Регуляция транскрипции у прокариот. Гипотеза Жакоба и Моно. Теория оперона, регуляция по типу индукции и репрессии

Катализирование транскрипции ферментом ДНК-зависимой РНК-полимеразой. Факторы активации, механизмы активации и репрессии. Регуляция содержания РНК в процессе биосинтеза. Комплекс САР-сАМР при регуляции экспрессии галактозного и арабинозного оперонов.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 27.02.2015
Размер файла 424,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Пятигорский медико-фармацевтический институт - филиал Волгоградского государственного медицинского университета

Кафедра биологической химии и микробиологии

Специальность «Стоматология»

Реферат по биохимии

Тема: Регуляция транскрипции у прокариот. Гипотеза Жакоба и Моно. Теория оперона, регуляция по типу индукции и репрессии.

Выполнила студентка 101 группы Пак Нина

Проверила доцент, кандидат фармацевтических наук

Сергеева Елена Олеговна

Пятигорск 2014

Введение

Экспрессия генов как у прокариот, так и у эукариот регулируется при помощи целого ряда механизмов. Некоторые из механизмов такого рода, действующие в бактериальных системах, изучены довольно хорошо, но о том, как действуют регуляторные механизмы в клетках эукариот известно немного.

Осуществляя контроль за тем, каким генам экспрессироваться, а каким нет, а также регулируя уровень экспрессии различных генов, клетки приспосабливают свой фенотип к определенным условиям внешней и внутренней среды. Часто гены экспрессируются последовательно: активация одного гена вызывает экспрессию другого или нескольких генов, приводя, в конечном счете, к каскаду событий. Некоторые гены или родственные группы генов экспрессируются координировано, т.е. отвечают на регуляторный сигнал одновременно и, как правило, в одинаковой степени. Вероятно, наиболее совершенные регуляторные системы - те, которые позволяют плюрипотентным стволовым клеткам (митотически активные клетки, в результате деления которых происходит замещение погибших клеток в многоклеточном организме) дифференцироваться с образованием клеток разного типа в процессе развития сложного организма.

Фенотипические признаки клеток разных типов, а также одной и той же клетки в различных условиях зависят от количества и свойств продуцируемых ими структурных, каталитических и регуляторных белков. Регулироваться может какой-то один или несколько отдельных этапов считывания генетической информации при синтезе белка.

Некоторые необходимые понятия

Прокариоты - это простейшие одноклеточные организмы, которым для того, чтобы выжить, требуется лишь благоприятная химическая среда.

Репрессор - это белок, блокирующий транскрипцию гена. В lac-системе репрессор представляет собой тетрамерный белок, и называется lac-репрессором. Он связывается с определенным участком на ДНК, который называется оператором.

Оператор представляет собой небольшой участок ДНК, граничащий с первым структурным геном. Белок-репрессор может связываться с этим участком, блокируя тем самым инициацию транскрипции. Операторная последовательность, с которой связывается репрессор, содержит участок палиндромной ДНК. Последовательность с ось симметрии второго порядка, является частью места связывания с репрессором в lac-опрероне.

Промотор - это небольшой участок ДНК перед оператором. Он служит местом связывания РНК-полимеразы. Место связывания репрессора и участок промотора слегка перекрываются, так что, когда репрессор находится на ДНК, РНК-полимераза не может связаться с промотором и транскрипция не идет.

Индуктор представляет собой низкомолекулярное вещество, который связывается с репрессором и переводит его в неактивную форму, неспособную более связываться с оператором. Так, в lac-системе индуктором является лактоза, после ассоциации с которой, репрессор отсоединяется от lac-оператора. Индукция является одной из форм негативной регуляции, называется так потому, что транскрипция может идти лишь после удаления репрессора. Еще одной разновидностью негативной регуляции является так называемая катаболитная репрессия.

Репрессия происходит тогда, когда репрессор связывается с оператором не иначе как в комплексе с низкомолекулярным кофактором (корепрессором). Таким корепрессором часто бывает конечный продукт белкового синтеза, кодируемый опероном. Тогда, если концентрация этого продукта становится слишком высокой, он связывается с репрессором, и дальнейший его синтез прекращается. Примером такой системы может служить триптофановый оперон.

Транскрипция. Этапы транскрипции

Транскримпция (от лат. transcriptio -- переписывание) -- процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках. Другими словами, это перенос генетической информации с ДНК на РНК.

Транскрипция катализируется ферментом ДНК-зависимой РНК-полимеразой. Процесс синтеза РНК протекает в направлении от 5'- к 3'- концу, то есть по матричной цепи ДНК РНК-полимераза движется в направлении 3'->5'.

Транскрипция состоит из стадий инициации, элонгации и терминации.

ДНК (2ая спираль) + у-фактор + главный компонент РНК-полимеразы = закрытый промоторный комплекс

Расплетание ДНК - открытый промоторный комплекс

Инициация транскрипции - образование первых звеньев цепи РНК

От РНК-полимеразы отделяется у-фактор

Элонгация

Факторы транскрипции

· Только активаторы. Белки активамторы (от латинского activus -- активный, деятельный) -- при ассоциации с ДНК усиливают транскрипцию данного гена.Классический пример белка-активатора -- Gal8, который активирует гены, ответственные за усвоение галактозы дрожжами. В свою очередь, белки, вызывающие подавление (репрессию) транскрипции называются белками-репрессорами. Классическим примером репрессора служит LacI, подавляющий экспрессию оперона утилизации лактозы у кишечной палочки.

· Только репрессоры. Белки, кодируемые геном-регулятором, к-рые, воздействуя на гены-операторы, блокируют транскрипцию генетической инфрормации со структурных генов и, следовательно, подавляют синтез соответствующих белков и выполняемых ими функций. Некоторые вещества внешней среды или метаболиты клетки(дерепрессоры) могут связывать белки-репрессоры и таким образом восстанавливать синтез белков.

· Либо активаторы, либо репрессоры

Механизмы активации

а). Активаторы класса I связываются с последовательностью перед UP-элементом взаимодействуют с С-концевым доменом a-субъединицы РНК-полимеразы

б). Активаторы класса II связываются с последовательностью перед сайтом -35 взаимодействуют с доменом у -субъединицы

в). Активаторы, изменяющие конформацию промотора связываются с последовательностью между -35 и -10 элементами промотора взаимодействуют с доменом у -субъединицы.

Механизмы репрессии

Стерическая помеха

• Сворачивание ДНК

• Репрессия активатора

Регуляция содержания РНК в процессе биосинтеза

Регуляция образования РНК осуществляется на уровне инициации транскрипции: за счет модификации структуры РНК-полимеразы. Так, b-субъединица РНК-полимеразы E.coli изменяется при заражении клеток некоторыми бактериофагами, а при споруляции определенных штаммов Bacillus наблюдается образование новой b-субъединицы. В обоих случаях изменяется способность РНК-полимеразы к связыванию с промотором и скорость транскрипции соответствующих генов.

Заключается в изменении пространственной структуры ДНК, что влияет на способность РНК-полимеразы связываться с определенными промоторами и инициировать синтез РНК.

Ингибирование или стимулирование взаимодействия РНК-полимеразы с некоторыми промоторами при участии белков, которые связываются с ДНК в месте присоединения полимеразы или вблизи него. На связывание таких регуляторных белков - репрессоров и активаторов - часто влияют определенные метаболиты, играющие роль корепрессоров и коактиваторов.

Предположение об индукции синтеза ферментов было высказано Жакобом и Моно в 1961 г., для того, чтобы объяснить, каким образом бактериальные клетки реагируют на изменения окружающей их среды. Если для обеспечения жизнедеятельности клетки необходим какой-то метаболит, она должна быть способна к синтезу ферментов, которые «пристроят» его в нужное место. Однако синтезировать такие ферменты в отсутствии соответствующего метаболита было бы для клетки расточительством.

Согласованная регуляция экспрессии прокариотических генов

Согласованная регуляция групп родственных генов. У Е. coli гены, кодирующие белки одного и того же метаболического пути или определяющие близкородственные функции, часто регулируются согласованно. Это значит, что их экспрессия начинается и заканчивается или согласованно продолжается в ответ на один и тот же регуляторный сигнал. Гены, подчиняющиеся согласованной регуляции, в геноме часто бывают сцеплены и транскрибируются с промотора, находящегося на 5'-конце такой группы генов (кластера), в виде единственной молекулы РНК, называемой полицистронным (или полигенным) транскриптом. Группа координированно экспрессирующихся генов называется опероном.

Гены, кодирующие несколько родственных функций, не всегда образуют единый оперон. Так, гены, кодирующие 30S- и 50S-рибосомные белки, организованы во множественные оперoны, в чей состав иногда входят гены, кодирующие другие белки, которые участвуют в транскрипции и/или трансляции. Как правило, отдельные опероны, кодирующие родственные функции, имеют одинаковые или сходные регуляторные последовательности и поэтому реагируют на определенный регуляторный сигнал сходным образом.

Позитивная и негативная регуляция

Негативная регуляция инициации транскрипции, или репрессия, осуществляется белками-репрессорами, которые связываются с операторами. Поскольку последовательности оператора и промотора часто перекрываются, связывание репрессоров со своими операторами ограничивает доступ РНК-полимеразы к промотору, подавляя тем самым инициацию транскрипции.

Позитивная регуляция может осуществляться путем связывания специфических белков с нуклеотидными последовательностями, расположенными в области промотора. Считается, что связанный активаторный белок способствует ассоциации РНК-полимеразы с промотором и, следовательно, увеличивает вероятность инициации транскрипции.

Регуляция экспрессии галактозного оперона

Три гена, кодирующие ферменты, ответственные за метаболизм галактозы у E.coli, организованы в оперон с промотором (Р) и примыкающим к нему регуляторным сегментом-оператором (О) на 5'-конце транскрибируемой последовательности: galE-galT-galK.

Гены, кодирующие регуляторные белки, которые связываются с операторными или активаторными последовательностями, могут находиться как вблизи контролируемых ими генов, так и далеко от них. Например, ген, кодирующий репрессор галактозного оперона (gaIR), не сцеплен с транскрипционной единицей, состоящей из генов galE, gal Т и gal К.

Регуляция экспрессии арабинозного оперона

Синтез ферментов, необходимых для утилизации арабинозы, регулируется двумя сопряженными транскрипционными единицами. Первая - это ara -оперон, состоящий из трех генов, ara В, ara А и ara D, и некоего 5'-контролирующего участка. Вторая представлена геном ara С, кодирующим регуляторный белок, необходимый для транскрипции ara -оперона.

Позитивная или негативная регуляция транскрипции арабинозного оперона зависит от того, образуется или нет комплекс между арабинозой и белком, кодируемым только сцепленным с опероном геном araC J.

Регуляция экспрессии лактозното оперона

Рассмотрим позитивную и негативную регуляцию лактозного оперона

Негативная регуляция лактозного оперона. Бактерии Е. coli могут использовать в качестве единственного источника углерода и энергии лактозу, поскольку они способны образовывать в большом количестве b-галактозидазу- фермент, расщепляющий лактозу на глюкозу и галактозу. Однако при росте на других источниках углерода в клетках E.coli образуется очень мало b -галактозидазы. Ген, ответственный за синтез b -галактозидазы (lac Z), называется индуцибельным, поскольку кодируемый им фермент синтезируется только тогда, когда в клетке присутствуют сахара, имеющие b -галактозильные остатки. Помимо b -галактозидазы, b -галактозиды индуцируют образование еще двух белков: (b -галактозидпермеазы (кодируемой геном lacY), необходимой для проникновения b-галактозидов в клетку, и b -галактозидтрансацетилазы (lac А), фермента с невыясненной пока функцией. В этих трех генах- lac Z, lacY и lac А- содержится вся информация о белках, кодируемых lac-опероном. Они транскрибируются в единую полицистронную РНК, при трансляции которой образуются почти одинаковые количества соответствующих белков. Поэтому можно сказать, что три гена lас-оперона экспрессируются согласованно.

Со структурными генами lac-оперона связаны несколько типов регуляторных элементов, ответственных за индуцибельность и координированную регуляцию этих генов. Промотор - это нуклеотидная последовательность, с которой связывается РНК-полимераза и начинается транскрипция трех структурных генов. Оператор - это сайт, с которым связывается lac-репрессор, подавляющий транскрипцию lас-оперона. Ген 1асI, не входящий в состав lас-оперона, кодирует репрессор - полипептидную цепь с мол. массой 37 000 Да. Репрессор прочно связывается с оператором, находясь в тетрамерной форме.

Поскольку промоторная и операторная последовательности перекрываются, связывание репрессора с оператором мешает связыванию РНК-полимеразы с промотором, что приводит к блокированию транскрипции структурных генов. Транскрипцию оперона можно индуцировать, если блокировать связывание репрессора с оператором. Такое блокирование происходит при связывании одного из b -галактозидов с той или иной субъединицей репрессора, что уменьшает сродство последнего к оператору. После отсоединения репрессора от промотра полимераза может связаться с промотором и инициировать транскрипцию оперона.

Очень важно сохранение нуклеотидной последовательности домена lас-оператора, связывающего репрессор. Об этом свидетельствуют результаты исследования эффективности репрессии in vivo у мутантов с модифицированными репрессорами или операторами. Интересные данные были получены и при изучении связывания очищенных репрессорных белков с операторами дикого типа и мутантными формами in vivo. Мутации, уменьшающие сродство репрессора к оператору, приводили к конститутивному синтезу ферментов, кодируемых lac-опероном, т. е. к экспрессии lас-ферментов в отсутствие индуктора. Мутации, сопровождающиеся накоплением репрессора в клетках или увеличением сродства репрессора к оператору, делали lас-оперон неиндуцибельным.

Позитивная регуляция лактозного оперона. Для экспрессии lас-оперона, как и других индуцибельных оперонов, которые осуществляют контроль синтеза ферментов, участвующих в метаболизме cахаров, необходимо не только снять репрессию оперона, но и получить некий сигнал; Таким сигналом служит комплекс циклического АМР (сАМР) с белком-активатором катаболизма (CAP, от англ. catabolite activator protein), который связывается со специфической последовательностью, находящейся в самом начале lac-промотора.

сАМР, принимающий участие во многих клеточных процессах, образуется из АТР в ответ на самые разные вне - и внутриклеточные события. САР представляет собой димер из идентичных полипептидных цепей с мол. массой 22 кДа.

Связывание комплекса САР-сАМР со специфической последовательностью в начале промотора приводит к усилению транскрипции lac-оперона почти в 50 раз. Сам по себе CAP не способен к такому связыванию и стимуляции транскрипции. Усиление транскрипции с помощью комплекса САР-сАМР можно объяснить: связываясь с ДНК в непосредственной близости от сайта присоединения РНК-полимеразы, он усиливает сродство этого фермента к промотору.

Альтернативная гипотеза заключается в том, что связывание САР-сАМР с САР-сайтом предотвращает присоединение РНК-полимеразы к расположенному поблизости слабому промотору и увеличивает тем самым вероятность того, что полимераза свяжется с «правильным» промоторным сайтом. Высказывавшееся ранее предположение, что комплекс САР-сАМР изменяет топологию ДНК, так что облегчаются связывание полимеразы и транскрипция, кажется несостоятельным.

Комплекс САР-сАМР является положительным сигналом при регуляции экспрессии и других оперонов, в частности тех, которые кодируют ферменты расщепления углеводов (галактозный и арабинозный оперон) а также работу оперонов, кодирующих ферменты, которые участвуют в деградации аминокислот, пуринов и пиримидинов.

Комплекс САР-сАМР при регуляции экспрессии галактозного и арабинозного оперонов

биосинтез транскрипция фермент оперон

Комплекс САР-сАМР является положительным сигналом при регуляции экспрессии этих оперонов (галактозного и арабинозного). Например, для экспрессии ara- и gal-onepонов должны произойти дерепрессия с помощью индукторов - арабинозы и галактозы соответственно и связывание комплекса САР-сАМР с областью промотора. Так, у бактерий, растущих на глюкозе, уровень внутриклеточного сАМР и соответственно комплекса САР-сАМР очень низок. Поэтому, если даже в среде присутствует арабиноза или галактоза, в клетках не образуются ферменты, необходимые для утилизации этих сахаров. При уменьшении количества глюкозы уровни сАМР и САР-сАМР увеличиваются и опероны в присутствии необходимых индукторов начинают экспрессироваться. Подобная комбинация позитивной и негативной систем регуляции очень важна, поскольку это предотвращает образование ферментов, потребность в которых в данный момент отсутствует.

Комплекс САР-сАМР при регуляции экспрессии ферментов, участвующих в деградации аминокислот, пуринов и пиримидинов

Сигнальная система САР-сАМР регулирует также работу оперонов, кодирующих ферменты, которые участвуют в деградации аминокислот, пуринов и пиримидинов. Накопление в клетке САР-сАМР служит сигналом «голодания»: в ответ на него снижается экспрессия оперонов, кодирующих ферменты расщепления аминокислот, пуринов и пиримидинов. В этом случае логика работы системы также состоит в том, чтобы предотвратить образование ненужных ферментов в период голодания.

Регуляция экспрессии триптофанового оперона

Триптофановый оперон состоит из оператора, и пяти структурных генов (А-Е). Последний кодирует ферменты, участвующие в биосинтезе триптофана - одной из незаменимых ам.к. по мере увеличения концентрации триптофана наступает момент, когда его дальнейший синтез становится нежелательным и транскрипция прекращается.

Триптофан синтезируется в Е.соli из ароматического предшественника - хоризмовой кислоты - в ходе пяти последовательных реакций, катализируемых ферментным комплексом из пяти белков. Эти кодируемые trp-опероном белки образуются согласованно, примерно в равных количествах, при трансляции полицистронной мРНК длиной 7000 нуклеотидов, транскрибируемой с промотора. При наличии в среде достаточного для роста бактерий количества триптофана клетки Е. coli образуют ферменты биосинтеза триптофана в очень малых количествах. Однако если клетки лишены экзогенного триптофана, то в них начинается довольно интенсивный синтез всех пяти ферментов. Содержание ферментов этой группы в клетках Е.соli может различаться до 700 раз в зависимости от внутриклеточного уровня триптофана.

Подобный разброс в уровне экспрессии обусловлен наличием двух практически независимых механизмов регуляции, каждый из которых «подгоняет» уровень синтеза trp -мРНК к концентрации внутриклеточного триптофана.

Механизмы: их два. Эффекты этих двух регуляторных механизмов комплементарны, мультипликативны и позволяют увеличивать степень экспрессии оперона.

1). Основан на репрессии, изменяющей эффективность инициации транскрипции в промоторе. Репрессиятриптофанового оперона.

Транскрипция trp -оперона блокируется, когдарепрессор связывается с последовательностью trp -оператора. Ген trp R, кодирующий репрессорный белок мол. массой 58 000 Да, находится далеко от trp -оперона. Длятого чтобы trp R-белок мог связаться с оператором и действовать как репрессор,он должен образовать комплекс с триптофаном. Поскольку уровень экспрессии trpR очень низок и не зависит оттриптофана, концентрация активного репрессора отражает концентрациювнутриклеточного триптофана.

Нуклеотидные последовательности trp -оператора ипромотора перекрываются, поэтому связывание комплексарепрессор-триптофан с оператором препятствует правильному взаимодействиюРНК-полимеразы с промотором. При этих условиях транскрипция оперона неосуществляется и ферменты биосинтеза не образуются. В отсутствие триптофана непроисходит и связывания репрессора с оператором, что позволяет РНК-полимеразебез помех инициировать транскрипцию на промоторе и. синтезировать мРНК.

2). Называется аттенуацией и регулирует транскрипцию с помощью сигнала терминации транскрипции, расположенного между промотором и началом первого структурногогена.

Аттенуация экспрессии триптофанового оперона

Регуляция работы триптофанового оперона с помощью аттенуации осуществляется при участии последовательности, находящейся на расстоянии примерно 100-140 пар оснований от начала транскрипции. Этот так называемый лидерный сегмент, trpL, содержит аттенуаторную последовательность, которая вынуждает РНК-полимеразу прервать транскрипцию как раз перед началом trp Е-гена с отделением фрагмента РНК длиной 141 нуклеотид- trp-лидерной мРНК. Подобная терминация происходит при уровнях триптофана в клетках от среднего до высокого. При низком уровне триптофана терминация транскрипции в пределах аттенуаторной последовательности в значительной мере блокируется, и транскрипция проходит через терминатор с образованием полноразмерной мРНК trp-оперона.

Механизм регуляции терминации транскрипции в аттенуаторе с помощью изменения содержания триптофана

Ответ на этот вопрос был получен после того, как определили нуклеотидную последовательность аттенуатораи установили, что на аттенуацию влияет трансляция, идущая одновременно с транскрипцией. Участок из первых 145 нуклеотидов транскрипта trp-оперона содержит три необычных по нуклеотидной последовательности сегмента . Один из них кодирует короткий полипептид из 14 аминокислот, две из которых являются тандемными триптофановыми остатками. Два других содержат инвертированные повторы, из-за чего происходит внутримолекулярное спаривание оснований РНК-транскрипта иобразование двух альтернативных шпилечных структур. Одна из этих структур, в которой спарены сегменты 1 и 2, 3 и 4 соответственно, опосредствует с-независимую терминацию транскрипции на участке из нескольких расположенных подряд за четвертым сегментом остатков урацила. Другая шпилечная структура, в которой сегменты 2 и 3 спарены, а 1 и 4 остаются одноцепочечными, разрешает транскрипции дойти до конца оперона.

Какая именно шпилечная структура образуется при транскрипции аттенуаторного участка -- зависит от того, транслируется ли рибосомами полная последовательность, кодирующая полипептиддлиной 14 аминокислот. Если синтез лидерного полипептида инициируется в кодоне AUG, то рибосомы транслируют следующие 13 кодонов при условии, что имеются все необходимые аминоацил-тРНК. При недостатке триптофанил-тРНК рибосомы останавливаются, когдадоходят до тандемных триптофановых кодонов. Если рибосомы останавливаются водном из триптофановых кодонов, расположенных в аттенуаторном сегменте 1, то последовательности сегментов 2 и 3 свободно спариваются и образуют шпилечную структуру, а сегмент 4 остается одноцепочечным. Эта структура не препятствует продолжению транскрипции с образованием полноразмерной trp-мРНК длиной 7000 нуклеотидов. Если триптофанил-тРНК имеется в количестве, достаточном для трансляции тандемных триптофановых кодонов, то рибосомы движутся до терминаторного кодона лидерного пептида и, поскольку сегмент 2ассоциирован с рибо-сомой, сегменты 3 и 4 образуют шпильку - структуру, способствующую терминации транскрипции.Таким образом, аттенуатор позволяет РНК-полимеразе опосредованно «почувствовать» концентрацию триптофанил-тРНК через расположение рибосомы. Возможность трансляции короткой кодирующей последовательности в лидерном сегменте определяет вторичную структуру транскрипта и, следовательно, выбор между терминацией и прочтением последовательности. Наличие достаточного количества триптофанил-тРНК стимулирует терминацию транскрипции, при ее недостатке транскрипция проходит весь оперон.

Аттенуация как общий механизм

Аттенуация используется при регуляции экспрессии многих генов и оперонов как у Е.соli, так и у других организмов. Оперон, кодирующий девять ферментов, которые участвуют в биосинтезе гистидина, регулируется исключительно с помощью аттенуации; аттенуатором служит полипептид-кодирующая последовательность с шестью тандемными гистидиновыми кодонами. У оперонов, функционирование которых зависит от содержания определенных аминокислот - треонина и изолейцина (или лейцина), валина и изолейцина, - лидерный участок буквально «напичкан» кодонами для этих аминокислот. Антитерминация, т.е. ослабленная терминация, не требует сопряжения трансляции и транскрипции. Она может осуществляться некоторыми белками, допускающими экспрессию особых кластеров генов только после того, как синтезированы белки, способствующие аттенуации.

Суммарный эффект аттенуации и репрессии

Аттенуация и репрессия вместе содействуют оптимальной экспрессии trp-оперона. При избытке триптофана благодаря репрессии блокируется инициация синтеза мРНК. Снижение концентрации триптофана приводит к уменьшению содержания функционального комплекса репрессор - триптофан, и транскрипция возобновляется. Однако при концентрации триптофана, допускающей инициацию транскрипции, количества триптофанил-тРНК еще вполне достаточно для того, чтобы в пределах лидерного участка в основном происходила терминация транскрипции; следовательно, в таких условиях уровень экспрессии оперона еще очень низок. По мере снижения концентрации триптофана репрессия полностью снимается: если концентрация триптофанил-тРНК становится ниже уровня, необходимого для продолжения синтеза, то терминация аттенуируется, а trp-мРНК и ферменты начинают синтезироваться с большей скоростью. Таким образом, экспрессия оперона достигает максимума в отсутствие репрессии и при максимальной аттенуации терминации; экспрессия минимальна при почти полной репрессии оперона и отсутствии аттенуации терминации.

Схема негативной индукции Жакоба и Моно

Lac-оперон E. coli содержит 3 гена, отвечающие за образование белков, участвующих в переносе в клетку дисахарида лактозы и в ее расщеплении.

Z-в - галактозидаза (расщепляет лактозу на глюкозу и галактозу).

Y-в- галактозидпермеаза (переносит лактозу через мембрану клетки).

А - тиогалактозидтрансацетилаза (ацетилирует галактозу).

В отсутствие в клетке лактозы lac-оперон выключен. Активный белок - репрессор, кодируемый в моноцистронном опероне (LacI), не имеющем оператора, связан с оператором lac-оперона. Поскольку оператор перекрывается с промотором, даже посадка РНК-полимеразы на промотор невозможна.

Как только некоторое количество лактозы попадает в клетку, две молекулы субстрата (лактозы) взаимодействуют с белком - репрессором, изменяют его конформацию - и он теряеет сродство к оператору.

Тут же начинается транскрипция lac-оперона и трансляция образующейся mРНК; три синтезируемых белка участвуют в утилизации лактозы.

Когда вся лактоза переработана, очередная порция репрессора, свободного от лактозы, выключает lac-оперон.

Схема позитивной индукции

В Аra-опероне E. сoli 3 цистрона, которые кодируют ферменты, расщепляющие сахар арабинозу. В норме оперон закрыт. Белок - репрессор связан с оператором.

Когда в клетку попадает арабиноза, она взаимодействует с белком - репрессором. Белок - репрессор меняет конформацию и превращается из репрессора в активатор, взаимодейсивующий с промотором и облегчающий посадку РНК-полимеразы на промотор.

Эта схема регуляции называется позитивной индукцией, поскольку контролирующий элемент - белок - активатор "включает" работу оперона.

Схема позитивной репрессии

В опероне синтеза рибофлавина у Вacilus subtilis располагаются цистроны ферментов синтеза рибофлавина. Есть белок-активатор, обеспечивающий посадку РНК-полимеразы на промотор. В норме оперон открыт. Образуется N молекул рибофлавина.

N+1-ая молекула (лишняя) взаимодействует с активатором и он теряет способность активировать посадку РНК-полимеразы на промотор.

Позитивная репрессия, поскольку в регуляции участвует белок - активатор, а сама регуляция заключается в выключении транскрипции.

Схема негативной репрессии

В опероне синтеза триптофана у E. сoli имеется 5 цистронов, которые кодируют ферменты последовательной цепи реакций синтеза триптофана. В норме оперон включен. Белок - репрессор неактивен (в форме апо-репрессора), он не способен садиться на оператор.

Клетке нужно N молекул триптофана. N+1-ая молекула взаимодействует с апо-репрессором. Он меняет конформацию, садится на оператор и синтез РНК прекращается.

Схема регуляции - негативная репрессия, потому что белок репрессор "выключает" оперон.

Позитивный контроль работы lac-оперона

Lac-оперон, подчиняющийся схеме негативной индукции, имеет и позитивный контроль. цАМФ образуется из АТФ ферментом аденилатциклазой. Фосфодиэстераза превращает цАМФ в АМФ. Глюкоза активирует второй и инактивирует первый фермент. Чем больше в клетке глюкозы, тем меньше цАМФ.

Если нет глюкозы, то цАМФ соединяется с белком катаболической репрессии (САР) и образуется комплекс САР*цАМФ, активирующий посадку РНК-полимеразы на промотор. В присутствии лактозы lac-оперон включается и работает. Если же в клетке есть еще и глюкоза (более экономичный источнок энергии), то нет цАМФ - и активатор не образуется, lac-оперон работает слабо, без дополнительной индукции.

Заключение

Единицей транскрипции у прокариот могут быть отдельные гены, но чаще они организованы в структуры, называемые оперонами. В состав оперона входят расположенные друг за другом структурные гены, продукты которых обычно участвуют водном и том же метаболическом пути. Как правило, оперон имеет один набор регуля-торных элементов (регуляторный ген, промотор, оператор), что обеспечивает координацию процессов транскрипции генов и синтеза соответствующих белков. Промотор -это участок ДНК, ответственный за связывание с РНК-полимеразой. В случае прокариот, наиболее важными для регуляции транскрипции являются последовательности, обозначаемые «--35» и «-- 10». Нуклеотиды, расположенные до инициирующего кодона («вверх по течению») записываются со знаком «-», а со знаком «+» - все нуклеотиды, начиная с первого в инициирующем кодоне (стартовая точка). Направление, в котором продвигается процесс транскрипции, называется «вниз по течению». Последовательность, обозначаемая «-35» (TTGACA), отвечает за узнавание промотора РНК-полимеразой, а последовательность «-10» (или бокс Прибнова) является тем участком, с которого начинается раскручивание двойной спирали ДНК. В состав этого бокса наиболее часто входят основания ТАТААТ. Такая последовательность оснований чаще всего встречается в промоторах прокариот, ее называют консенсусной.

Регуляция транскрипции на уровне последовательности РНК, уже скопированной с генома, происходит за счет белков рестриктаз и лигаз, которые разделяют РНК на блоки; некоторые из них отбрасываются (интроны), а другие (экзоны) сшиваются лигазами и поступают в аппарат биосинтеза белков.

Регуляция транскрипции далеко не всегда реализуется по схеме Жакоба и Моно посредством негативного регуляторного фактора-репрессора. В случае фаговых ДНК считывание определенных генов не происходит и в отсутствие каких-либо репрессоров. Для включения этих генов необходимы позитивные регуляторные факторы.

Литература

1. Биохимия: учебник/ Под ред. Е. С. Северина. М.: ГЕОТАР-МЕД, 2003. 784 с., ил.

2. Биологическая химия: Учеьник для фармац. Ин-тов и фармац. Фак. Мед. Ин-тов. М.: Высш. Шк., 1986. 479 с., ил.

3. Биоорганическая химия: учебник для вузов/ Н. А. Тюкавкина, Ю. И. Бауков. 8-е изд., стереотип. М.: Дрофа, 2010.

4. http://www.cellbiol.ru/book/molekulyarnaya_biologiya_transkripciya/transkripciya_u_prokariot.

5. http://engrailed.narod.ru/molbiol/transcription_bacteria.pdf.

6. http://medicalplanet.su/genetica/86.html.

7. http://biology.bsmu.by/files/biology_pdf/konsp02/5.pdf.

8. http://humbio.ru/humbio/genexp/000d76d1.htm.

9. http://kineziolog.bodhy.ru/content/regulyatsiya-transkriptsii-u-prokariot.

10. http://ru.wikipedia.org/wiki/%D0%A2%D1%80%D0%B0%D0%BD%D1%81%D0%BA.

Размещено на Allbest.ru

...

Подобные документы

  • Механизмы регуляции экспрессии генов у прокариот и эукариот. Регуляция содержания РНК в процессе биосинтеза. Согласованная регуляция экспрессии прокариотических родственных генов. Репрессия триптофанового оперона. Суммарный эффект аттенуации и репрессии.

    лекция [24,2 K], добавлен 21.07.2009

  • Регуляция метаболизма как управление скоростью биохимических процессов. Регуляция биосинтеза белков и особенности процесса репликации. Транскрипция генетической информации, механизм катаболитной репрессии, регуляция на этапе терминации транскрипции.

    контрольная работа [816,0 K], добавлен 26.07.2009

  • Индуцибельная схема негативной регуляции на примере Lac-оперона. Репрессибельная схема негативной регуляции на примере His-оперона. Структурные гены участвующие в метаболизме лактозы. Конденсация и деконденсация хроматина. Регуляция стабильности иРНК.

    презентация [2,6 M], добавлен 25.05.2022

  • Регуляция на уровне транскрипции у прокариот. Этапы процессинга РНК у эукариот. Энхансеры, сайленсеры, инсуляторы. РНК-интерференция. Упаковка генетического материала. Роль эпигенетических модификаций. Гистоновый код, его структура и принципы построения.

    презентация [1,7 M], добавлен 14.04.2014

  • Дифференциальная экспрессия генов и ее значение в жизнедеятельности организмов. Особенности регуляции активности генов у эукариот и их характеристики. Индуцибельные и репрессибельные опероны. Уровни и механизмы регуляции экспрессии генов у прокариот.

    лекция [2,8 M], добавлен 31.10.2016

  • Транскрипция и основные ферменты, которые осуществляют транскрипцию, ДНК-зависимые РНК-полимеразы. Структурные и функциональные домены больших субъединиц эукариотической РНК-полимеразы. Регуляция экспрессии генов на уровне транскрипции у прокариот.

    реферат [373,5 K], добавлен 29.09.2009

  • Регуляция на этапе биосинтеза и сборки компонентов аппарата трансляции и на этапе его функционирования. Регуляция круговорота белков путем избирательного протеолиза. Регуляция активности белковых посредников нековалентным взаимодействием с эффекторами.

    реферат [20,1 K], добавлен 26.07.2009

  • Типы взаимодействия неаллельных генов. Теория Ф. Жакоба и Ж. Моно о регуляции синтеза и-РНК и белков. Дигибридное скрещивание при неполном доминировании. Неаллельные взаимодействия генов. Механизм регуляции генетического кода, механизм индукции-репрессии.

    реферат [159,6 K], добавлен 29.01.2011

  • Репликация теломерных участков эукариотических хромосом. Механизм обратной транскрипции. Функциональные возможности рибонуклеиновых кислот, регуляция экспрессии эукариотических генов (интерференция РНК). Структура РНК-содержащих стрессовых гранул.

    курсовая работа [2,3 M], добавлен 09.06.2011

  • Контуры регуляции функций. Схема локальной регуляция функции. Состав внутренней среды. Схема гомеостатического механизма. Формирование систем регуляции. Понятие о функциональном элементе ткани по А.М. Чернуху. Механизм взаимосвязи между клетками.

    презентация [290,4 K], добавлен 15.02.2014

  • Пути и механизмы регуляции иммунитета с помощью нейромедиаторов, нейропептидов и гормонов. Парасимпатический отдел вегетативной нервной системы и регуляция иммунного ответа. Механизмы регуляции иммунного ответа соматотропином и опиоидными пептидами.

    презентация [243,2 K], добавлен 02.12.2016

  • Положения биологической гипотезы Жакоба-Мано. Роль генов-регуляторов в синтезе белков. Особенности протекания первого этапа этого процесса – транскрипции. Трансляция как следующая ступень их биосинтеза. Основы ферментативной регуляции этих процессов.

    презентация [250,9 K], добавлен 01.11.2015

  • Регуляция экспрессии у генетически модифицированных растений. Исследование функционирования промоторов бактериального и вирусного происхождения в трансгенных растениях. Регуляторные последовательности, используемые в генетической инженерии растений.

    курсовая работа [39,4 K], добавлен 03.11.2016

  • Единство и отличительные особенности нервных и гуморальных регуляций. Механизмы гуморальной регуляции в организме. Особенности строения и свойства клеточных мембран, функции и механизм их реализации. Диффузия и транспорт веществ через клеточные мембраны.

    курсовая работа [195,5 K], добавлен 09.01.2011

  • Физиология почек. Функции, строение, кровоснабжение почек. Механизмы мочеобразования: клубочковая фильтрация, канальцевая реабсорбция, канальцевая секреция. Регуляция осмотического давления крови. Инкреторная функция и регуляция артериального давления.

    реферат [43,6 K], добавлен 31.10.2008

  • Классификация различных регуляторных механизмов сердечно-сосудистой системы. Влияние автономной (вегетативной) нервной системы на сердце. Гуморальная регуляция сердца. Стимуляция адренорецепторов катехоламинами. Факторы, влияющие на тонус сосудов.

    презентация [5,6 M], добавлен 08.01.2014

  • Теория функциональной системы П. Анохина. Узлы и компоненты функциональной системы. Афферентный и эфферентный сигналы. Гормональная регуляция функций. Гипоталамо-гипофизарная система. Тканевые гормоны. Гормоны вилочковой железы. Энкефалины и эндорфины.

    реферат [20,8 K], добавлен 23.11.2008

  • Процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках. Точки начала и конца транскрипции, основной фермент и вспомогательные факторы. Этапы обратной транскрипции, особенности транскрипции про- и эукариот.

    презентация [2,3 M], добавлен 14.04.2014

  • Модификация и регуляция популяций в биоценозах; средний уровень, отклонения и динамика их численности как авторегулируемый процесс. Влияние климатических изменений на организмы: колебания смертности; видовое приспособление к условиям существования.

    презентация [748,4 K], добавлен 30.01.2012

  • Исследование структуры гена и его экспрессия. Геном современных прокариотических клеток. Общие принципы организации наследственного материала, представленного нуклеиновыми кислотами. Единица транскрипции у прокариот. Промотор и терминатор (ДНК).

    курсовая работа [100,4 K], добавлен 23.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.