появление эукариотов, их возникновение произошло более полутора миллиардов лет назад. Эукариоты были предками одноклеточных водорослей, которые в свою очередь стали прародителями многоклеточных водорослей.

С появлением фотосинтеза эволюция растительного мира вступила в новый этап. Все живые организмы разделились на животный и растительный мир. Как только на планете появились первые зеленые растения, началось накопление органических веществ.

В протерозойскую эру вегетативный тип водорослей усложнился, площадь их поверхностей увеличилась. Это привело к увеличению фотосинтеза.

Следующий важный этап - это появление некоторых растений на суше. Считается, что самыми первыми были псилофиты. Сейчас они относятся уже к вымершей группе, но именно они представляли из себя переходную форму от низших форм к высшим.

Псилофиты имели покровную ткань с устьицами, которые защищали растение от воздействий внешней среды, и механическую ткань, которая выполняла опорные функции.

Эволюция растительного мира продолжалась, и следующим этапом можно охарактеризовать полное господство папоротников. Этот этап приходится на каменноугольный период. Папоротники имели хорошо развитую проводящую и корневую системы и листья, как необходимый орган для фотосинтеза.

Тем самым папоротники были полностью приспособлены для жизни на суше. Размножение этих растений было тесно связано с наличием воды, их появление значительно обогатило атмосферу кислородом.

Уже позднее появились семенные папоротники, которых сейчас уже нет в природе. Именно они и были предками сегодняшних голосемянных растений. Наличие семени сделало размножение папоротников независимым от наличия воды.

В пермский период влажный климат сменился сухим, именно в это время и появились голосеменные растения. Эти растения размножались отлично от папоротников, оплодотворение у них происходило непосредственно во внутренней ткани.

Заключительным этапом эволюции стало появление цветковых растений, они очень быстро заполонили всю сушу и освоили для своего обитания водную среду [2].

Эволюция животного мира

Самые древние следы животных относятся к докембрию (свыше 800 млн лет). Предполагается, что они произошли либо от общего ствола эукариот, либо от одноклеточных водорослей, подтверждением чего является существование эвглены зеленой и вольвокса, способных как к автотрофному, так и к гетеротрофному питанию.

В кембрийском и ордовикском периодах преобладают губки, кишечнополостные, черви, иглокожие, трилобиты, появляются моллюски.

В ордовике появляются бесчелюстные рыбоподобные организмы, а в силуре -- рыбы, обладавшие челюстями. От первых челюстноротых возникли лучеперые и кистеперые рыбы. Кистеперые имели в плавниках опорные элементы, из которых позже развились конечности наземных позвоночных. Из этой группы рыб возникли амфибии и затем другие классы позвоночных.

Наиболее древние амфибии -- жившие в девоне ихтиостеги. Расцвет амфибий произошел в карбоне.

От амфибий ведут свое начало рептилии, завоевавшие сушу в пермском периоде, благодаря появлению механизма засасывания воздуха в легкие, отказу от кожного дыхания, появления покрывающих тело роговых чешуй и оболочек яиц, защищающих эмбрионы от высыхания и других воздействий среды. Среди рептилий предположительно выделилась группа динозавров, давшая начало птицам.

Первые млекопитающие появились в триасовом периоде мезозойской эры. Основные прогрессивные биологические особенности млекопитающих -- вскармливание детенышей молоком, теплокровность, развитая кора головного мозга.

Особенности эволюции животного мира:

а) прогрессивное развитие многоклеточности и, как следствие, специализации тканей и всех систем органов;

б) свободноподвижный образ жизни, который определил выработку различных механизмов поведения, а также относительную независимость онтогенеза от колебаний факторов внешней среды. Развивались и совершенствовались механизмы внутренней саморегуляции организма;

в) возникновение твердого скелета: наружного у ряда беспозвоночных -- иглокожих, членистоногих; внутреннего у позвоночных. Преимущества внутреннего скелета заключаются в том, что он не ограничивает увеличение размеров тела.

Прогрессивное развитие нервной системы стало основой для возникновения системы условных рефлексов и совершенствования поведения.

Эволюция животных привела к развитию группового адаптивного поведения, что стало основанием для появления человека [2].

Эволюция биосферы

Биосфера не является статичным, неизменным объектом; с течением времени она эволюционирует. Важным фактором этой эволюции являются сами живые организмы. С момента своего возникновения они расширяли границы биосферы, изменяли её состав. В результате их деятельности за миллиарды лет появились горные породы и полезные ископаемые органического происхождения, полностью преобразована атмосфера Земли (в то числе образован озоновый экран, защищающий всё живое на Земле от губительных ультрафиолетовых лучей), постоянно менялся рельеф местности.

Значительные изменения биосфера претерпела с момента появления человека. Бурное развитие промышленности, науки и техники за несколько столетий - геологически ничтожный отрезок времени - способствовало значительному ускорению миграции атомов. Человек создал тысячи новых пород и сортов, истребил многие виды диких животных и растений, извлёк из земной коры миллиарды тонн полезных ископаемых; в результате его деятельности образовались новые озёра - водохранилища - и искусственные реки - каналы, на огромных площадях природные экосистемы сменились искусственными. Деятельность человечества, ничтожного по своей биомассе, оказывает влияние на состав земных океанов и атмосферы. Сейчас уже можно сказать, что человек, овладев громадной энергией, сам является мощнейшим фактором эволюции биосферы. Владимир Вернадский предполагал, что человечество должно создать новую оболочку Земли - ноосферу (греч. noos «разум»), рассматриваемую в качестве некого мыслящего пласта над биосферой.

Человечество не всегда разумно использовало находящиеся в его распоряжении ресурсы. Не зная многих закономерностей природы, человек часто не представляет последствий своей «победы» над природой. Некоторые государства древнего мира исчезли с лица земли в результате хищнического отношения к природе: истощения почв и вырубки лесов. Вырубка лесов вызывает иссушение и эрозию почвы, приводит к увеличению количества наводнений и селевых потоков в горах, сказываются на местном и глобальном климате.

Деятельность человека приводит к сокращению запасов чистой воды. Промышленные предприятия сбрасывают сточные воды зачастую без должной очистки, загрязняя окружающие водоёмы токсичными химическими соединениями. Гидроэлектростанции и плотины мешают нормальной миграции речных рыб. Двигатели внутреннего сгорания в автотранспорте, заводы, тепловые электростанции выделяют в атмосферу вредные вещества. Появление новых городов и накопление промышленных отвалов уменьшает площадь лесов и лугов, поддерживающих концентрацию кислорода в атмосфере на необходимом для жизни уровне. Безответственное использование атомной энергии приводит к загрязнению окружающей среды радиоактивными веществами, вызывающими раковые заболевания.

Увеличение численности населения земного шара (в настоящее время на Земле проживает уже более шести миллиардов человек) может в ближайшее время привести к обострению продовольственной проблемы. В докладах Римского клуба - международной организации, занимающейся исследованием глобальных проблем, затрагивающих сами основы существования человека, - прогнозируется кризис энергетических и пищевых ресурсов уже в середине XXI века. Одна из задач биологии - обеспечить человечество питанием. В настоящее время для этого проводятся разнообразные исследования по увеличению продуктивности существующих агроценозов, выведению новых пород животных и сортов растений, использованию морских плантаций в сельском хозяйстве, применению последних достижений генной инженерии и микробиологии.

Полёты человека в космос привели к созданию новой отрасли биологии - космической биологии. Помимо исследования возможной жизни на других планетах и в открытом космосе перед этой наукой ставится много проблем прикладного характера: обеспечение человека условиями, необходимыми для жизни в космосе, защита от радиации, проблема приспособления человеческого организма к невесомости и малой подвижности. Многие из этих проблем уже решены.

В настоящее время во всём мире возникла необходимость наладить разумное использование природных ресурсов. Нужна охрана атмосферы, водных ресурсов, почвы, живой природы. Во многих государствах уже приняты законы об охране природы; промышленные, строительные и сельскохозяйственные учреждения обязаны учитывать баланс природных ресурсов и возможные последствия нарушения равновесия природных явлений. Созданы так называемые «красные книги» - списки редких и исчезающих видов животных и растений. Во всём мире появилось большое количество экологических организаций, занимающихся охраной окружающей среды; наиболее известной среди них является «Greenpeace» («Гринпис») [3].

Заключение

Каждый из видов, населяющих нашу планету, есть результат многомиллионнолетней эволюции, носитель неповторимых генетических особенностей. Мы обязаны сохранить и передать потомкам то биологическое разнообразие, которое существует на Земле и является следствием неповторимости эволюционных путей, приведших к формированию каждого вида. То принципиально новое, что внес XX в. в понимание проблемы органического многообразия, сводится к следующему: сохранение биологического разнообразия -- непременное условие существования человека на Земле.

В связи с проблемой устойчивости экосистем возникла необходимость разработки концепции устойчивого развития. По своему замыслу принятие этой концепции должно стимулировать разработку общей стратегии развития человеческого общества на базе экологически целесообразного природопользования, сохранения благоприятного для людей состояния окружающей среды, обеспечивающем приемлемое качество жизни для нынешнего и последующих поколений людей.

Существующая в настоящее время идеология «общества потребления» губительна для биосферы, для составляющих ее экосистем, для сохранения видового и экосистемного биоразнообразия, для вида Homo sapiens, выживание которого зависит в первую очередь от устойчивости биосферы, а, в конечном счете -- от ее биологического разнообразия.

Список литературы

1. http://www.ebio.ru/eko10.html.

2. http://shpors.ru/index.php?option=com_content&view=article&id=135:20100805060921&catid=3.

3. http://evosfera.ru/podhodikizucheniu/str_20110704evolyuciyarastitelnogomira.html.

4. http://pictoris.ru/38/12/index.html.

Размещено на Allbest.ru

...

Подобные документы

  • История представлений о возникновении жизни на Земле. Гипотезы возникновения жизни на Земле. Образование первичных органических соединений. Что считать жизнью? Эволюция жизни на Земле. Появление высокоорганизованных форм жизни.

    реферат [1,1 M], добавлен 17.05.2003

  • Тайна появления жизни на Земле. Эволюция зарождения жизни на Земле и сущность концепций эволюционной химии. Анализ биохимической эволюции теории академика Опарина. Этапы процесса, приведшего к возникновению жизни на Земле. Проблемы в теории эволюции.

    реферат [55,9 K], добавлен 23.03.2012

  • Теории возможности и вероятности возникновения жизни на Земле (креационизм, спонтанное и стационарное зарождение жизни, панспермия, биохимическая эволюция). Стадии образования органических молекул. Возникновение живых организмов, образование атмосферы.

    курсовая работа [40,5 K], добавлен 26.05.2013

  • Исследование процесса становления первичных экосистем. Характеристика первичного "бульона" и эобионтов. Оценка уровня и характер взаимодействия организмов на ранних этапах эволюции жизни. Эволюция ферментных систем и функционирование механизма отбора.

    реферат [25,7 K], добавлен 12.02.2011

  • Образование и зарождение жизни на Земле; влияние геологических процессов на изменение климата и условия существования организмов. Этапы создания типов и классов животных; эволюция "первичного бульона" до современного видового состава органического мира.

    презентация [6,8 M], добавлен 17.02.2012

  • Сравнение основных определений понятия "жизнь". Анализ проблемы происхождения и эволюции жизни на Земле. Общая характеристика современных теорий возникновения жизни, а также процесса эволюции ее форм. Сущность основных законов биологической эволюции.

    курсовая работа [302,9 K], добавлен 04.10.2010

  • История появления, современная концепция и перспективы развития эволюционной теории. Макро и микроэволюция. Общие закономерности эволюции. Основные формы эволюции групп организмов. Филетическая и дивергентная эволюция. Конвергенция и параллелизм.

    курсовая работа [440,1 K], добавлен 16.05.2015

  • Характеристика общих представлений об эволюции и основных свойствах живого, которые важны для понимания закономерностей эволюции органического мира на Земле. Обобщение гипотез и теорий происхождения жизни и этапы эволюции биологических форм и видов.

    курсовая работа [38,6 K], добавлен 27.01.2010

  • Гипотеза Опарина о постепенном возникновении жизни на Земле из неорганических веществ путем длительной абиогенной (небиологической) молекулярной эволюции. Роль появления коацерватов и химической эволюции в развитии клетки и ходе биологической эволюции.

    статья [12,4 K], добавлен 18.05.2009

  • Объяснение морфологической эволюции в терминах генетики развития. Особенности шкал геологического времени. Теория конечности жизни Вселенной и происхождение многоклеточных организмов. Разрывы, недостающие звенья и направленность эволюционных механизмов.

    реферат [28,3 K], добавлен 04.03.2010

  • Типы молекулярной эволюции. Сравнения аминокислотных последовательностей гомологичных белков, выделенных из разных организмов. Гены, белки и "молекулярные часы". Структурные гены и регуляторы в эволюции. Типы видообразования, генетическая дивергенция.

    реферат [30,5 K], добавлен 04.03.2010

  • Основные концепции возникновения планеты: большой взрыв, теория униформизма, геологическая концепция разделения континентов. Факты подтверждения достоверности модели экранированной Земли. Особенности эволюции живых организмов на разных уровнях развития.

    реферат [45,8 K], добавлен 05.12.2010

  • Содержание креационизма - философско-методологической концепции возникновения жизни. Основные идеи гипотез стационарного состояния, самопроизвольного зарождения и панспермии. Этапы появление живых организмов по концепции биохимической эволюции Опарина.

    реферат [26,0 K], добавлен 19.11.2010

  • Сущность стадий транскрипции, процессинга и трансляции. Взаимодействие организмов в экосистемах. Биологическое значение в жизни организмов биоритмов и биологических часов. Анализ эволюции нервной системы животных от низших до высших многоклеточных.

    контрольная работа [260,8 K], добавлен 21.12.2008

  • Вопрос о возникновении жизни на Земле - борьба религии и науки, идеализма и материализма. Проблема отличия живого от неживого. Современное двуединое понятие первобытного бульона и самозарождения жизни - теория Опарина-Холдейна о происхождении жизни.

    реферат [32,0 K], добавлен 09.05.2009

  • Исследование основных этапов развития клеточной теории. Анализ химического состава, строения, функций и эволюции клеток. История изучения клетки, открытие ядра, изобретение микроскопа. Характеристика форм клеток одноклеточных и многоклеточных организмов.

    презентация [1,4 M], добавлен 19.10.2013

  • Характеристика основных гипотез о происхождении жизни: креационизм, абиогенез, гипотеза стационарного состояния (этернизм), панспермия, биохимическая эволюция (гипотеза Опарина). Спорные доказательства абиогенного механизма возникновения жизни (РНК-мира).

    презентация [2,0 M], добавлен 08.06.2011

  • Докембрийский этап развития Земли. Условия, необходимые для возникновения и начала развития жизни на Земле. Возникновение жизни согласно гипотезе академика А.И. Опарина. Первые формы жизни на планете. Основные теории появления и развития эукариот.

    реферат [231,5 K], добавлен 25.07.2010

  • Водоросли — гетерогенная группа фототрофных одноклеточных, колониальных или многоклеточных организмов, обитающих, в водной среде; происхождение, эволюция, классификация: прокариоты, эвгленовые, диатомовые, харовые; половое размножение; лишайники.

    презентация [607,3 K], добавлен 13.09.2011

  • Цели общей биологии, изучение происхождения, распространения и развития живых организмов, связей их друг с другом и с неживой природой. Конвергенция и параллелизм в эволюции животных, характеристика типа моллюсков, особенности их строения и образ жизни.

    контрольная работа [26,3 K], добавлен 24.03.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.