Эволюция естественных наук

Революция в естествознании в первой половине XX века, открытие строения атома, исследование радиоактивных материалов Пьера и Марии Кюри. Теория происхождения Солнечной системы Канта-Лапласа. Развитие органического мира, эволюционная теория Дарвина.

Рубрика Биология и естествознание
Вид курсовая работа
Язык русский
Дата добавления 14.12.2014
Размер файла 67,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

1. Революция в естествознании в первой половине XX века

2. Солнечная система

3. Эволюционная теория Дарвина

1. Революция в естествознании в первой половине XX века

В начале XX века сложились все условия для мощного прорыва, скачка, революции в естествознании, а особенно в физике. Однако в той или иной степени это отразилось и на других естественных науках, например на химии. эволюция дарвин кюри солнечный

Но все же в физике был совершен самый большой скачок. Было открыто, святая святых, строение атома, что долгие столетия было загадкой и дилеммой для физиков всего цивилизованного мира. Была открыта небезызвестная радиоактивность, открытие которой так повлияло на ход мировой истории. Наконец, была создана новая наука квантовая механика, которая стала результатом работы в будущем нобелевского лауреата по физике Макса Планка. Как раз квантовая механика помогла ученому Нильсу Бору уточнить строение атома, представленное Эрнестом Резерфордом.

Но обо всем по порядку, по хронологическому порядку.

Эра научных открытий, перевернувших мир, началась в 1897 году с открытия электрона (отрицательно заряженной элементарной частицей) Дж. Дж. Томсоном. Однако Томсон не один совершил основополагающее открытие. Ему помогал ни кто иной, как Эрнест Резерфорд. В то время Резерфорд, только что окончивший институт, бакалавр естественных наук, занимался исследованием воздействия рентгеновских лучей (открытых годом ранее Вильгельмом Рентгеном) на электрические разряды в газах. Эти исследования и помогли Томсону открыть электрон.

Несмотря на то, что это не хронологично, но следующим событием в истории физики тех лет стало открытие в 1896 году Антуаном Анри Беккерелем радиоактивности.

Мне бы хотелось сказать об этом человеке несколько слов.

Антуан Анри Беккерель (1852-1908) окончил политехническую школу в Париже (1874г.), защитил докторскую диссертацию на факультете естественных наук Парижского университета (1888г.) и 1889 году был избран в парижскую академию наук. После смерти своего отца Александра Беккереля он возглавил «семейную» кафедру физики (1891год). На протяжении нескольких десятилетий в их семье все члены были учеными, и в качестве наследства получали «семейную» кафедру физики. Традиция прервалась в 1948 году после ухода в отставку сына Анри - Жана Беккереля. Но из всех Беккерелей свое имя обессмертил только Антуан Анри.

20 января 1896 года на заседании Парижской академии наук во время доклада о рентгеновском излучении, открытого недавно, ему пришла в голову мысль, которую он проверил на опытах, приведших к феноменальным результатам.

Вот эти опыты.

Фосфоресцирующие препараты требовалось экспонировать на солнечном свету - так они «заряжались». После того как препараты переносили в темноту, свечение затухало. Эксперимент был прост: фотографическую пластинку Беккерель заворачивал в два слоя светонепроницаемой черной бумаги, и ставил на нее блюдечко с фосфоресцирующими кристаллами. После проявления на пластинке обнаруживались контуры кристаллов.

Создавалось впечатление, будто индуцированная солнечным светом фосфоресценция побуждает препараты испускать Х-лучи, подобно тому, как флуоресценция, возникает под действием катодных лучей., побуждает стекло катодной трубки испускать Х-лучи. В конце февраля 1896 года Беккерель задумал еще один эксперимент: на блюдце с солями урана, поставленное на фотопластинку, завернутую в светонепроницаемую бумагу, он поместил медный крестик. Но экспонирование солей пришлось отложить: несколько дней в Париже было пасмурно. И Беккерель в ожидании солнца убрал всю конструкцию в ящик буфета. В воскресение 1 марта 1896 года, так и не дождавшись ясной погоды, он решил на всякий случай проявить пластинку и, к своему изумлению, обнаружил на ней четкие контуры крестика. Это могло означать только одно: урановые соли испускали излучение, проникавшее сквозь слои светонепроницаемой бумаги и оставлявшее отчетливый след на фотопластинке без подзарядки светом.

За свое открытие Беккерель был удостоен Нобелевской премии в 1903 году.

Через несколько лет после открытия радиоактивности, а именно 14 декабря 1900 года, немецкий ученый Макс Планк (Макс Карл Эрнест Людвиг Планк), на заседании Немецкого физического общества, он впервые произнес слово «квант». Так было положено начало новой науке - квантовой механике. Именно эта наука до сих пор помогает ученым собирать новые данные о строении атома. Но, к сожалению, ни сам Планк, ни другие основоположники квантовой теории не смогли примириться с тем, во что превратилось их детище.

А теперь несколько слов о самом Максе Планке.

Макс карл Эрнест Людвиг Планк (1958-1947) родился в германском городе Киле в семье профессора гражданского права Кильского университета. Когда ему было девять лет, семья Планка переехала в Мюнхен, где мальчик учился в Максимиллиановской гимназии, намериваясь стать лингвистом или музыкантом (Планк превосходный пианист, в более поздние годы играл дуэтом с Альбертом Эйнштейном, исполнявшим партию скрипки). Физика привлекла внимание Планка как область, в которой можно сделать нечто оригинальное. В 1874 году он поступил в Мюнхенский университет, год провел в Берлине, где изучал физику у Густава Кирхгофа и Германа Гельмгольца. Через год после окончания Мюнхенского университета (1878 год) Планк защитил докторскую диссертацию по кругу проблем, связанных с первым началом термодинамики, и был оставлен в родном университете в качестве приват-доцента. В 1888 году он переехал в Берлин, где получил пост первого директора нового Института теоретической физики, а с 1892 по 1926 год занимал должность полного профессора Берлинского университета, являясь преемником Кирхгофа по кафедре. Свой богатейший педагогический и научный опыт Планк воплотил в пятитомном «Введении в теоретическую физику» (1916-1932 гг.), по которому учились не только студенты Германии, но и других стран.

В 1930 году Макс Планк, ему тогда исполнилось 72 года, возглавил Институт физики кайзера Вильгельма. В Германии наряду с университетами с 1911 года существовали на средства крупных промышленников негосударственные научно-исследовательские институты кайзера Вильгельма, которые были созданы по предложению кайзера Вильгельма II. После Второй мировой войны их переименовали в институты Макса Планка. В 1937 году Планк демонстративно ушел в отставку с поста президента Института, в знак протеста против изгнания из него евреев. В 1945 году Планк вновь стал президентом Института физики (теперь Института Макса Планка) и занимал этот пост до конца жизни.

Макс Планк был воплощением лучших традиций немецкой научной школы - трудолюбия, тщательности и консерватизма.

Следующим делом в физике были события, связанные со строением атома и связанные с именем Эрнеста Резерфорда.

Английский физик Эрнест Резерфорд родился в Новой Зеландии, неподалеку от г. Нельсона. Он был одним из 12 детей колесного мастера и строительного рабочего Джеймса Резерфорда, шотландца по происхождению, и Марты (Томпсон) Резерфорд, школьной учительницы из Англии. Сначала Резерфорд посещал начальную и среднюю местные школы, а затем стал стипендиатом Нельсон-колледжа, частной высшей школы, где проявил себя талантливым студентом, особенно по математике. Благодаря успехам в учебе Резерфорд получил еще одну стипендию, которая позволила ему поступить в Кентербери-колледж в Крайстчерче, одном из крупнейших городов Новой Зеландии.

В колледже на Резерфорд оказали большое влияние его учителя: преподававший физику и химию Э.У. Бикертон и математик Дж. Х.Х. Кук. После того как в 1892 г. Р. была присуждена степень бакалавра гуманитарных наук, он остался в Кентербери-колледже и продолжил свои занятия благодаря полученной стипендии по математике. На следующий год он стал магистром гуманитарных наук, лучше всех сдав экзамены по математике и физике.

В 1894 г. Р. была присуждена степень бакалавра естественных наук. Затем Резерфорд в течение недолгого времени преподавал в одной из мужских школ Крайстчерча. Благодаря своим необыкновенным способностям к науке Резерфорд был удостоен стипендии Кембриджского университета в Англии, где он занимался в Кавендишской лаборатории, одном из ведущих мировых центров научных исследований.

В Кембридже Р. работал под руководством английского физика Дж. Дж. Томсона. На Томсона произвело глубокое впечатление, проведенное Резерфордом исследование радиоволн, и он в 1896 г. предложил совместно изучать воздействие рентгеновских лучей (открытых годом ранее Вильгельмом Рентгеном) на электрические разряды в газах. Их сотрудничество увенчалось весомыми результатами, включая открытие Томсоном электрона - атомной частицы, несущей отрицательный электрический заряд. Опираясь на свои исследования, Томсон и Резерфорд выдвинули предположение, что, когда рентгеновские лучи проходят через газ, они разрушают атомы этого газа, высвобождая одинаковое число положительно и отрицательно заряженных частиц. Эти частицы они назвали ионами. После этой работы Резерфорд занялся изучением атомной структуры.

В 1898 г. он принял место профессора Макгиллского университета в Монреале (Канада), где начал серию важных экспериментов, касающихся радиоактивного излучения элемента урана. Вскоре он открыл два вида этого излучения: испускание альфа-лучей, проникающих только на короткое расстояние, и бета-лучей, которые проникают на значительно большее расстояние. Затем Резерфорд обнаружил, что радиоактивный торий испускает газообразный радиоактивный продукт, который он назвал «эманация» (испускание).

Кстати, за открытие альфа и бета излучения он получил Нобелевскую премию по химии. В своей речи при получении премии он язвительно сказал: «Мне приходилось дело с весьма различными трансмутациями во времени, но быстрейшая из всех, какие я встречал, это мое собственное превращение из физика в химика. Оно произошло в одно мгновение». Возможно, это произошло из-за того, что само понятие атом принадлежало словарю и физиков и химиков, хотя ни те ни другие еще не умел его расшифровать.

Однако главная его заслуга в открытии строения атома. Вот как это произошло.

Шел 1910 год. То было время непрерывного изучения альфа-лучей. Эксперименты Резерфорда, начатые еще в Канаде вслед за открытием законов радиоактивности, позволили установить природу альфа-лучей. Оказалось, что это дважды ионизированные атомы гелия (голые ядра без электронных оболочек), вылетающие при радиоактивном распаде с колоссальной скоростью - 10000 км/с. Поскольку относительная атомная масса альфа частиц равна 4, а заряд +2, они, как тяжелые снаряды проникают в толщу вещества и могут кое-что “рассказать” об устройстве материи.

Резерфорда удивляло, что альфа-частицы, пронизывая мишени (обычно листки металлической фольги), отклонялись на самые разные углы. Очевидно, внутри вещества действуют мощные электрические поля: ведь только они могут искривлять траектории массивных заряженных частиц.

И вот в 1909 году наступил тот зимний день, когда Марсден (молодой сотрудник Резерфорда по исследованиям) остановил на университетской лестнице Резерфорда и совсем буднично произнес: «Вы были правы, профессор: они возвращаются…».

«Они» возвращались редко: в среднем одна альфа-частица из восьми тысяч. Отражение от мишени означало, что альфа-частица встретила на своем пути достойную преграду - массивную и положительно заряженную: только такая может с силой оттолкнуть от себя прилетевшую гостью. Редкость события говорила о крайне малых размерах преграды. И потому, немногие альфа-частицы попадают в сердцевину.

После этого события, Резерфорд, «забыв остановиться», представил в своем воображении планетарный атом: вокруг положительно заряженного ядра, как планеты вокруг Солнца, вращаются отрицательно заряженные электроны.

С осмотрительной точностью сказал тогда Резерфорд, что знает только как выглядит атом, а не как он устроен. По законам классической физики, атом не мог иметь подобного строения: вращаясь вокруг ядра, электроны должны излучать, а значит, терять энергию и неизбежно подать на ядро. В общем, Резерфорд увидел обреченный атом.

Спасение пришло в 1913 году. В Манчестере появился 28-летний датчанин Нильс Бор - тихий теоретик и дерзкий мыслитель. Он принес с собой недостающее новое - идеи теории квантов. Планетарный атом - детище безумного эксперимента и могучей интуиции - навсегда утвердился на квантовом основании.

Наконец, революция закончилась открытиями Пьер Кюри и Марии Склодовской- Кюри.

Несколько слов о них.

Пьер Кюри (1859-1906). Родился в семье врача. Первоначальное образование получил дома, а в 16 лет стал студентом Сорбонны. После присуждения ему в 1877 году магистерской степени он 22 года преподавал в школе физики и химии. Пьер Кюри внес значительный вклад в различные области физики. Вместе с братом Жаком Пьер Кюри открыл прямой пьезоэлектрический эффект (1980 г.) Также они открыли обратный пьезоэлектрический эффект. Жак и Пьер Кюри сконструировали первый пьезоэлектрический датчик для измерения малых электрических зарядов и слабых токов.

Пьер Кюри разработал теорию образования кристаллов, сформулировал общий принцип их роста, ввел понятие поверхностной энергии кристаллических граней (1884-1885 гг.). Изучая симметрию кристаллов, он выдвинул принцип, названный его именем, который позволяет устанавливать симметрию кристалла, находящегося под внешним воздействием.

П. Кюри исследовал влияние температуры на магнитные свойства тел. В 1895 году он обнаружил, что у диамагнетиков магнитная восприимчивость не зависит от температуры, а у парамагнетиков - обратнопропорциональна ей (закон Кюри).

1895 год ознаменовался открытием температуры, выше которой теряют свои свойства и скачкообразно изменяются другие свойства железа.

Мария Склодовская - Кюри (1867-1934). Она появилась на свет в учительской семье в Варшаве (Королевство Польское в то время входило в Российскую империю). Мария прекрасное успевала в школе, но высшее образование для женщин в России тогда было несбыточной мечтой, и Мария 8 лет работала гувернанткой, отсылая почти все заработанные деньги сестре Брониславе в Париж, где та изучала медицину. В 1891 году сестра получила диплом и вышла замуж. В том же году Мария отправилась к ней Париж и поступила в Сорбонну. В 1893 году она заняла первое место на итоговых экзаменах по физике, а 1894 году - второе место на экзаменах по математике

Знаменательная встреча Пьера Кюри и Марии Склодовской произошла в 1894, а 24 июля 1895 года они вступили в брак.

Сразу после открытия Беккерелем радиоактивности (1896 год) супруги Кюри начали планомерное исследование радиоактивных материалов, проводя эксперименты буквально в сарае. Несколько лет Марии Кюри за работу не платили, и только в 1904 году, когда Пьер Кюри стал профессором физики в Сорбонне, ее взяли на должность ассистентки. В действительности же совместная работа супругов была сотрудничеством равных. Перемыв тонны урановой руды, они сумели выделить из нее новый элемент - полоний (названный в честь Полонии - латинизированного названия Польши, родины Марии), а из урановой смолки - радий ( от лат. Radio - «испускаю лучи»).

В 1903 году Мария Склодовская-Кюри стала первой женщиной, удостоиной во Франции докторской степени.

После получения Нобелевской премии супругами Кюри, для Пьера в Сорбонне была учреждена кафедра физики и лаборатория (1904 год), позже преобразованная в Радиевый институт. Кюри часто болел. Сказывалась работа с радиоактивными материалами. От пожелтевших листков из лабораторный журналов супругов Кюри и поныне исходит сильное радиоактивное излучение, опасное для здоровья.

Пьер Кюри погиб в результате несчастного случая: 19 апреля 1906 года он переходил улицу, поскользнулся и попал под проезжавший мимо экипаж.

На руках Марии Кюри остались две дочери: Ирен и Ева.

Кафедра физики в Сорбонне учрежденная для Пьера, перешла к Марии. В 1910 году мадам Кюри опубликовала фундаментальную книгу о радиоактивности, а через четыре года возглавила Лабораторию радиоактивности в только что открытом Радиевом Институте (Париж). Во время Первой мировой войны на частные пожертвования Мария и Ирен оборудовала передвижные госпиталя рентгеновскими установками и возглавила радиологическую службу Общества Красного Креста.

После окончания войны Мария выступала в разных странах с лекциями о проблемах науки. Благодаря ее усилиям в Радиевом институте удалось собрать большой запас радиоактивных материалов для исследовательских целей (до создания первых ускорителей). Именно эти материалы в немалой степени способствовали открытию Ирен и Фредериком Жолио-Кюри искусственной радиоактивности.

В честь супругов Кюри названы: внесистемная единица измерения активности изотопов - кюри (Ки) и химический элемент с атомным номером 96 - Cm (кюрий), а в честь родины Марии - Полоний 84-ый элемент.

В вышеописанных биографиях обозначены основные открытия Пьера и Марии Кюри. Но главные из них это открытие радия и полония, Написание Марией книги по радиоактивности.

На этом, конечно, не закончилась революция, начавшаяся на рубеже веков, но это были ее основные поворотные моменты. О ценности и значимости этих событий говорит уже то, что все ученые, так или иначе внесшие вклад в дело большой физики, были удостоены Нобелевской премии.

А результаты этой революции мы пожинаем до сих пор. Хронологически первыми были исследования Эйнштейна по молекулярной физике (начало им было положено в 1902). Они посвящены проблеме статистического описания движения атомов и молекул и взаимосвязи движения и теплоты. В этих работах Эйнштейн пришел к выводам, существенно расширяющим результаты, которые были получены австрийским физиком Л.Больцманом и американским физиком Дж.Гиббсом. В центре внимания Эйнштейна в его исследованиях по теории теплоты находилось броуновское движение. В статье 1905 о движении взвешенных в покоящейся жидкости частиц, требуемом молекулярно-кинетической теорией теплоты, он с помощью статистических методов показал, что между скоростью движения взвешенных частиц, их размерами и коэффициентами вязкости жидкостей существует количественное соотношение, которое можно проверить экспериментально. Он придал законченную математическую форму статистическому объяснению этого явления, представленному ранее польским физиком М.Смолуховским. Закон броуновского движения Эйнштейна был полностью подтвержден в 1908 опытами французского физика Ж.Перрена. Работы по молекулярной физике доказывали правильность представлений о том, что теплота есть форма энергии неупорядоченного движения молекул. Одновременно они подтверждали атомистическую гипотезу, а предложенный Эйнштейном метод определения размеров молекул и его формула для броуновского движения позволяли определить число молекул. Если работы по теории броуновского движения продолжили и логически завершили предшествовавшие работы в области молекулярной физики, то работы по теории света, тоже базировавшиеся на сделанном ранее открытии, носили революционный характер. В своем учении Эйнштейн опирался на гипотезу, выдвинутую в 1900 М.Планком, о квантовании энергии материального осциллятора. Но Эйнштейн пошел дальше и постулировал квантование самого светового излучения, рассматривая последнее как поток квантов света, или фотонов (фотонная теория света). Это позволяло простым способом объяснить фотоэлектрический эффект - выбивание электронов из металла световыми лучами, явление, обнаруженное в 1886 Г.Герцем и не укладывавшееся в рамки волновой теории света. Девять лет спустя предложенная Эйнштейном интерпретация была подтверждена исследованиями американского физика Милликена, а в 1923 реальность фотонов стала очевидной с открытием эффекта Комптона (рассеяние рентгеновских лучей на электронах, слабо связанных с атомами). В чисто научном отношении гипотеза световых квантов составила целую эпоху. Без нее не могли бы появиться знаменитая модель атома Н.Бора (1913) и гениальная гипотеза "волн материи" Луи де Бройля (начало 1920-х годов). В том же 1905 была опубликована работа Эйнштейна К электродинамике движущихся тел). В ней излагалась специальная теория относительности, которая обобщала ньютоновские законы движения и переходила в них при малых скоростях движения (v < < c).В основе теории лежали два постулата: специальный принцип относительности, являющийся обобщением механического принципа относительности Галилея на любые физические явления (в любых инерциальных, т.е. движущихся без ускорения, системах все физические процессы - механические, электрические, тепловые и т.д. - протекают одинаково), и принцип постоянства скорости света в вакууме (скорость света в вакууме не зависит от движения источника или наблюдателя, т.е. одинакова во всех инерциальных системах и равна 3*10 10 см/с). Это привело к ломке многих основополагающих понятий (абсолютность пространства и времени), установлению новых пространственно-временных представлений (относительность длины, времени, одновременности событий). Минковский, создавший математическую основу теории относительности, высказал мысль, что пространство и время должны рассматриваться как единое целое (обобщение евклидова пространства, в котором роль четвертого измерения играет время). Разным эквивалентным системам отсчета соответствуют разные "срезы" пространства-времени. Исходя из специальной теории относительности, Эйнштейн в том же 1905 открыл закон взаимосвязи массы и энергии. Его математическим выражением является знаменитая формула E = mc2. Из нее следует, что любой перенос энергии связан с переносом массы. Эта формула трактуется также как выражение, описывающее "превращение" массы в энергию. Именно на этом представлении основано объяснение т.н. "дефекта массы". В механических, тепловых и электрических процессах он слишком мал и потому остается незамеченным. На микроуровне он проявляется в том, что сумма масс составных частей атомного ядра может оказаться больше массы ядра в целом. Недостаток массы превращается в энергию связи, необходимую для удержания составных частей. Атомная энергия есть не что иное, как превратившаяся в энергию масса. Принцип эквивалентности массы и энергии позволил упростить все законы сохранения. Оба закона - сохранения массы и сохранения энергии - до этого существовавшие раздельно, превратились в один общий закон: для замкнутой материальной системы сумма массы и энергии остается неизменной при любых процессах. Закон Эйнштейна лежит в основе всей ядерной физики. В 1907 Эйнштейн распространил идеи квантовой теории на физические процессы, не связанные с излучением. Рассмотрев тепловые колебания атомов в твердом теле и используя идеи квантовой теории, он объяснил уменьшение теплоемкости твердых тел при понижении температуры, разработав первую квантовую теорию теплоемкости. Эта работа помогла В.Нернсту сформулировать третье начало термодинамики. В конце 1909 Эйнштейн получил место экстраординарного профессора теоретической физики Цюрихского университета. Здесь он преподавал только три семестра, затем последовало почетное приглашение на кафедру теоретической физики Немецкого университета в Праге, где долгие годы работал Э. Мах. Пражский период отмечен новыми научными достижениями ученого. Исходя из своего принципа относительности, он в 1911 в статье О влиянии силы тяжести на распространение света) заложил основы релятивистской теории тяготения, высказав мысль, что световые лучи, испускаемые звездами и проходящие вблизи Солнца, должны изгибаться у его поверхности. Таким образом, предполагалось, что свет обладает инерцией и в поле тяготения Солнца должен испытывать сильное гравитационное воздействие. Эйнштейн предложил проверить это теоретическое соображение с помощью астрономических наблюдений и измерений во время ближайшего солнечного затмения. Провести такую проверку удалось только в 1919. Это сделала английская экспедиция под руководством астрофизика Эддингтона. Полученные ею результаты полностью подтвердили выводы Эйнштейна. Летом 1912 Эйнштейн возвратился в Цюрих, где в Высшей технической школе была создана кафедра математической физики. Здесь он занялся разработкой математического аппарата, необходимого для дальнейшего развития теории относительности. В этом ему помогал его соученик Марсель Гросман. Плодом их совместных усилий стал труд Проект обобщенной теории относительности и теории тяготения. Эта работа стала второй, после пражской, вехой на пути к общей теории относительности и учению о гравитации, которые были в основном закончены в Берлине в 1915. В Берлин Эйнштейн прибыл в апреле 1914, будучи уже членом основанной Лейбницем Академии наук (1913), и приступил к работе в созданном Гумбольдтом университете - крупнейшем высшем учебном заведении Германии. В Берлине Эйнштейн провел 19 лет. Он читал лекции, вел семинары, регулярно участвовал в работе коллоквиума, который во время учебного года раз в неделю проводился в Физическом институте. Эти встречи физиков стали школой специализации и местом творческих научных споров, проходивших на очень высоком уровне. Первые берлинские годы были для Эйнштейна необычайно плодотворными. В 1915 после семилетних трудов он завершил создание общей теории относительности. Если построенная в 1905 специальная теория относительности, справедливая для всех физических явлений, за исключением тяготения, рассматривает системы, движущиеся по отношению друг к другу прямолинейно и равномерно, то общая имеет дело с произвольно движущимися системами. Ее уравнения справедливы независимо от характера движения системы отсчета, а также для ускоренного и вращательного движений. По своему содержанию, однако, она являтся в основном учением о тяготении. Она примыкает к гауссовой теории кривизны поверхностей и имеет целью геометризацию гравитационного поля и действующих в нем сил. Эйнштейн утверждал, что пространство отнюдь не однородно и что его геометрическая структура зависит от распределения масс, от вещества и поля. Сущность тяготения объяснялась изменением геометрических свойств, искривлением четырехмерного пространства-времени вокруг тел, которые образуют поле. По аналогии с искривленными поверхностями в неевклидовой геометрии используется представление об "искривленном пространстве". Здесь нет прямых линий, как в "плоском" пространстве Евклида; есть лишь "наиболее прямые" линии - геодезические. Они представляют собой кратчайшее расстояние между точками. Кривизной пространства определяется геометрическая форма траекторий тел, движущихся в поле тяготения. Орбиты планет определяются искривлением пространства, задаваемым массой Солнца, и характеризуют это искривление. Закон тяготения становится частным случаем закона инерции. Для проверки общей теории относительности, которая основывалась на очень небольшом числе эмпирических фактов и представляла собой продукт чисто умозрительных рассуждений, Эйнштейн указал на три возможных эффекта. Первый состоит в дополнительном вращении или смещении перигелия Меркурия. Речь идет о давно известном явлении, в свое время открытом французским астрономом Леверье. Оно заключается в том, что ближайшая к Солнцу точка эллиптической орбиты Меркурия смещается за 1 тысячу лет на 43 дуговые секунды. Эта цифра превышает значение, следующее из ньютоновского закона тяготения. Теория Эйнштейна объясняет его как прямое следствие изменения структуры пространства, вызванное Солнцем. Второй эффект состоит в искривлении световых лучей в поле тяготения Солнца. Третий эффект - релятивистское "красное смещение". Оно заключается в том, что спектральные линии света, испускаемого очень плотными звездами, смещены в "красную" сторону, т.е. в сторону больших длин волн, по сравнению с их положением в спектрах тех же молекул, находящихся в земных условиях. Смещение объясняется тем, что сильное гравитационное воздействие уменьшает частоту колебаний световых лучей. Красное смещение было проверено на спутнике Сириуса - звезде с очень большой плотностью, а затем и на других звездах - белых карликах. Впоследствии оно было обнаружено и в поле земного тяготения при измерениях частоты g-квантов с помощью эффекта Мессбауэра. Всего через год после опубликования работы по общей теории относительности Эйнштейн представил еще одну работу, имеющую революционное значение. Поскольку не существует пространства и времени без материи, т.е. без вещества и поля, отсюда с необходимостью следует, что Вселенная должна быть пространственно конечной (идея замкнутой Вселенной). Эта гипотеза находилась в резком противоречии со всеми привычными представлениями и привела к появлению целого ряда релятивистских моделей мира. И хотя статическая модель Эйнштейна оказалась в дальнейшем несостоятельной, основная ее идея - замкнутости - сохранила силу. Одним из первых, кто творчески продолжил космологические идеи Эйнштейна, был советский математик А.Фридман. Исходя из эйнштейновских уравнений, он в 1922 пришел к динамической модели: к гипотезе замкнутого мирового пространства, радиус кривизны которого возрастает во времени (идея расширяющейся Вселенной). В 1916-1917 вышли работы Эйнштейна, посвященные квантовой теории излучения. В них он рассмотрел вероятности переходов между стационарными состояниями атома (теория Н.Бора) и выдвинул идею индуцированного излучения.

2. Солнечная система

Вот уже два века проблема происхождения Солнечной системы волнует выдающихся мыслителей нашей планеты. Этой проблемой занимались, начиная от философа Канта и математика Лапласа, плеяда астрономов и физиков XIX и XX столетий.

И все же мы до сих пор довольно далеки от решения этой проблемы. Но за последние три десятилетия прояснился вопрос о путях эволюции звезд. И хотя детали рождения звезды из газово-пылевой туманности еще далеко не ясны, мы теперь четко представляем, что с ней происходит на протяжении миллиардов лет дальнейшей эволюции.

Переходя к изложению различных космогонических гипотез, сменявших одна другую на протяжении двух последних столетий, начнем с гипотезы великого немецкого философа Канта и теории, которую спустя несколько десятилетий независимо предложил французский математик Лаплас. Предпосылки к созданию этих теорий выдержали испытание временем.

Точки зрения Канта и Лапласа в ряде важных вопросов резко отличались. Кант исходил из эволюционного развития холодной пылевой туманности, в ходе которого сначала возникло центральное массивное тело - будущее Солнце, а потом планеты, в то время как Лаплас считал первоначальную туманность газовой и очень горячей с высокой скоростью вращения. Сжимаясь под действием силы всемирного тяготения, туманность, вследствие закона сохранения момента количества движения, вращалась все быстрее и быстрее. Из-за больших центробежных сил от него последовательно отделялись кольца. Потом они конденсировались, образуя планеты.

Таким образом, согласно гипотезе Лапласа, планеты образовались раньше Солнца. Однако, несмотря на различия, общей важной особенностью является представление, что Солнечная система возникла в результате закономерного развития туманности. Поэтому и принято называть эту концепцию “гипотезой Канта-Лапласа”.

Однако эта теория сталкивается с трудностью. Наша Солнечная система, состоящая из девяти планет разных размеров и масс, обладает особенностью: необычное распределение момента количества движения между центральным телом - Солнцем и планетами.

Момент количества движения есть одна из важнейших характеристик всякой изолированной от внешнего мира механической системы. Именно как такую систему можно рассмотреть Солнце и окружающие его планеты. Момент количества движения можно определить как “запас вращения” системы. Это вращение складывается из орбитального движения планет и вращения вокруг осей Солнца и планет.

Львиная доля момента количества движения Солнечной системы сосредоточена в орбитальном движении планет-гигантов Юпитера и Сатурна.

С точки зрения гипотезы Лапласа, это совершенно непонятно. В эпоху, когда от первоначальной, быстро вращающейся туманности отделилось кольцо, слои туманности, из которых потом сконденсировалось Солнце, имели (на единицу массы) примерно такой же момент, как вещество отделившегося кольца (так как угловые скорости кольца и оставшихся частей были примерно одинаковы). Так как масса последнего была значительно меньше основной туманности (“протосолнца”), то полный момент количества движения кольца должен быть много меньше, чем у “протосолнца”. В гипотезе Лапласа отсутствует какой-либо механизм передачи момента от “протосолнца” к кольцу. Поэтому в течение всей дальнейшей эволюции момент количества движения “протосолнца”, а затем и Солнца должен быть много больше, чем у колец и образовавшихся из них планет. Но этот вывод противоречит с фактическим распределением количества движения между Солнцем и планетами.

Для гипотезы Лапласа эта трудность оказалась непреодолимой.

Остановимся на гипотезе Джинса, получившей распространение в первой трети текущего столетия. Она полностью противоположна гипотезе Канта-Лапласа. Если последняя рисует образование планетарных систем как единственный закономерный процесс эволюции от простого к сложному, то в гипотезе Джинса образование таких систем есть дело случая.

Исходная материя, из которой потом образовались планеты, была выброшена из Солнца (которое к тому времени было уже достаточно “старым” и похожим на нынешнее) при случайном прохождении вблизи него некоторой звезды. Это прохождение был настолько близким, что его можно рассматривать практически как столкновение. Благодаря приливным силам со стороны налетевшей на Солнце звезды, из поверхностных слоев Солнца выброшена струя газа. Эта струя останется в сфере притяжения Солнца и после того, как звезда уйдет от Солнца. Потом струя сконденсируется и даст начало планетам.

Если бы гипотеза Джинса была правильной, число планетарных систем, образовавшихся за десять миллиардов лет ее эволюции, можно было пересчитать по пальцам. Но планетарных систем фактически много, следовательно, эта гипотеза несостоятельна. И ниоткуда не следует, что выброшенная из Солнца струя горячего газа может сконденсироваться в планеты. Таким образом, космологическая гипотеза Джинса оказалась несостоятельной.

Выдающийся советский ученый О.Ю.Шмидт в 1944 году предложил свою теорию происхождения Солнечной системы: наша планета образовалась из вещества, захваченного из газово-пылевой туманности, через которую некогда проходило Солнце, уже тогда имевшее почти “современный” вид. При этом никаких трудностей с вращением момента планет не возникало, так как первоначально момент вещества облака может быть сколь угодно большим. Начиная с 1961 года, эту гипотезу развивал английский космогонист Литтлтон, который внес в нее существенные улучшения. По обеим гипотезам “почти современное” Солнце сталкивается с более или менее “рыхлым” космическим объектом, захватывая части его вещества. Тем самым образование планет связывается с процессом звездообразования.

В астрономии всякий даже минимальных размеров объект - астероид, метеорит, микрометеор - индивидуален. Каждый из них является системой имеющей свою историю и непременно как-либо эволюционирующей.

Среди уровней структурной иерархии материи в астрономии обычно выделяют: планету, звезду, галактику, метагалактику. При рассмотрении объектов Солнечной системы следует упомянуть об открытиях последних лет, которые принципиально изменили наши представления о планетах и других элементах этой системы. К исследованию ближайших соседей Солнца можно подойти, как к исследованию "статистической выборки" во Вселенной. На уровне галактик следует также обратиться исследованиям последних лет. Что же касается метагалактики, то здесь прежде всего, представляет интерес концепция Большого взрыва.

Солнечная система представляет собой некоторую область пространства, в которой преобладает притяжение Солнца и размеры которой превышают расстояние от Солнца до Земли в 2*105 раз. Её составные части - Солнце, планеты, спутники планет, кометы, метеоритные тела, космическая пыль. Наблюдаемые размеры Солнечной системы определяются орбитой Плутона (около 40 а.е.) .Солнце как звезда - это типичный желтый карлик, раскаленный плазменный шар. Оно вращается вокруг своей оси в том же направлении, что и Земля, и имеет магнитное поле. Существует отдельная область физики - "физика Солнца", которая изучает его в разных аспектах (внутреннее строение, излучение, атмосфера и т.д.).

Планеты обычно разделяют на две группы: Меркурий, Венера, Земля, Марс - внутренние; Юпитер, Сатурн, Уран, Нептун (планеты-гиганты) - внешние. Плутон по физическим характеристикам отличается от планет-гигантов обычно рассматривается отдельно. Внешние планеты имеют наибольшее число спутников (около 90%).

Как известно первая теория происхождения Солнечной системы была предложена И. Кантом и П. Лапласом, потом были выдвинуты и другие гипотезы. Современные концепции происхождения солнечной системы учитывают силы электромагнитного происхождения. Согласно теории шведского физика Х. Альфвена, важную роль при образовании этой системы сыграли электромагнитные силы. И именно электромагнитные силы главным образом определяют взаимодействие солнечного ветра со всеми планетами. Солнечный ветер - это постоянное истечение плазмы солнечной короны в межпланетное пространство. И в зависимости от того, имеет ли плазма магнитное поле, а если имеет, то на сколько оно сильное, солнечный ветер по разному "обтекает" планеты. Земля обладает магнитным полем около 0,5 Ге на поверхности, Венера и Марс почти не обладают им, а Юпитер имеет довольно сильное магнитное поле.

Исследование планет, проведённое в течение двух последних десятилетий, преподнесло сюрпризы, о которых астрономы предыдущих поколений и не помышляли. Например, Венера имеет совершенно неожиданные показатели по составу атмосферы, температуре и давлению на ее поверхности. Основной слой облаков атмосферы этой планеты имеет толщину 24 км. В нем содержатся следующие газы: CO - 96,4%, N - 3,4%, O2 - 0,135%. Концентрации 36Аr, 38Ar, 20Ne оказались неожиданно большими. Например, концентрация 36Ar в 200-300 раз больше, чем на Земле.

В приделах Солнечной системы наблюдаются яркие и необычные явления, например, падение болидов - крупных и исключительно ярких метеоров, видимых, как серая дымка, даже днем. За каждым таким болидом тянется огненный хвост, слышен свист, грохот или треск. Морозной тихой ночью где-нибудь в сельской местности болиды как бы распарывают небо с сухим и резким треском, похожим на треск разрываемой ткани.

Лунотрясения обусловлены воздействием Земли (приливные силы) во время нахождения планет (планеты и спутника) на минимальных расстояниях друг от друга. При этом на поверхности Луны выходят газы (из ее недр), которые, по - видимому, создают свечение оранжево - красного цвета. При этом на поверхность Луны выходят газы ( из ее недр), которые по-видимому, создают свечение оранжево-красного цвета. Эти газы, возможно, очень холодные и представляют собой пары льда, или двуокись углерода.

3. Эволюционная теория Дарвина

Весь ход развития науки XIX века неудержимо вел к формированию исторического взгляда на природу. Однако возникновение учения о развитии органического мира было обусловлено не только ходом развития естественных наук, но и социально-экономическими причинами.

В первой половине XIX века Англия была передовой капиталистической страной с высоким уровнем развития производительных сил. Для освоения новых земель туда направлялись военные, торговые и исследовательские экспедиции. В одной из них принял участие Чарльз Дарвин. Его путешествие дало возможность провести обширные геологические, зоологические и ботанические наблюдения, которые привели к выводу о несостоятельности теории постоянства видов.

В середине XIX века капиталистический способ производства в Англии распространился и на сельское хозяйство. Это способствовало развитию интенсивных методов полеводства и животноводства. Старые малопродуктивные породы животных и сорта растений уже не удовлетворяли запросы рынка. В сельском хозяйстве все шире стали применяться различные приемы улучшения старых и введения новых более продуктивных пород животных и высокоурожайных сортов животных, что подрывало веру в - неизменяемость живой природы. Эти достижения укрепили эволюционные воззрения Чарльза Дарвина и помогли ему обосновать принципы отбора, лежащие в основе его теории.

Естественные науки к этому времени накопили огромное количество фактов, которые нельзя было совместить с метафизическими представлениями о неизменяемости природы. Одной из научных предпосылок возникновения учения Дарвина было эволюционное учение Ламарка.

Большое влияние на Чарльза Дарвина оказала и работа Чарльза Лайеля, который показал, что геологические изменения происходят под влиянием непрерывного выветривания, размывания, вулканической деятельности и других естественных сил. Представление о постепенном преобразовании Земли и условий жизни на ней привели к учению о постепенном преобразовании организмов, их приспособлении к изменяющейся среде. Учению об изменчивости видов.

Развитие различных областей биологии также наталкивало на мысль об изменяемости в природе. Об этом свидетельствовали многочисленные факты из области сравнительной анатомии, систематики, палеонтологии, эмбрионологии и клеточной теории.

Эволюционные идеи высказывались многими учеными того периода. Их сторонником был и русский ученый К.Ф. Рулье (1814-1858). В своих лекциях и в курсе «Общая зоология» он отстаивал мысль о вечности природы, о необходимости исследования всех ее явлений во взаимосвязи. Рулье считал, что природа не всегда была такой, какой мы ее видим сейчас. В природе нет застоя и покоя. По общему закону природы все образуется путем медленных постоянных изменений. Эти изменения приводят к тому, что из более простого развивается более сложное. Основываясь на палеонтологическом материале, Рулье выделял три периода в развитии органического мира.

Первый период характеризуется возникновением и развитием жизни в море. В первичном океане зародились одноклеточные водоросли. Затем при отступлении моря на участках освободившейся суши появились лишайники, а позднее - грибы и мхи. Дальнейшее усложнение первичных растений привело к возникновению более сложно устроенных сосудистых растений.

Второй период ознаменован расцветом однодольных и появлением двудольных растений, а также первых наземных животных.

Для третьего периода характерно появление на земном шаре современных растений и животных.

Учение Рулье не было повторением учения Жана-Батиста Ламарка. Ученый развивал теорию эволюции органического мира на основе обобщения достижений биологических наук за время, прошедшее с момента выхода в свет «Философии зоологии» Ламарка. По своей сути оно глубоко материалистично и объясняет органический мир как результат его исторического развития.

Появление эволюционной теории в середине XIX века К. Бэр, проанализировав строение зародышей у представителей различных классов позвоночных, сделал следующие выводы:

На ранних стадиях развития зародыши различных животных сходи друг с другом.

По мере развития зародышей их сходство уменьшается, и они приобретают черты, свойственные данной систематической группе.

Под влиянием работ Бэра зоологи XIX указывали на то, что для определения систематического положения организма важно знать ранние стадии его эмбрионального развития, когда появляются первые характерные признаки данной группы организмов. Так, у эмбрионов позвоночных происходит ранняя закладка нервной трубки и хорды (признаки, характерные для всей этой группы, начиная от рыб и до млекопитающих включительно). Следовательно, хорда и нервная трубка - важнейшие признаки позвоночных животных.

Во второй четверти XIX века были сделаны крупные открытия, касающиеся строения клетки. Английский ботаник Р. Броун в растительных клетках открыл ядро, а М. Шлейден и Т. Шванн создали клеточную теорию, которая дала прочное научное обоснование учению о единстве органического мира.

На формирование эволюционных взглядов Дарвина большое влияние оказали также широко распространенные в Англии идеи, порожденные социально-экономическими условиями, - идея свободы конкуренции и всеобщей борьбы за существование в человеческом обществе. Свобода конкуренции, борьба за существование провозглашались как всеобщий закон природы. Из работы А. Смита «Исследование о природе и причинах богатства народов» Дарвин извлек идею о естественной «гибели неудачников», что позволило ему подойти к идее естественного отбора.

Большое значение в формировании эволюционных взглядов Дарвина сыграли его собственные открытия, сделанные им во время путешествия на корабле «Бигль». Изучив геологию Южной Америки, Дарвин убедился в несостоятельности теории катастроф и подчеркнул значение естественных факторов в истории земной коры и ее животного и растительного населения. Благодаря палеонтологическим находкам он отмечает сходство между вымершими и современными животными Южной Америки.

Он находит так называемые переходные формы, которые совмещают признаки нескольких отрядов. Таким образом. Был установлен факт преемственности между современными и вымершими формами.

Дарвин называет и ряд связывающих форм. В частности, южноамериканская макраухения объединяет два больших подразделения парнопалых и непарнопалых копытных четвероногих; гиппарион представляет промежуточную форму между нынешней лошадью и некоторыми древними копытными. Южноамериканский гипотерий является тем удивительным соединительным звеном, которое нельзя поместить обособленно ни в один из существующих отрядов. Зеуглодон и сквалодон - связующие звенья между живущими в воде и всеми другими млекопитающими. Далее Дарвин обратил внимание на особенности географического распределения животных. В фауне Южной Америки представлены формы, которых нет в Северной Америке (обезьяны, ламы, ленивцы, муравьеды, броненосцы). Однако, по его мнению, сходство фаун обоих материков имело место в прошлые геологические эпохи. В дальнейшем произошла изоляция фаун Южной и Северной Америки благодаря появлению преграды (плоскогорья) в южной части Мексики.

Особенно интересные данные Дарвин собрал на Галапагосских островах, лежащих в 950 км от Западного побережья Южной Америки в Тихом океане. Эти острова вулканического происхождения, молоды в геологическом отношении, то есть возникли позже Американского континента. Изучая живущие там эндемичные формы черепах, вьюрков и др., он отметил, что фауна этого архипелага схожа с фауной Южной Америки, но вместе с тем и отличается от нее.

Дарвин показывает американское происхождение галапагосской фауны. Он отмечал, что на каждом острове этого архипелага имеется своя форма вьюрков. Но все они образует одну естественную группу и произошли от одного первоначального вида, жившего на близлежащем Американском материке.

В начале XIX века на основе обширного фактического материала были сделаны некоторые важные обобщения. Об изменяемости видов, о естественных группах организмов, единстве плана строения организмов, смене форм и увеличении в последовательных геологических горизонтах сходства в строении вымерших форм с современными, об историческом развитии земной коры, а также о сходстве зародышей систематически далеких друг от друга групп животных. Таким образом, учение об эволюции органического мира - крупнейшее обобщение естествознания XIX века - было подготовлено как предшествующим развитием научной мысли, так и социально-экономическими условиями.

Однако если дарвинизм был подготовлен всем ходом развития науки и социально-экономических условий, если многие ученые до Дарвина высказывали идеи, близкие к его воззрениям, то в чем же заслуга самого Дарвина? Действительно ли он совершил переворот в биологической науке? Несмотря на то, что естествознание продвигалось вперед, накапливало факты, крайне противоречившие метафизическому мировоззрению, взгляды о неизменности природы продолжали господствовать. В учениях предшественников Дарвина оставались нерешенными три основные проблемы. Первая из них - проблема превращения одной органической формы в другую. Никто не доказал, что из одного вида может возникнуть новая видовая форма. Вторая - проблема целесообразности органических существ. Она заключается в следующем: почему, если в природе идет процесс исторического развития, каждая новая органическая форма оказывается приспособленной к окружающим условиям? До Дарвина эту проблему решали с метафизических позиций, в силу чего целесообразность признавалась абсолютной и изначальной, раз и навсегда данной. Третья проблема касалась движущих сил и факторов эволюции. Все эти проблемы впервые нашли свое решение в эволюционной теории Дарвина, которая и совершила переворот в биологической науке.

Эволюционная теория Дарвина являлась одним из первых удачных примеров решения важных проблем развития живой природы с позиций естественноисторического материализма. Она оказала огромное влияние на все биологические науки, утвердив понимание живой природы и дав материалистическое объяснение явлениям целесообразности.

Положительной стороной теории Дарвина является ее тесная связь с селекционной практикой, которая послужила основой для построения эволюционной теории. Для анализа процесса эволюции органического мира Дарвин не просто использовал данные практики, а критически пересмотрел свои выводы с учетом достижений биологии и сельского хозяйства. Это отвечало общепризнанному принципу, согласно которому практика является главным критерием истины, и привело к коренной перестройке биологических наук и разрешению многих общебиологических проблем.

Исходным положением учения Дарвина является его утверждение о наличии изменчивости в природе.

Изменчивостью называют общее свойство организмов приобретать новые признаки - различия между особями в пределах вида. Изменчивость хорошо прослеживается при сравнениях многих пород животных и сортов растений, выведенных человеком в различных местах земного шара. Так, в Северной Африке имеется 38 разновидностей финиковой пальмы. Только на одном острове Полинезии возделывается 24 формы хлебного дерева и столько же форм бананов. В Китае выращивают 63 сорта бамбука. В пределах любого вида животных и растений, а в культуре - в пределах любого сорта и породы нет одинаковых особей. Еще К. Линней указывал, что оленеводы узнают в своем стаде каждого оленя, пастухи - каждую овцу. Намного сильнее это способность развита у садоводов. Многие садоводы распознают сорта гиацинтов и тюльпанов по луковицам. Значит, все животные и растения отличаются от себе подобных, хотя неопытному глазу и кажутся одинаковыми. Исходя из этих фактов, Дарвин делает вывод о том, что животным и растениям присуща изменчивость.

...

Подобные документы

  • Основные положения эволюционного учения Ч. Дарвина. Целостное учение об историческом развитии органического мира. Основные положения эволюционного учения. Нарастание многообразия видов естественных групп, то есть систематическое дифференцирование видов.

    контрольная работа [14,3 K], добавлен 14.02.2009

  • Пути развития естествознания в XVIII-XIX вв. Особенности космогонической теории Канта – Лапласа. Закон сохранения и превращения энергии. Клеточное строение растений и животных. Эволюционная теория Дарвина. Периодическая система элементов Менделеева.

    контрольная работа [40,4 K], добавлен 15.11.2010

  • Развитие естественных наук в средние века, место и роль церкви в государстве. Построение теории строения атома на основе планетарной модели. Развитие астрономии, характеристики галактик. Теории возникновения жизни на Земле. Гипотезы происхождения рас.

    контрольная работа [34,7 K], добавлен 14.09.2009

  • Предпосылки возникновения дарвиновского эволюционного учения о развитии органического мира, значение естественных факторов в истории земной коры и ее животного и растительного населения, борьба за существование. Значение теории Дарвина в естествознании.

    реферат [31,8 K], добавлен 29.07.2010

  • Характеристика основных теорий происхождения Земли: гипотеза Канта-Лапласа и теория Большого Взрыва. Сущность современных теорий эволюции Земли. Образование Солнечной системы, возникновение условий для жизни. Возникновение гидросферы и атмосферы.

    контрольная работа [24,6 K], добавлен 26.01.2011

  • Теория Чарльза Дарвина. Место человека в структуре живого. Сходства и отличия человека и животных. Современная теория эволюции. Человек умелый и человек прямоходящий. Неандерталец: две ветви эволюции. Человек разумный. Макроэволюция и микроэволюция.

    реферат [42,4 K], добавлен 11.04.2017

  • Основные тезисы теории происхождения человека Чарльза Дарвина. Основные черты строения органов, распространенных среди наблюдаемых классов животных или растений. Основная логика эволюционного учения. Естественный отбор и борьба за выживание.

    презентация [879,0 K], добавлен 19.01.2013

  • Научные труды Чарлза Дарвина. Происхождение биологического разнообразия в результате эволюции. История написания издания "Происхождения видов". Основание дарвинизма и материалистической теории эволюции органического мира. Теория естественного подбора.

    реферат [30,5 K], добавлен 06.04.2017

  • Вехи биографии автора теории эволюции Чарльза Дарвина. История написания и издания "Происхождения видов". Основные положения эволюционного учения. Предпосылки и движущие силы эволюции. Мнения ученых о теории Ч. Дарвина. Анализ положений антидарвинизма.

    реферат [59,1 K], добавлен 07.12.2014

  • Сущность научного метода познания мира. Возникновение эксперементально-математического естествознания, эмпирической и рациональной философии. Теическая, мутационная, эволюционная концепция происхождения человека. Теория пассионарности Л.Н. Гумилева.

    контрольная работа [112,2 K], добавлен 19.05.2012

  • Единство принципа строения и развития мира растений и мира животных. Первые этапы формирования и развития представлений о клетке. Основные положения клеточной теории. Школа Мюллера и работа Шванна. Развитие клеточной теории во второй половине XIX века.

    презентация [1,7 M], добавлен 25.04.2013

  • Исследование биографии и научной деятельности Чарльза Дарвина, основоположника эволюционной биологии. Обоснование гипотезы происхождения человека от обезьяноподобного предка. Основные положения эволюционного учения. Сфера действия естественного отбора.

    презентация [2,2 M], добавлен 26.11.2016

  • Предпосылки создания эволюционной теории Ч.Дарвина. Эволюционные исследования Ч.Дарвина. Основные положения эволюционного учения Ч. Дарвина. Предпосылки и движущие силы эволюции по Ч. Дарвину. Основные результаты эволюции (по Ч. Дарвину).

    реферат [19,2 K], добавлен 29.03.2003

  • "Философия зоологии" Ж. Ламарка - первая попытка создания теории эволюции видов, ее основные положения. Учение о 4 "ветвях" организации животных: позвоночные, членистые, мягкотелые и лучистые Ж. Кювье. Эволюционная теория естественного отбора Ч. Дарвина.

    реферат [32,1 K], добавлен 12.04.2009

  • Сущность теорий происхождение видов Ламарка и Дарвина. Естественная эволюция как необратимое историческое развитие органического мира с постепенным его усложнением. Видовое разнообразие царства животных и значение эмбриологии в определении их родства.

    реферат [29,8 K], добавлен 11.07.2009

  • Революция в естествознании, возникновение и дальнейшее развитие учения о строении атома. Состав, строение и время мегамира. Кварковая модель адронов. Эволюция Метагалактики, галактик и отдельных звезд. Современная картина происхождения Вселенной.

    курсовая работа [39,3 K], добавлен 16.07.2011

  • Предпосылки и движущие силы эволюции по Ч.Дарвину. Понятие об изменчивости и ее формах. Определение общей теории эволюции и обстоятельства ее появления. Основные положения эволюционного учения Ч. Дарвина. Основные результаты эволюции по Ч. Дарвину.

    контрольная работа [14,5 K], добавлен 14.02.2009

  • Попытка французского ученого-естествоиспытателя Ж. Ламарка создать стройную и целостную теорию эволюции живого мира. Теория самозарождения жизни и наследования позитивных признаков, классификация животного мира. Реакция современников на теорию Ламарка.

    презентация [1,6 M], добавлен 22.10.2016

  • Электромагнитная теория света Д. Максвелла. Основная движущая сила эволюции по Дарвину. Нарастание многообразия видов естественных групп как результат эволюции. Научная деятельность Лапласа. Дальтон как первооткрыватель закона кратных отношений.

    реферат [30,7 K], добавлен 11.07.2011

  • Специфика живого вещества и проблемы изучения живой природы в естествознании. Концепции происхождения жизни на планете и эволюции живых организмов. Зарождение и развитие Солнечной системы. Теория структурных уровней организации биотической материи.

    контрольная работа [49,2 K], добавлен 06.10.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.