Генная инженерия

История развития генной инженерии. Влияние генов на человека. Метод химического и ферментативного синтеза генов. Среда и наследственность. Ферменты-рестриктазы и рестрикция ДНК. Конструирование рекомбинантных молекул ДНК. Плюсы и минусы генной инженерии.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 11.03.2015
Размер файла 23,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МІНІСТЕРСТВО ОХОРОНИ ЗДОРОВ'Я УКРАЇНИ

НАЦІОНАЛЬНИЙ ФАРМАЦЕВТИЧНИЙ УНІВЕРСИТЕТ

Кафедра біотехнології

Реферат на тему:

«Генная инженерия»

Підготувала

Студентка 3 курсу групи ТФП-1

Лукіна Анастасія Олексіївна

Харків 2014

План

Введение

1. История генной инженерии

2. Методы генной инженерии

3. Ферменты генетической инженерии

4. Синтез генов

5. Достижения генной инженерии

Вывод

Литература

Введение

Важной составной частью биотехнологии является генетическая инженерия. Родившись в начале 70-х годов, она добилась сегодня больших успехов. Методы генной инженерии преобразуют клетки бактерий, дрожжей и млекопитающих в "фабрики" для масштабного производства любого белка. Это дает возможность детально анализировать структуру и функции белков и использовать их в качестве лекарственных средств.

Генетическая инженерия - это прикладная молекулярная и клеточная генетика, имеющая дело с простейшими генетическими системами и имитирующая in vitro процессы наследственности. Цель ее - создание новых генетических структур, в конечном счете - создание организмов с новыми наследственными свойствами.

1. История генетической инженерии

Генная инженерия появилась благодаря работам многих исследователей в разных отраслях биохимии и молекулярной генетики. На протяжении многих лет главным классом макромолекул считали белки. Существовало даже предположение, что гены имеют белковую природу. Лишь в 1944 году Эйвери, Мак Леод и Мак Карти показали, что носителем наследственной информации является ДНК. С этого времени начинается интенсивное изучение нуклеиновых кислот. Спустя десятилетие, в 1953 году Дж. Уотсон и Ф. Крик создали двуспиральную модель ДНК. Именно этот год принято считать годом рождения молекулярной биологии.

На рубеже 50 - 60-х годов были выяснены свойства генетического кода, а к концу 60-х годов его универсальность была подтверждена экспериментально. Шло интенсивное развитие молекулярной генетики, объектами которой стали ее вирусы и плазмиды. Были разработаны методы выделения высокоочищенных препаратов неповрежденных молекул ДНК, плазмид и вирусов. ДНК вирусов и плазмид вводили в клетки в биологически активной форме, обеспечивая ее репликацию и экспрессию соответствующих генов. В 70-х годах был открыт ряд ферментов, катализирующих реакции превращения ДНК. Особая роль в развитии методов генной инженерии принадлежит рестриктазам и ДНК-лигазам.

Историю развития генетической инженерии можно условно разделить на три этапа.

I. Первый этап связан с доказательством принципиальной возможности получения рекомбинантных молекул ДНК in vitro. Эти работы касаются получения гибридов между различными плазмидами. Была доказана возможность создания рекомбинантных молекул с использованием исходных молекул ДНК из различных видов и штаммов бактерий, их жизнеспособность, стабильность и функционирование.

II. Второй этап связан с началом работ по получению рекомбинантных молекул ДНК между хромосомными генами прокариот и различными плазмидами, доказательством их стабильности и жизнеспособности.

III. Третий этап - начало работ по включению в векторные молекулы ДНК (ДНК, используемые для переноса генов и способные встраиваться в генетический аппарат клетки-рецепиента) генов эукариот, главным образом, животных. Формально датой рождения генетической инженерии следует считать 1972 год, когда в Стенфордском университете П. Берг, С. Коэн, Х. Бойер с сотрудниками создали первую рекомбинантную ДНК, содержавшую фрагменты ДНК вируса SV40, бактериофага и E. coli.

2. Методы генной инженерии

Генетическая инженерия - конструирование in vitro функционально активных генетических структур (рекомбинантных ДНК), или иначе - создание искусственных генетических программ (Баев А. А.). По Э. С. Пирузян генетическая инженерия - система экспериментальных приемов, позволяющих конструировать лабораторным путем (в пробирке) искусственные генетические структуры в виде так называемых рекомбинантных или гибридных молекул ДНК.

Генетическая инженерия - получение новых комбинаций генетического материала путем проводимых вне клетки манипуляций с молекулами нуклеиновых кислот и переноса созданных конструкций генов в живой организм, в результате которого достигается их включение и активность в этом организме и у его потомства. Речь идет о направленном, по заранее заданной программе конструировании молекулярных генетических систем вне организма с последующим введением их в живой организм. При этом рекомбинантные ДНК становятся составной частью генетического аппарата рецепиентного организма и сообщают ему новые уникальные генетические, биохимические, а затем и физиологические свойства.

Цель прикладной генетической инженерии заключается в конструировании таких рекомбинантных молекул ДНК, которые при внедрении в генетический аппарат придавали бы организму свойства, полезные для человека. Например, получение «биологических реакторов» - микроорганизмов, растений и животных, продуцирующих фармакологически значимые для человека вещества, создание сортов растений и пород животных с определёнными ценными для человека признаками. Методы генной инженерии позволяют провести генетическую паспортизацию, диагностировать генетические заболевания, создавать ДНК-вакцины, проводить генотерапию различных заболеваний.

Технология рекомбинантных ДНК использует следующие методы:

· специфическое расщепление ДНК рестрицирующими нуклеазами, ускоряющее выделение и манипуляции с отдельными генами;

· быстрое секвенирование всех нуклеотидов очищенном фрагменте ДНК, что позволяет определить границы гена и аминокислотную последовательность, кодируемую им;

· конструирование рекомбинантной ДНК;

· гибридизация нуклеиновых кислот, позволяющая выявлять специфические последовательности РНК или ДНК с большей точностью и чувствительностью, основанную на их способности связывать комплементарные последовательности нуклеиновых кислот;

· клонирование ДНК: амплификация in vitro с помощью цепной полимеразной реакции или введение фрагмента ДНК в бактериальную клетку, которая после такой трансформации воспроизводит этот фрагмент в миллионах копий;

· введение рекомбинантной ДНК в клетки или организмы.

Наиболее распространенными методом генной инженерии является метод конструирования и переноса рекомбинантных ДНК. Этот метод включает несколько этапов.

1. Создание вектора.

Этот этап состоит из двух последовательных стадий: рестрикции и лигирования.

Рестрикция - означает “разрезание”, “ограничение”. При помощи фермента рестрикционной эндонуклеазы или рестриктазы, открытой в 1974 году швейцарским ученым Вернером Арбером, происходит разрезание плазмидной ДНК, образуется расщепленная плазмида с “липкими” концами ТТАА и ААТТ. ( Бактериальные клетки вырабатывают рестриктазы для разрушения инородной ДНК, чтобы защищаться от вирусной инфекции.) Этой же рестриктазой разрезают ДНК человека (выделенную из клетки) на множество различных фрагментов, но с одинаковыми “липкими” концами. Поскольку используется один и тот же фермент рестриктаза “ липкие” концы плазмиды и “липкие” концы ДНК человека (чужеродный ген) будут являться комплементарными.

Лигирование - “сшивание”. Фрагменты ДНК человека включают в плазмиды и их комплементарные “липкие” концы “сшивают” ферментом лигазой. Образуется рекомбинантная плазмида.

2. Трансформация - введение.

Рекомбинантные плазмиды вводят в бактериальные клетки (E. Coli), обработанные специальным образом, чтобы они на короткое время стали проницаемы для макромолекул. Однако, плазмиды проникают лишь в часть обработанных клеток. Трансформированные бактерии вместе с плазмидой приобретают устойчивость к определённому антибиотику. Это позволяет отделить трансформированные бактерии от нетрансформированных, так как они погибают на среде, содержащей антибиотик. Чтобы их отделить друг от друга, бактерии высевают на питательную среду так, чтобы клетки находились на расстоянии друг от друга. Каждая из трансформированных клеток размножается и образует колонию из многочисленных потомков - клон.

3. Скрининг - отбор среди клонов трансформированных бактерий тех, которые содержат плазмиды, несущие нужный ген человека.

Все бактериальные колонии покрывают специальным фильтром. Когда его снимают, на нём остаётся отпечаток колоний. Затем проводят молекулярную гибридизацию. Фильтры погружают в раствор с радиоактивно меченым зондом. Зонд - это полинуклеотид, комплементарный части искомого гена (Р32). Он гибридизируется лишь с теми рекомбинантными плазмидами, которые имеют нужный ген. После гибридизации на фильтр в темноте накладывают рентгеновскую плёнку и через несколько часов её проявляют. Засвечиваются те участки на плёнке, где располагаются клоны трансформированных бактерий с нужным геном. Их отбирают, размножают (клонируют), так как они способны вырабатывать белок, кодируемый этим геном.

3. Ферменты генетической инженерии

Генетическая инженерия - потомок молекулярной генетики, но своим рождением обязана успехам генетической энзимологии и химии нуклеиновых кислот, так как инструментами молекулярного манипулирования являются ферменты. Если с клетками и клеточными органеллами мы подчас можем работать микроманипуляторами, то никакие, даже самые мелкие микрохирургические инструменты не помогут при работе с макромолекулами ДНК и РНК. Что же делать? В роли "скальпеля", "ножниц" и "ниток для сшивания" выступают ферменты.

Только они могут найти определенные последовательности нуклеотидов, "разрезать" там молекулу или, наоборот, "заштопать" дырку в цепи ДНК. Эти ферменты издавна работают в клетке, выполняя работы по репликации (удвоению) ДНК при делении клетки, репарации повреждений (восстановлению целостности молекулы), в процессах считывания и переноса генетической информации из клетки в клетку или в пределах клетки. Задача генного инженера - подобрать фермент, который выполнил бы поставленные задачи, то есть смог бы работать с определенным участком нуклеиновой кислоты.

Следует отметить, что ферменты, применяемые в генной инженерии, лишены видовой специфичности, поэтому экспериментатор может сочетать в единое целое фрагменты ДНК любого происхождения в избранной им последовательности. Это позволяет генной инженерии преодолевать установленные природой видовые барьеры и осуществлять межвидовое скрещивание.

Ферменты, применяемые при конструировании рекомбинантных ДНК, можно разделить на несколько групп:

· ферменты, с помощью которых получают фрагменты ДНК (рестриктазы);

· ферменты, синтезирующие ДНК на матрице ДНК (полимеразы) или РНК (обратные транскриптазы);

· ферменты, соединяющие фрагменты ДНК (лигазы);

· ферменты, позволяющие осуществить изменение структуры концов фрагментов ДНК.

4. Синтез генов

Известны 2 пути искусственного синтеза генов:

химический;

ферментативный.

Для химического синтеза необходимо иметь полностью расшифрованную последовательность нуклеотидов. Последовательность нуклеотидов в ДНК определяют по и-РНК.

Впервые в 1970г. в США индийский ученый Корана осуществил искусственный синтез гена. Но этот ген не работал in vitro (в пробирке). Причиной являлся синтез только структурной части гена (в нем не было регуляторной части).

В 1976г. был синтезирован ген, состоящий не только из структурного участка, но и регуляторных частей. Этот искусственный ген был введен в бактерию и функционировал в ней как природный. Химическим путем можно синтезировать небольшие по размеру гены прокариот. Синтез генов эукариот, состоящих из 1000 и более нуклеотидов путем химического синтеза создавать не удается. Кроме этого это метод очень трудоемкий и практически не применяется на практике.

Наиболее успешным оказался ферментативный синтез. Это метод поколебал центральную догму молекулярной генетики, утверждающую, что считка информации происходит в направлении ДНК > и-РНК > белок.

Оказалось, что РНК может быть предшественником ДНК. Подобное наблюдается у онкогенных РНК содержащих вирусов. С РНК вируса, попавшего в клетку, синтезируется ДНК-копия РНК с помощью фермента - обратная транскриптаза. Сам процесс называется обратная транскрипция.

На основе этих данных в 1972-1973г.г. во многих лабораториях мира были синтезированы гены кролика, мыши, утки, крысы.

Но гены, синтезированные с помощью ревертаз (обратная транскриптаза) не имеют регуляторной части, а это препятствует функционированию искусственных генов в животных клетках, что ограничивает их использование. Кроме того, и-РНК в клетках очень немного, и она не стойкая.

В настоящее время рекомбинантные молекулы ДНК чаще всего получают путем гибридизации инвитро фрагментов ДНК вирусного и бактериального происхождения, и в меньшей степени эукариотического происхождения.

5. Достижения генной инженерии

?????? ????????? ??????????????

Создание искусственных генов, получение рекомбинантных ДНК, введение их в клетки может привести к возникновению новых организмов, опасных для человека. В связи с этим в 1974г. на Международной Конференции были выработаны правила, обязательные при работе с генетическим материалом.

Успехи генной инженерии должны быть использованы на благо человека: в борьбе с наследственными болезнями, для создания микроорганизмов - продуцентов белков. Врачи используют в генотерапии не только вирусы, приводящие к побочным явлениям, но и липосферы, состоящие из жировых капель, которые легко проникают сквозь клеточную оболочку и не дают осложнений.

При помощи разработанных сейчас «антисмысловых веществ» можно блокировать экспрессию генов, так как многие заболевания обусловлены неправильной экспрессией генов (злокачественные опухоли).

Антисмысловые соединения - это короткие одно цепочечные ДНК, которые взаимодействуют с и-РНК, несущими информацию от генов к рибосоме. В качестве антисмыслового гена используется как природная, так и синтетическая ДНК (синтетическая меньше разрушается ферментами).

Вывод

На технологии рекомбинантных ДНК основано получение высокоспецифичных ДНК-зондов, с помощью которых изучают экспрессию генов в тканях, локализацию генов в хромосомах, выявляют гены, обладающие родственными функциями (например, у человека и курицы). ДНК-зонды также используются в диагностике различных заболеваний. В применении к человеку генная инженерия могла бы применяться для лечения наследственных болезней. Однако, технически, есть существенная разница между лечением самого пациента и изменением генома его потомков.

Хотя и в небольшом масштабе, генная инженерия уже используется для того, чтобы дать шанс забеременеть женщинам с некоторыми разновидностями бесплодия. Для этого используют яйцеклетки здоровой женщины. Ребёнок в результате наследует генотип от одного отца и двух матерей.

При помощи генной инженерии можно получать потомков с улучшенной внешностью, умственными и физическими способностями, характером и поведением. С помощью генотерапии в будущем возможно улучшение генома и нынеживущих людей. В принципе можно создавать и более серьёзные изменения, но на пути подобных преобразований человечеству необходимо решить множество этических проблем.

Литература

1) http://studentbank.ru/view.php?id=7104

2) http://refdb.ru/look/2482546.html

3) http://www.biotechnolog.ru/ge/ge2_1.htm

4) http://www.biotechnolog.ru/ge/ge1_2.htm

5) http://festival.1september.ru/articles/419806/

6) http://doctornik.lt/raznye-stati/137-2012-03-02-16-51-34

Размещено на Allbest.ru

...

Подобные документы

  • Понятие и основные методы генной инженерии. Методика выделения ДНК на примере ДНК плазмид. Принципы действия системы рестрикции-модификации. Перенос и обнаружение клонируемых генов в клетках. Конструирование и введение в клетки рекомбинантных молекул ДНК.

    реферат [22,1 K], добавлен 23.01.2010

  • Использование клеток, не существовавших в живой природе, в биотехнологических процессах. Выделение генов из клеток, манипуляции с ними, введение в другие организмы в основе задач генной инженерии. История генной инженерии. Проблемы продуктов с ГМО.

    презентация [2,2 M], добавлен 21.02.2014

  • Использование генной инженерии как инструмента биотехнологии с целью управления наследственностью живых организмов. Особенности основных методов и достижений генной инженерии в медицине и сельском хозяйстве, связанные с ней опасности и перспективы.

    доклад [15,1 K], добавлен 10.05.2011

  • Пересадка генов и частей ДНК одного вида в клетки другого организма. История генной инженерии. Отношение к генетически модифицированным организмам в мире. Новые ГМ-сорта. Что несёт человечеству генная инженерия. Какие перспективы генной инженерии.

    презентация [325,1 K], добавлен 24.02.2015

  • Генная инженерия: история возникновения, общая характеристика, преимущества и недостатки. Знакомство с новейшими методами генной инженерии, их использование в медицине. Разработка генной инженерии в области животноводства и птицеводства. Опыты на крысах.

    курсовая работа [2,5 M], добавлен 11.07.2012

  • Сущность генной и клеточной инженерии. Основные задачи генной модификации растений, анализ вредности их употребления в пищу. Особенности гибридизации растительных и животных клеток. Механизм получения лекарственных веществ с помощью генной инженерии.

    презентация [615,8 K], добавлен 26.01.2014

  • Генная инженерия - метод биотехнологии, который занимается исследованиями по перестройке генотипов. Возможности генной инженерии. Перспективы генной инженерии. Уменьшение риска, связанного с генными технологиями.

    реферат [17,3 K], добавлен 04.09.2007

  • Исследование сущности и предназначения генной инженерии - метода биотехнологии, который занимается исследованиями по перестройке генотипов. Метод получения рекомбинантных, то есть содержащих чужеродный ген, плазмид - кольцевых двухцепочных молекул ДНК.

    презентация [264,8 K], добавлен 19.02.2012

  • Основы и техника клонирования ДНК. Этапы генной инженерии бактерий. Развитие генетической инженерии растений. Генетическая трансформация и улучшение растений с помощью агробактерий, источники генов. Безопасность генетически модифицированных растений.

    реферат [26,3 K], добавлен 11.11.2010

  • История развития Биотехнологии. Генетическая инженерия как важная составная часть биотехнологии. Осуществление манипуляций с генами и введение их в другие организмы. Основные задачи генной инженерии. Генная инженерия человека. Искусственная экспрессия.

    презентация [604,9 K], добавлен 19.04.2011

  • Возможности генной инженерии растений. Создание гербицидоустойчивых растений. Повышение эффективности фотосинтеза, биологической азотфиксации. Улучшение качества запасных белков. Экологические, медицинские и социально-экономические риски генной инженерии.

    контрольная работа [47,1 K], добавлен 15.12.2011

  • Генная инженерия. Генетическая информация. Геннетическая карта и её значение в генной инженерии. Генетический анализ и его виды. Селекционный метод. Гибридологический метод. Цитогенетичедский метод. Молекулярно-генетический метод. Мутационый метод.

    реферат [13,3 K], добавлен 25.02.2003

  • Возникновение биотехнологии. Основные направления биотехнологии. Биоэнергетика как раздел биотехнологии. Практические достижения биотехнологии. История генетической инженерии. Цели, методы и ферменты генной инженерии. Достижения генетической инженерии.

    реферат [32,4 K], добавлен 23.07.2008

  • Суть и задачи генной инженерии, история ее развития. Цели создания генетически модифицированных организмов. Химическое загрязнение как следствие ГМО. Получение человеческого инсулина как важнейшее достижение в сфере генно-модифицированных организмов.

    реферат [69,1 K], добавлен 18.04.2013

  • Понятие и содержание генетики как научного направления, предмет и методы ее исследования, история становления и развития в мире. Теоретические предпосылки формирования генной инженерии, ее специфические признаки и значение, практическое применение.

    курсовая работа [37,7 K], добавлен 10.05.2011

  • Этапы получения трансгенных организмов. Агробактериальная трансформация. Схема создания генетически модифицированного организма. Пример селективного маркера растений. Процесс подавления экспрессии генов (сайленсинг). Направления генной инженерии растений.

    презентация [6,2 M], добавлен 24.06.2013

  • Возникновение молекулярной биотехнологии. История проблемы биологического кода. Политика в области генной терапии соматических клеток. Накопление дефектных генов в будущих поколениях. Генная терапия клеток зародышевой линии. Генетика и проблема человека.

    реферат [41,9 K], добавлен 25.09.2014

  • Предпосылки возникновения генетики. Основание мутационной теории. Генетика как наука о наследственности: ее исходные законы и развитие. Генная инженерия: научно-исследовательские аспекты и практические результаты. Клонирование органов и тканей.

    реферат [28,9 K], добавлен 02.01.2008

  • История, задачи и перспективы генной инженерии. Регулирование деятельности в данной области. Отношение к генетически модифицированным организмам в мире. Новые ГМ-сорта. Миф о трансгенной угрозе. Использование ГМО бактерий для уничтожения раковых опухолей.

    презентация [3,2 M], добавлен 04.12.2011

  • Понятие и задачи генной инженерии и молекулярного клонирования. Характеристика векторов на основе плазмид, бактериофагов и космид. Биотехнологические манипуляции с кишечной палочкой, этапы ее трансформации. Применение трансформированных микроорганизмов.

    реферат [1,5 M], добавлен 20.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.