Основы биологии

Рассмотрение бесполого и полового размножения организмов. Функции, морфологическое и анатомическое строение растений. Исследование генных, хромосомных мутаций и наследственных заболеваний человека. Биологические и социальные основы поведения человека.

Рубрика Биология и естествознание
Вид шпаргалка
Язык русский
Дата добавления 10.03.2015
Размер файла 43,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

бесполый наследственный анатомический генный

1. Бесполое и половое размножение организмов

2. Органы растений: их функции, морфологическое и анатомическое строение

3. Мутации. Генные, хромосомные мутации и наследственные заболевания человека

4. Биологические и социальные основы поведения человека

5. Важнейшие абиотические факторы (климатические, эдафические, геоморфологические) и адаптация к ним живых организмов

6. Производство экологически безопасной сельскохозяйственной продукции. Сертификация продукции

7. Экологическая биотехнология. Биологические альтернативы пестицидам и минеральным удобрениям. Вермикультура

Список использованной литературы

1. Бесполое и половое размножение организмов

Бесполое размножение, или агамогенез - форма размножения, при которой организм воспроизводит себя самостоятельно, без всякого участия другой особи. Следует отличать бесполое размножение от однополого размножения (партеногенеза), который является особой формой полового размножения.

Крайняя простота этого способа размножения, связанная с относительной простотой организации одноклеточных организмов, позволяет размножаться очень быстро. Так, в благоприятных условиях количество бактерий может удваиваться каждые 30-60 минут. Размножающийся бесполым путем организм способен бесконечно воспроизводить себя, пока не произойдет спонтанное изменение генетического материала - мутация. Если эта мутация благоприятна, она сохранится в потомстве мутировавшей клетки, которое будет представлять собой новый клеточный клон.

Бесполое размножение, воспроизводящее идентичные исходному организму особи, не способствует появлению организмов с новыми вариантами признаков, а тем самым ограничивает возможность приспособления видов к новым для них условиям среды. Средством преодоления этой ограниченности стал переход к половому размножению.

Нередко бесполому размножению бактерий предшествует образование спор. Бактериальные споры - это покоящиеся клетки со сниженным метаболизмом, окруженные многослойной оболочкой, устойчивые к высыханию и другим неблагоприятным условиям, вызывающим гибель обычных клеток. Спорообразование служит как для переживания таких условий, так и для расселения бактерий: попав в подходящую среду, спора прорастает, превращаясь в вегетативную (делящуюся) клетку Большая советская энциклопедия. Размножение.

Бесполое размножение с помощью одноклеточных спор свойственно и различным грибам и водорослям. Споры в этом случае образуются путем митоза (митоспоры), причем иногда (особенно у грибов) в огромных количествах; при прорастании они воспроизводят материнский организм. Некоторые грибы, например злостный вредитель растений фитофтора, образуют подвижные, снабженные жгутиками споры, называемые зооспорами или бродяжками. Проплавав в капельках влаги некоторое время, такая бродяжка «успокаивается», теряет жгутики, покрывается плотной оболочкой и затем, в благоприятных условиях, прорастает. Помимо митоспор, у многих из указанных организмов, а также у всех высших растений формируются споры и иного рода, а именно мейоспоры, образующиеся путем мейоза. Они содержат гаплоидный набор хромосом и дают начало поколению, обычно не похожему на материнское и размножающемуся половым путем. Таким образом, образование мейоспор связано с чередованием поколений - бесполого (дающего споры) и полового.

Вегетативное размножение. Другой вариант бесполого размножения осуществляется путем отделения от организма его части, состоящей из большего или меньшего числа клеток. Из них развивается взрослый организм. Примером может служить почкование у губок и кишечнополостных или размножение растений побегами, черенками, луковицами или клубнями. Такая форма бесполого размножения обычно называется вегетативным размножением. В своей основе оно аналогично процессу регенерации. Вегетативное размножение играет важную роль в практике растениеводства. Так, может случиться, что высеянное растение (например, яблоня) обладает некой удачной комбинацией признаков. У семян данного растения эта удачная комбинация почти наверняка будет нарушена, так как семена образуются в результате полового размножения, а оно связано с рекомбинацией генов. Поэтому при разведении яблонь обычно используют вегетативное размножение - отводками, черенками или прививками почек на другие деревья.

Бесполое размножение, воспроизводящее идентичные исходному организму особи, не способствует появлению организмов с новыми вариантами признаков, а тем самым ограничивает возможность приспособления видов к новым для них условиям среды. Средством преодоления этой ограниченности стал переход к половому размножению.

Половое размножение

Принципиальное отличие полового размножения от бесполого состоит в том, что в нем участвуют обычно два родительских организма, признаки которых перекомбинируются у потомства. Половое размножение свойственно всем эукариотам, но преобладает оно у животных и высших растений.

Переход к этому типу размножения имел огромное значение для эволюции жизни на Земле. Половое размножение создает бесконечное разнообразие особей, в том числе и таких, которые успешно адаптируются к изменчивым внешним условиям, «завоевывают мир», распространяясь в новые места обитания, и оставляют потомство, передавая ему свой наследственный материал. Потомки же двух успешных родительских особей могут оказаться обладателями еще более удачной комбинации наследственных признаков, и соответственно они разовьют успех родителей. Особи с неудачной комбинацией признаков будут элиминированы естественным отбором. Таким образом, половое размножение создает богатый материал для естественного отбора и эволюции. Любопытно и другое: само возникновение особи как индивидуальности, неделимого и смертного существа, является результатом перехода к половому размножению.

При бесполом размножении клетка бесконечно делится, повторяя саму себя: она потенциально бессмертна, но особью может быть названа только условно, так как неотличима от неопределенного множества дочерних клеток. При половом размножении, напротив, все потомки различаются между собой и отличаются от родителей, а те с течением времени умирают, унося с собой свойственные им неповторимые особенности. Американский зоолог Р.Хегнер, обсуждая простейших, выразил это таким образом: «Они приобрели очередное новшество - пол; цена этого приобретения - неминуемая естественная гибель... Не велика ли эта цена?»[ Гормональная регуляция размножения у млекопитающих. М., 1987] Подчеркнем однако, что одновременно открылись возможности для развития и совершенствования, и они привели к появлению разнообразных живых форм, не сопоставимых по уровню организации с теми организмами, которые остановились на бесполом размножении.

Половое размножение животных . Переход к половому размножению связан с появлением специализированных половых клеток - мужских и женских гамет, в результате слияния которых (оплодотворения) образуется зигота - клетка, из которой развивается новый организм, обладающий новой комбинацией исходных генетических признаков.[ Мэйнард Смит Дж. Эволюция полового размножения. М., 1981]

Половое размножение впервые появилось у простейших, но переход к нему не был связан с немедленной утратой способности к репродукции бесполым путем: ряд животных сохранили ее, обычно чередуя бесполое размножение с половым. Такое чередование поколений наблюдается у некоторых простейших, кишечнополостных и оболочников.

2. Органы растений: их функции, морфологическое и анатомическое строение

Цветок - орган семенного размножения покрытосемянных растений. В цветках происходит образование микро- и мега- спор, гамет, опыление, оплодотворение, развитие зародыша и образование плода с семенами. Цветок состоит из цветоножки, цветоложа, околоцветника, андроцея и гинецея. Цветоножка - междоузлие под цветком, оно соединяет его со стеблем. Цветки без цветоножек называются сидячими. На цветоножке могут располагаться листочки называемые прицветником. Цветоложе это расширенная часть цветоножки, к которой крепятся все остальные части цветка. Большинство растений имеют цветки с пестиками и тычинками и являются обоеполыми. Некоторые растения имеют однополые цветки. В зависимости от симметрии различают актиноморфные, зигоморфные и ассиметричные. Околоцветник бывает простым и двойным, двойной околоцветник состоит из чашечки и венчика, чашечка в основном выполняет защитную функцию состоит из чашелистиков чаще окрашенных в зеленый цвет, они могут быть свободными и сросшимися (как у бобовых) и образуют спаянную или колокольчатую чашечку. В некоторых группах растений чашечка редуцируется (зонтичные) или видоизменяется (сложноцветные). Венчик имеет разнообразную окраску и по размерам, как правило, значительно превосходит чашечку. Он состоит из лепестков. Лепестки у насекомоопыляемых растений окрашены в яркие цвета. У ветроопыляемых невзрачные или отсутствуют. Простой околоцветник состоит из одинаковых листочков и характерен для большинства однодольных, а также некоторых двудольных. Он чаще бывает венчиковидным (яркоокрашенным) и иногда чашечковидным (зеленым). Совокупность тычинок в цветке называют андроцеем. Тычинка состоит из тычиночной нити и пыльника.

Пыльник образован из двух половинок, каждая из которых представлена двумя микроспорангиями (пыльцевыми мешками) В пыльцевом мешке формируется спорогенная ткань, формирующая микроспоры (пыльцевые зерна), причем при их образовании происходит процесс мейоза. Пыльцевое зерно гаплоидно, имеет две оболочки и переносится по воздуху. В нем развивается мужской гаметофит, который очень редуцирован и состоит из 2 клеток: вегетативной и генеративной.

Генеративная клетка заменяет антеридий и дает начало двум спермиям - мужским гаметам, в отличие от сперматозоидов, лишенным жгутиков. Из вегетативной клетки впоследствии образуется пыльцевая трубка. Гинецей - это совокупность плодолистиков в цветке, образующих один или несколько пестиков. Гинецей может состоять из свободных плодолистиков, каждый из которых образует пестик. Такой тип гинецея характерен для примитивных цветковых (лютиковые, бобовые). В процессе эволюции плодолистики срослись между собой и образовали более сложный тип гинецея.

Количество плодолистиков, сформировавших такой гинецей, можно определить по числу столбиков на одной завязи, количеству лопастей рыльца, числу гнезд завязи. В типичном случае пестик дифференцируется на завязь, столбик и рыльце. В зависимости от типа цветоложа завязь может занимать разное положение по отношению к другим органам цветка.

Внутри завязи располагаются семязачатки, число которых может варьировать от одного до нескольких миллионов. Семязачаток (мегаспорангий) - многоклеточное образование семенных растений, из которого впоследствии развивается семя. Семязачаток снаружи окружен покровами, которые на верхушке не смыкаются, образуя узкий канал - микропиле (пыльцевход). Через микропиле пыльцевая трубка проникает к зародышевому мешку. Из одной диплоидной клетки семязачатка в результате мейоза образуются 4 гаплоидные мегаспоры. Три из них отмирают, а одна продолжает развитие. Она трижды делится митотически, в результате чего формируются 8 гаплоидных ядер. Два из них сливаются в центре, образуя диплоидное ядро. Так возникает женский гаметофит, называемый зародышевым мешком. В зрелом женском гаметофите находятся яйцеклетка, диплоидная центральная клетка и ряд дополнительных клеток. Фертильные части цветка (тычинка, пестик). Стерильные части цветка (чашечка, венчик, околоцветник).

3. Мутации. Генные, хромосомные мутации и наследственные заболевания человека

ГЕН (от греч. genos -- род, происхождение), единица наследственного материала, ответственная за формирование какого-либо элементарного признака, участок молекулы геномной нуклеиновой кислоты, характеризуемый специфической для него последовательностью нуклеотидов, представляющий единицу функции, отличной от функций других генов, и способный изменяться путем мутирования. У высших организмов входит в состав хромосом.

Основные свойства наследственных факторов -- генов:

- аллельное состояние: многие гены существуют в виде двух или более альтернативных вариантов - аллелей, которые локализованы в определённом участке хромосомы - локусе. У человека одна хромосома отцовская, другая - материнская. Если в одних и тех же локусах гомологичных хромосом содержатся идентичные (по содержанию информации) аллели, то это гомозиготный организм. Если содержащиеся в них аллели различаются по информации, то это гетерозиготный организм.

- дискретность: развитие разных признаков контролируется разными генами, локализованными на разных хромосомах. Например, ген хореи Гентингтона расположен на коротком плече хромосомы 2, ген атаксии Фридрейха - на длинном плече хромосомы 9.

- специфичность: определённый ген обусловливает развитие определённого ( специфического ) признака или их группы. В случае развития группы признаков говорят о плейотропном действии гена. Например, ген альбинизма ведет к отсутствию меланина в коже, волосах и радужной оболочке глаз

- стабильность: при отсутствии мутаций (изменение структуры и (или) количества наследственного материала) ген передается в ряду поколений в неизменном виде.

Гены характеризуются относительной устойчивостью, что определяет константную передачу признаков и свойств в поколениях. Однако в естественных условиях происходит спонтанный процесс изменения генов, приводящий к появлению новых измененных признаков и свойств организмов, оцениваемых отбором. В результате мутации ген преобразуется и переходит в новое состояние. Разные состояния одного и того же гена, возникающие путем мутаций, получили название аллелей данного гена. Группа мутантных аллелей одного гена составляет серию множественных аллелей. Примерами множественного аллелизма являются: серия аллелей окраски шерсти у кролика (5 аллелей), 3 аллеля группы крови системы АВ0 у человека, более 10 аллелей локуса white у дрозофилы, контролирующих окраску глаза (темно-красный, темно-желтый, слоновой кости, абрикосовый, вишневый, коралловый, белый и др.).

Факторами, вызывающими мутации, могут быть самые разнообразные влияния внешней среды: температура, ультрафиолетовое излучение, радиация (как естественная, так и искусственная), действия различных химических соединений - мутагенов.

Современная классификация мутаций включает:

- генные или точковые мутации. Это изменение в одном гене (любой его точке), приводящее к появлению новых аллелей. Точковые мутации наследуются как простые менделеевские признаки, такие как например, хорея Гентингтона, гемофилия и др. (пример с-м Мартина - Бел, муковисцидоз )

- хромосомные мутации - нарушают структуру хромосомы ( группу сцепления генов) и приводят к формированию новых групп сцепления. Это структурные перестройки хромосом в результате делеции, дупликации, транслокации ( перемещения), инверсии или инсерции наследственного материала ( пример с-м Дауна, с-м кошачьего крика)

- геномные мутации ведут к появлению новых геномов или их частей путем добавления или утраты целых хромосом. Другое их название - численные (числовые) мутации хромосом в результате нарушения количества генетического материала. ( пример с-м Шерешевского - Тернера, с-м Клайнфельтера).

Формы и особенности наследственной патологии

Среди наследственной патологии выделяют следующие группы :

- моногенные болезни

- хромосомные болезни

- большие и малые врожденные аномалии развития

- мультифакторные болезни

Мультифакторные болезни - в их основе лежит нарушение физико-химических процессов, и они могут быть обусловлены первичными генными нарушениями, нарушением функции гена ( биосинтез белка), структуры белков, нарушениями активации ферментов. Это ведет к образованию патологического белка и как следствие к различным метаболическим нарушениям. Подавляющая часть этих нарушений обязана своим происхождением врожденной недостаточности определенного фермента, Именно поэтому многие наследственные болезни обмена называют ферментопатиями.

Моногенные болезни - сложности изучения механизма обусловлены рядом факторов:

- мало изученные особенности формирования клинических признаков.

- неоднозначные связи между характером мутации и степенью нарушения активности белка (фермента).

- влияние материнского и отцовского геномов на процесс патологического развития.

- появление новых данных о нетрадиционном наследовании признаков.

Врожденные аномалии развития - это результат отклонений от нормального развития индивида. Которое можно представить как цепь последовательных событий : гаметогенез, оплодотворение, эмбриональный морфогенез и гистогенез, постнатальное развитие.

Хромосомные синдромы - это группа врожденных патологический состояний, проявляющихся аномалиями развития и обусловленных нарушениями числа или структуры хромосом в соматических клетках (аутосомные синдромы) или половых клетках (гоносомные синдромы). Их общая частота в популяции - около 1 %. имеют прямую связь наблюдаемых при них признаков с изменениями, развившимися у индивида в ходе онтогенеза в результате геномной или хромосомной мутации.

Другими словами, в основе патологических признаков лежит хромосомный и генный дисбаланс, которых нарушает координированную экспрессию генов. Рассмотрим данную группу заболеваний более подробно, как наиболее тесно связанную с темой мутации генов.

Хромосомные синдромы - это группа врожденных патологический состояний, проявляющихся аномалиями развития и обусловленных нарушениями числа или структуры хромосом в соматических клетках (аутосомные синдромы) или половых клетках (гоносомные синдромы). Их общая частота в популяции - около 1 %.

25% хромосомных синдромов составляют аутосомные трисомии, 35% - нарушения половых хромосом и 40% - структурными перестройками хромосом.. В расчете на 1000 новорожденных хромосомные синдромы выявляются у 7-8 детей, а в структуре смертности детей до 5 лет на их долю приходится 3-4%. По статистике на 100 больных с хромосомными синдромами у 95 человек будут выявляться синдромы, обусловленные геномными мутациями ( в том числе 75 % составит синдром Дауна) и только 5 человек будут иметь синдромы, обусловленные структурными мутациями хромосом.

Сопоставление цитогенетических данных с клиническими проявлениями у больных хромосомными синдромами позволяет выделить целый ряд закономерностей

1. Хромосомный дисбаланс приводит к нарушениям развития организма.

2. Степень выраженности нарушений развития организма зависит от величины хромосомного дисбаланса:

- полные трисомии и моносомии сказываются на развитии более выражено.

- дисбаланс по крупным хромосомам проявляется тяжелее, чем по мелким.

- недостаток хромосомного материала обуславливает развитие более тяжелых

нарушений, чем его избыток.

3. Вовлеченность в патологический процесс индивидуальных хромосом различна.

4. Характерные клинические проявления связываются с незначительными размерам хромосомными сегментами. Например, трисомия сегмента 21q21 при синдроме Дауна, сегмент 18q11 при синдроме «кошачьего крика»

5. Частота некоторых перестроек аутосом у детей зависит от возраста родителей.

6. Структурные перестройки хромосом значительно чаще передаются через женские, чем через мужские гаметы.

7. В семьях с рожденным ребенком с хромосомной перестройкой, существует повышенный риск повторного рождения детей с хромосомными синдромами.

4. Биологические и социальные основы поведения человека

Поведение - совокупность действий организма. Выживание организмов зависит от их способности разрешать проблемы отношений с внешней средой. В течение всей жизни организм сталкивается с рядом изменений среды. В настоящее время внешние условия определяются такими постоянно действующими факторами, как температура, свет, и сила тяжести плюс те условия, которые возникли в результате эволюции миллионов различных видов организмов. Помимо физических факторов, внешняя среда организма прямо или косвенно включает всех животных и все растения.

Поведение можно определить как совокупность всей действий организма. Поведенческие реакции часто становятся более очевидными, если внешние условия подвергаются изменениям. Поведенческие реакции на эти изменения могут включать каждую часть и каждую функцию организма, т.е. весь организм.

Высшей формой поведения является мышление. Мышление позволяет решать сложные проблемы, не прибегая к методу проб и ошибок.

Можно было бы спросить: имеется ли связь между поведением и эволюцией многоклеточных организмов? Ранее поведение было определено как совокупность действий организма. Чтобы организм выжил, он должен вырабатывать определенные ответные реакции на воздействия среды.

Чтобы вид выжил, его индивидуумы должны вести себя таким образом, чтобы добыть пищу, избежать хищников, дать потомство и обеспечить его выживание. Представители вида, ведущие себя соответствующим образом, обеспечивают выживание вида. В этом смысле каждый живущий ныне вид адаптировался, в том числе и человек.

В разные периоды своей жизни организм сталкивается с различными проблемами. Весь жизненный цикл организма - материал для эволюционного отбора. В процессе эволюции не может быть отобрана какая-либо отдельная стадия жизненного цикла организма. Иными словами, помимо окраски, физиологии, устойчивости к болезням общее поведение организма весьма важно, для того чтобы к конце концов он выжил.

Многие виды существуют миллионы лет и могут успешно жить, пока не возникают какие-то новые условия среды. Если эти новые условия достаточно суровы, вид может вымереть. Так динозавры процветали миллионы лет в мезозойскую эру, а затем внезапно вымерли (внезапно в геологическом масштабе времени).

Было ли вымирание динозавров связано с какими-то дефектами в их физиологии? Или ограниченность присущих им форм поведения привела к положению, из которого не было выхода? Рассматривая проблемы естественного отбора, биологи учитывают особенности поведения наряду с особенностями строения.

В основе поведенческих реакций вида лежит его генотип. В этом смысле каждый вид обладает наследственно обусловленным соответствием поведения тому образу жизни, который он ведет. Другими словами, вид и в этом отношении адаптирован к условиям своего существования. Если биолог утверждает, что существует взаимосвязь между структурой и функцией, он подразумевает, что гены структурной адаптации и гены поведенческой адаптации должны наследоваться вместе. Присущая пауку структурная и физиологическая способность выделять белок, образующий нити паутины, была бы бесполезной, если бы в его поведении не было такой особенности, как способность плести сеть. Только человек и животные немногих других видов могут в течение жизни приспособиться к резким изменениям среды. Способность человека к мышлению и адаптивное поведение обеспечили ему ведущую роль в мире живой природы.

Почти у всех организмов, находящихся на различных ступенях эволюционной лестницы, развивались определенным образом дифференцированные клетки и ткани, которые определяют взаимоотношения организма с внешней средой и ответные реакции на ее изменения.

Эти клетки и ткани организованы в высокоразвитую нервную систему, реагирующую и объединяющую деятельность различных частей тела человека.

Организмы обладают способностью отвечать на физические и химические изменения, происходящие во внутренней и внешней среде. Изменения среды, которые вызывают такие ответные реакции, называются стимулами, или раздражителями. Специализированные нервные клетки, которые способны воспринимать стимулы и «переводить» их на язык нервных импульсов, развивались в процессе эволюции у большинства животных. Эти же ткани могут осуществлять непосредственную ответную реакцию животного на стимулы среды.

От типа нервной системы при других равных условиях зависят: различная скорость выработки условных рефлексов и их прочность, различия скорости иррадиации и концентрации возбуждения и торможения, разная устойчивость к действию факторов, вызывающих нарушение высшей нервной деятельности, и приспособленность к различным воздействиям внешней среды. Тип нервной системы определяет не только поведения организма, но характер деятельности его внутренних органов, обусловленный функциональным состоянием симпатической и парасимпатической систем.

Рассмотрим влияние фармакологических веществ на нервную деятельность и поведение. Кофеин, например, усиливает возбуждение и действует также только в малых дозах, а в больших дозах он вызывает переход возбуждения в торможение.

Гормоны, образующиеся в организме в естественных условиях: адренокортикотропный гормон, адреналин, норадреналин, тироксин - действуют на условные рефлексы в зависимости от дозы. Очень малые дозы адреналина и тироксина увеличивают условные рефлексы. Адренокортикотропный гормон усиливает условное торможение. Установлено, что образование условных рефлексов у новорожденных зависит от поступления в кровь гормонов (адреналина, тироксина и др.)

На физиологические процессы в организме большое влияние оказывают эмоции. Происходящие при эмоциях характерные физиологические процессы являются рефлексами головного мозга. Они вызываются лобными долями больших полушарий через вегетативные центры, лимбическую систему и ретикулярную формацию. Возбуждение из этих центров распространяется по вегетативным нервам, которые непосредственно изменяют функции внутренних органов, осуществляют трофические влияния на скелетную мускулатуру и вызывают поступления в кровь гормонов, медиаторов и метаболинов, воздействующих в свою очередь, на вегетативную иннервацию органов.

При гневе и боли повышается секреция норадреналина, а при тревоге и страхе секреция адреналина. Половой акт сопровождается одновременным возбуждением парасимпатической и симпатической систем. Психические процессы вызывают как двигательные, так и вегетативные реакции, например, расширение кровеносных сосудов в сокращающихся скелетных мышцах, потоотделение и др. психические процессы вызывают как двигательные, так и вегетативные реакции. Например, одно только намерение согнуть руку увеличивает ее объем вследствие расширения кровеносных сосудов мышц, несмотря на то что задуманное движение не делается.

Возбуждение симпатической системы при эмоциях может чрезвычайно увеличивать силу и выносливость скелетных мышц как за счет трофического влияния, так и за счет повышения кровяного давления и увеличения кровоснабжения. Так, например, описан случай когда человек в детстве, спасаясь от дикого животного, перепрыгнул через высокую стену, через которую он впоследствии мог перепрыгнуть , только достигнув зрелого возраста. При эмоции может также расслабляться мускулатура вследствие подавления рефлексов положения тела. В результате возбуждения симпатической системы и усиления пластического тонуса может наступить оцепенение мускулатуры, реакция обмирания, застывание тела в определенной позе - каталепсия. Возбуждение симпатической системы при эмоциях сопровождается мобилизацией всех сил, запасов организма, всех «резервуаров энергии».

Большая часть физиологических изменений, происходящих при эмоциях обусловлена участием симпатической системы, но в этих изменениях участвует и парасимпатическая система. Возбуждение парасимпатической системы обеспечивает процессы пищеварения, всасывания, отложения запасов питательным материалов в организме и его укрепление.

Это позволяет заключить, что парасимпатическая система восстанавливает затраты организма, совершающиеся во время его деятельности, способствует сохранению и накоплению «резервуаров энергии».

5. Важнейшие абиотические факторы (климатические, эдафические, геоморфологические) и адаптация к ним живых организмов

Свет. Температура. Влажность

Абиотические факторы - это свойства неживой природы, которые прямо или косвенно влияют на живые организмы. На рис. 5 (см. приложение) приведена классификация абиотических факторов. Начнем рассмотрение с климатических факторов внешней среды.

Температура является наиболее важным климатическим фактором. От нее зависит интенсивность обмена веществ организмов и их географическое распространение. Любой организм способен жить в пределах определенного диапазона температур. И хотя для разных видов организмов (эвритермных и стенотермных) эти интервалы различны, для большинства из них зона оптимальных температур, при которых жизненные функции осуществляются наиболее активно и эффективно, сравнительно невелика. Диапазон температур, в которых может существовать жизнь, составляет примерно 300 С : от -200 до +100 С. Но большинство видов и большая часть активности приурочены к еще более узкому диапазону температур. Определенные организмы, особенно в стадии покоя, могут существовать по крайней мере некоторое время, при очень низких температурах. Отдельные виды микроорганизмов, главным образом бактерии и водоросли, способны жить и размножаться при температурах, близких к точке кипения. Верхний предел для бактерий горячих источников составляет 88 С, для сине-зеленых водорослей - 80 С, а для самых устойчивых рыб и насекомых - около 50 С. Как правило, верхние предельные значения фактора оказываются более критическими, чем нижние, хотя многие организмы вблизи верхних пределов диапазона толерантности функционируют более эффективно.

У водных животных диапазон толерантности к температуре обычно более узок по сравнению с наземными животными, так как диапазон колебаний температуры в воде меньше, чем на суше.

Таким образом, температура является важным и очень часто лимитирующим фактором. Температурные ритмы в значительной степени контролируют сезонную и суточную активность растений и животных.

Количество осадков и влажность - основные величины, измеряемые при изучении этого фактора. Количество осадков зависит в основном от путей и характера больших перемещений воздушных масс. Например, ветры, дующие с океана, оставляют большую часть влаги на обращенных к океану склонах, в результате чего за горами остается "дождевая тень", способствующая формированию пустыни. Двигаясь в глубь суши, воздух аккумулирует некоторое количество влаги, и количество осадков опять увеличивается. Пустыни, как правило, расположены за высокими горными хребтами или вдоль тех берегов, где ветры дуют из обширных внутренних сухих районов, а не с океана, например, пустыня Нами в Юго-Западной Африке. Распределение осадков по временам года - крайне важный лимитирующий фактор для организмов.

Влажность - параметр, характеризующий содержание водяного пара в воздухе. Абсолютной влажностью называют количество водяного пара в единице объема воздуха. В связи с зависимостью количества пара, удерживаемого воздухом, от температуры и давления, введено понятие относительной влажности - это отношение пара, содержащегося в воздухе, к насыщающему пару при данных температуре и давлении. Так как в природе существуют суточный ритм влажности - повышение ночью и снижение днем, и колебание ее по вертикали и горизонтали, этот фактор наряду со светом и температурой играет важную роль в регулировании активности организмов. Доступный живым организмам запас поверхностной воды зависит от количества осадков в данном районе, но эти величины не всегда совпадают. Так, пользуясь подземными источниками, куда вода поступает из других районов, животные и растения могут получать больше воды, чем от поступления ее с осадками. И наоборот, дождевая вода иногда сразу же становится недоступной для организмов.

Излучение Солнца представляет собой электромагнитные волны различной длины. Оно совершенно необходимо живой природе, так как является основным внешним источником энергии. Надо иметь в виду то, что спектр электромагнитного излучения Солнца весьма широк и его частотные диапазоны различным образом воздействуют на живое вещество.

Для живого вещества важны качественные признаки света - длина волны, интенсивность и продолжительность воздействия.

Ионизирующее излучение выбивает электроны из атомов и присоединяет их к другим атомам с образованием пар положительных и отрицательных ионов. Его источником служат радиоактивные вещества, содержащиеся в горных породах, кроме того, оно поступает из космоса.

Разные виды живых организмов сильно отличаются по своим способностям выдерживать большие дозы радиационного облучения. Как показывают данные большей части исследований, наиболее чувствительны к облучению быстро делящиеся клетки.

У высших растений чувствительность к ионизирующему излучению прямо пропорциональна размеру клеточного ядра, а точнее объему хромосом или содержанию ДНК.

Газовый состав атмосферы также является важным климатическим фактором. Примерно 3-3,5 млрд лет назад атмосфера содержала азот, аммиак, водород, метан и водяной пар, а свободный кислород в ней отсутствовал. Состав атмосферы в значительной степени определялся вулканическими газами. Из-за отсутствия кислорода не существовало озонового экрана, задерживающего ультрафиолетовое излучение Солнца. С течением времени за счет абиотических процессов в атмосфере планеты стал накапливаться кислород, началось формирование озонового слоя.

Ветер способен даже изменять внешний вид растений, особенно в тех местообитаниях, например в альпийских зонах, где лимитирующее воздействие оказывают другие факторы. Экспериментально показано, что в открытых горных местообитаниях ветер лимитирует рост растений: когда построили стену, защищавшую растения от ветра, высота растений увеличилась. Большое значение имеют бури, хотя их действие сугубо локально. Ураганы и обычные ветры способны переносить животных и растения на большие расстояния и тем самым изменять состав сообществ.

Атмосферное давление, по-видимому, не является лимитирующим фактором непосредственного действия, однако оно имеет прямое отношение к погоде и климату, которые оказывают непосредственное лимитирующее воздействие.

Для абиотических условий справедливы все рассмотренные законы воздействия экологических факторов на живые организмы. Знание этих законов позволяет ответить на вопрос: почему в разных регионах планеты сформировались разные экосистемы? Основная причина - своеобразие абиотических условий каждого региона.

Биотические факторы. Внутривидовые и межвидовые отношения

Ареалы распространения и численность организмов каждого вида ограничиваются не только условиями внешней неживой среды, но и их отношениями с организмами других видов. Непосредственное живое окружение организма составляет его биотическую среду, а факторы этой среды называются биотическими. Представители каждого вида способны существовать в таком окружении, где связи с другими организмами обеспечивают им нормальные условия жизни.

Рассмотрим характерные особенности отношений различных типов.

Конкуренция является в природе наиболее всеохватывающим типом отношений, при котором две популяции или две особи в борьбе за необходимые для жизни условия воздействуют друг на друга отрицательно.

Конкуренция может быть внутривидовой и межвидовой.

Внутривидовая борьба происходит между особями одного и того же вида, межвидовая конкуренция имеет место между особями разных видов. Конкурентное взаимодействие может касаться жизненного пространства, пищи или биогенных элементов, света, места укрытия и многих других жизненно важных факторов.

Межвидовая конкуренция, независимо от того, что лежит в ее основе, может привести либо к установлению равновесия между двумя видами, либо к замене популяции одного вида популяцией другого, либо к тому, что один вид вытеснит другой в иное место или же заставит его перейти на использование иных ресурсов. Установлено, что два одинаковых в экологическом отношении и потребностях вида не могут сосуществовать в одном месте и рано или поздно один конкурент вытесняет другого. Это так называемый принцип исключения или принцип Гаузе.

Поскольку в структуре экосистемы преобладают пищевые взаимодействия, наиболее характерной формой взаимодействия видов в трофических цепях является хищничество, при котором особь одного вида, называемая хищником, питается организмами (или частями организмов) другого вида, называемого жертвой, причем хищник живет отдельно от жертвы. В таких случаях говорят, что два вида вовлечены в отношения хищник - жертва.

Еще один тип взаимодействия видов - паразитизм. Паразиты питаются за счет другого организма, называемого хозяином, однако в отличие от хищников они живут на хозяине или внутри его организма на протяжении значительной части их жизненного цикла. Паразит использует для своей жизнедеятельности питательные вещества хозяина, тем самым постоянно ослабляя, а нередко убивая его.

От паразитизма отличается аменсализм, при котором один вид причиняет вред другому, не извлекая при этом для себя никакой пользы. Чаще всего это те случаи, когда причиняемый вред заключается в изменении среды. Так поступает человек, разрушая и загрязняя окружающую среду.

Нейтрализм - это такой тип отношений, при котором ни одна из популяций не оказывает на другую никакого влияния: никак не сказывается на росте его популяций, находящихся в равновесии, и на их плотности. В действительности бывает, однако, довольно трудно при помощи наблюдений и экспериментов в природных условиях убедиться, что два вида абсолютно независимы один от другого.

Обобщая рассмотрение форм биотических отношений, можно сделать следующие выводы:

1) отношения между живыми организмами являются одним из основных регуляторов численности и пространственного распределения организмов в природе;

2) негативные взаимодействия между организмами проявляются на начальных стадиях развития сообщества или в нарушенных природных условиях; в недавно сформировавшихся или новых ассоциациях вероятность возникновения сильных отрицательных взаимодействий больше, чем в старых ассоциациях;

3) в процессе эволюции и развития экосистем обнаруживается тенденция к уменьшению роли отрицательных взаимодействий за счет положительных, повышающих выживание взаимодействующих видов.

Все эти обстоятельства человек должен учитывать при проведении мероприятий по управлению экологическими системами и отдельными популяциями с целью использования их в своих интересах, а также предвидеть косвенные последствия, которые могут при этом иметь место.

Решение экологических проблем зависит от нас самих. Мы должны уяснить, что все идет к исчезновению жизни на Земле, и необходимо срочно принять меры. Необходимо массовое внедрение людей в программу по защите окружающей среды. Для этого нужно выбрать правильное решение экологических проблем.

6. Производство экологически безопасной сельскохозяйственной продукции. Сертификация продукции

Производство экологически безопасной продукции -- ключевая задача при экологизации сельскохозяйственной деятельности. Понятие «экологически безопасная сельскохозяйственная продукция» основано на праве людей на здоровую и плодотворную жизнь в гармонии с природой. Под экологически безопасной сельскохозяйственной продукцией понимают такую продукцию, которая в течение принятого для различных ее видов «жизненного цикла» (производство -- переработка -- потребление) соответствует установленным органолептическим, общегигиеническим, технологическим и токсикологическим нормативам и не оказывает негативного влияния на здоровье человека, животных и состояние окружающей среды.

Острые проблемы современности -- проблемы недоедания и голода -- усугубляются болезнями и смертностью в результате употребления некачественных продуктов, а ведь на Земле достаточно ресурсов, разработаны решения и технологии, которые дают возможность навсегда покончить с этими явлениями. Не хватает, к сожалению, лишь обязательств и ответственности.

Неблагоприятное действие ксенобиотиков связано с миграцией химических веществ по одной или нескольким экологическим цепям:

ксенобиотики

-- воздух -- человек;

»

-- вода -- человек;

»

-- пищевые продукты -- человек;

»

-- почва -- вода -- человек;

»

-- почва -- растение -- человек;

»

-- почва -- растение -- животное -- человек и т. д.

Чем длиннее миграционный путь при подземных путях миграции, тем меньшую опасность для здоровья человека представляет ксенобиотик, так как при продвижении химических веществ по экологическим цепям они подвергаются деструкции и превращениям.

Считается, что из ядов, регулярно попадающих в организм человека, около 70 % поступает с пищей, 20 % -- из воздуха и 10 % -- с водой.

В России примерно 30...40 % продукции загрязнено нежелательными ингредиентами. Загрязнено также до 70 % питьевой воды (т. е. примерно семь человек из десяти пьют загрязненную воду). Наряду с такими источниками загрязнения, как энергетика (особенно ТЭС), промышленность, транспорт, есть «критические точки», вызывающие загрязнение продукции и окружающей среды, и в агросфере. Проблему получения качественного продовольствия в условиях негативного антропогенного воздействия на окружающую природную среду, в том числе и в процессе сельскохозяйственного производства, можно решить на основе экологизации сложившихся или вновь создаваемых систем ведения сельского хозяйства.

Загрязнение продукции растениеводства и животноводства различными вредными веществами обусловлено множеством взаимосвязанных, идущих с различной интенсивностью процессов в сопряженных средах и компонентах экосистем. При этом во многих регионах не только возрастает прямое действие химических веществ, но и усложняется проявление этих воздействий.

Рыночная экономика способствовала широкому распространению многочисленных терминов типа «продукт экологически чистый», «свежий», «выращенный с использованием только органических удобрений», «выращенный без применения пестицидов» и т. д. Особенно много пишут и говорят об экологической чистоте продуктов питания. Продукты растительного и животного происхождения, предназначенные для продажи, рекламируются чаще всего как экологически чистые.

Производство высококачественной, экологически безвредной продукции растениеводства и животноводства -- одно из обязательных условий устойчивого развития общества. Необходимо принять законы, запрещающие коммерсантам называть товары экологически чистыми без достаточных на то оснований, так как этим могут прикрываться и маскироваться сомнительная чистота товара, его недоброкачественность и даже вредность.

Вольное обращение с терминологией в рекламных целях недопустимо и весьма опасно. Оно может привести к экологической катастрофе -- заболеваемости и даже смертности людей. Эндемии, обусловленные потреблением недоброкачественных продуктов питания, зарегистрированы во многих странах мира. Так, например, в Российской Федерации и странах СНГ зарегистрированы случаи массовых отравлений людей при потреблении ими загрязненных пестицидами пищевых продуктов растительного и животного происхождения.

Наименование и характеристика пищевого продукта должны отвечать требованиям ГОСТ Р 51074--97, принятым и введенным в действие постановлением Госстандарта России от 17 июля 1997 г.

Для получения экологически безопасной продукции необходимо иметь достоверные исходные данные об эколого-токсикологической обстановке в агроэкосистемах, особенно испытывающих пресс многолетнего интенсивного использования агрохимикатов (удобрения, пестициды, мелиоранты и др.). Работу следует начинать с оценки эколого-токсикологического состояния агроэкосистем, прежде всего -- почвенного покрова. Стремление повысить продуктивность возделываемых культур и выращиваемых животных без надлежащего учета природоохранных требований привело к необоснованному увеличению объемов применения минеральных удобрений (преимущественно азотных), пестицидов и мелиорантов. Выбросы промышленных производств и транспорта, коммунальные отходы поставляют в естественные и искусственные экосистемы соединения полихлорированных бифенилов, серы, тяжелых металлов и т. д. Среди природных загрязнителей выделяют афло- и другие микотоксины.

Залог продвижения продукции на рынке - это доверие к продукции со стороны потребителя. Завоевать доверие не просто, но вполне возможно. Одной из способствующих этому процедур является сертификация продукции.

Сертификацию продукции необходимо проводить изготовителям, поставщикам, продавцам продукции для выпуска ее в обращение на территории РФ, а также для подтверждения ее безопасности и качества.

В соответствии с Федеральным законом от 27.12.2002 г. N 184-ФЗ "О техническом регулировании" предусмотрено две формы сертификации:

- обязательная сертификация,

- добровольная сертификация.

Необходимость обязательной сертификации определена соответствующими законодательными актами, действующими на территории Российской Федерации. Обязательная сертификация подтверждает соответствие продукции требованиям безопасности.

Добровольная сертификация осуществляется по инициативе заявителя на соответствие требованиям, указанным потребителем.

Сертификация продукции требует грамотного подхода и знания множества нормативных актов, оформления большого количества документов и контактов с различными инстанциями. Все процедуры связанные с сертификацией, весьма трудоемки и занимают достаточно длительное время. Однако, обратившись к профессионалам, можно упростить для себя порядок получения сертификата. Специалисты нашей компании оперативно помогут Вам выбрать приемлемую, с оптимальными затратами, схему работы по прохождению процедуры сертификации, в т.ч. для целей растамаживания ввозимой на территорию РФ продукции.

ООО "Чувашский ЦИС" аккредитован Федеральным Агентством по техническому регулированию и метрологии - в качестве Органа по сертификации продукции и услуг с внесением в единый Реестр органов по сертификации Системы сертификации ГОСТ Р.

7. Экологическая биотехнология. Биологические альтернативы пестицидам и минеральным удобрениям. Вермикультура

Осознание мировым сообществом пагубности традиционного неустойчивого пути развития и, как следствие, его стремление привести к равновесию экономические интересы и экологические императивы, равно как и оптимизировать нерациональный рост использования природных ресурсов в интересах настоящего и будущих поколений, способствовало появлению на свет выдающихся прогрессивных достижений и инноваций в различных областях науки и техники. При этом одной из наиболее перспективных и бурно развивающихся сегодня является, без сомнений, междисциплинарная биотехнологическая отрасль, ставшая величайшим триумфом человеческого разума и гармонично сочетающая в себе химические, биологические, инженерные и другие направления научной мысли.
Вместе с тем, одним из наиболее важных ответвлений, в контексте прикладного применения, является экологическая биотехнология (экобиотехнология), специализирующаяся на решении природоохранных задач, таких как, например: восстановление озёрных экосистем, очистка загрязнённых сред от нефти и её производных продуктов, мониторинг окружающей среды и т.д.

При этом в экобиотехнологии успешно применяются на практике следующие базовые методы:

- биологическая очистка сточных вод;

- биологическая очистка и дезодорация газов;

- восстановление поверхностного слоя и свойств почв;

- рециклирование и утилизация (переработка) органических отходов.

Действующим началом биопрепаратов являются бактерии и микроскопические грибы, обитающие в почве. Путем длительной селекции из их числа отбирают микроорганизмы, которые хорошо приживаются в ризосфере или на корнях растений и оказывают положительное действие на рост и развитие сельскохозяйственных культур. Для человека и животных такие микроорганизмы совершенно безопасны, а при внесении в почву могут существенно улучшить ее плодородие.

В течение многих лет крупнейшим разработчиком биопрепаратов является Всероссийский институт сельскохозяйственной микробиологии. Многие препараты, разработанные во ВНИИСХМ, успешно конкурируют на мировом рынке и вызывают большой интерес фирм из Германии, Франции, Щвеции, Китая, Вьетнама, Кореи, Индии, Ирана и др.

Одной из разработок коллектива лаборатории почвенной микологии ВНИИСХМ являются грибные биопрепараты, предназначенные для защиты растений от болезней, улучшения их минерального питания и стимуляции роста.

Биопрепарат Глиокладин был создан для защиты сельскохозяйственных растений от грибных болезней, прежде всего - от разнообразных корневых гнилей. Основой биопрепарата является микроскопический гриб глиокладиум, который при внесении в почву активно развивается между корнями растения. Его защитное действие проявляется за счет выделения антибиотиков и специфических ферментов, которые разрушают структуры грибов, являющихся возбудителями болезней. Глиокладин отлично показал себя при испытаниях под томаты, огурец, салат, перец сладкий, ячмень, пшеницу, - заболеваемость этих культур снижалась на 20-60%. Биопрепарат оказался незаменим для защиты астры, гвоздики и хризантемы в закрытом грунте, где очень высока гибель растений от корневых гнилей. Однако это еще не все - при испытаниях Глиокладина исследователей ожидал сюрприз. Оказалось, что биопрепарат обладает мощным стимулирующим действием на развитие растений. Это связано с тем, что микроорганизм, являющийся основой биопрепарата, выделяет вблизи корней большое количество ростовых веществ и витаминов, которые активно улучшают рост растений. Вне зависимости от защитного действия Глиокладина, прибавка урожая сельскохозяйственных культур в результате стимуляции составляет 15-25%. Самые же удивительные результаты были получены при использовании Глиокладина под подсолнечник: эта культура оказалась наиболее восприимчивой к стимулирующему действию биопрепарата. Прежде всего это сказывается на скорости появления всходов - при обработке Глиокладином дружные всходы формируются на 4-5 дней раньше. Внесение биопрепарата активно стимулирует развитие подсолнечника: в середине вегетации высота растений по сравнению с необработанными обычно увеличивается в полтора раза, а биомасса - вдвое. Глиокладин начинает оказывать защитное действие непосредственно с момента посева, т. к. при нанесении на семена подавляет семенные инфекции, а в дальнейшем, развиваясь в почве, предохраняет и от почвообитающих возбудителей болезней. Стимулирующее и защитное действие Глиокладина обеспечивает прибавку урожая подсолнечника от 30 до 60%. Особо следует подчеркнуть, что Глиокладин пока является единственным препаратом, который эффективно защищает подсолнечник от фомопсиса.

Другой препарат - Микофил - создан на основе почвообитающего эндомикоризного гриба, который проникает в корень и образует с растением симбиоз. Микофил, прежде всего, обеспечивает питание растений фосфором. Как это происходит? При внесении в почву минеральных фосфорных удобрений растения поглощают только 20-25% вносимого фосфора. Остальной фосфор частично вымывается, а большая его часть переходит в нерастворимую форму, которая недоступна растениям. В итоге складывается пародоксальная ситуация: в почве накапливается фосфор, приводя к загрязнению грунтов и акваторий, и в то же время растения испытывают фосфорное голодание, т. к. неспособны этот фосфор усвоить. Микроорганизм, входящий в Микофил, обладает уникальным свойством - он способен поглощать фосфор как раз из этих недоступных растению соединений и транспортировать в корень. Таким образом, Микофил обеспечивает поступление в растения фосфора, который накопился в почве за многое годы использования минеральных удобрений и который лежит там мертвым капиталом. Применение Микофила заменяет внесение 80-150 кг фосфорных удобрений на гектар и гарантирует практически полное усвоение растениями поставляемого фосфора. У микроорганизма, лежащего в основе биопрепарата, есть еще одно полезное свойство - он регулирует водный и солевой обмен растений, с которыми образует симбиоз. В результате у растений существенно увеличивается устойчивость к засухе, а также к тепловому и солевому стрессам, что делает Микофил чрезвычайно привлекательным для использования в засушливых регионах. Этот биопрепарат можно применять как под овощные, так и под зерновые культуры, исключение составляют только крестоцветные, с которыми эндомикоризный гриб не образует симбиоз. Следует отметить, что способность Микофила снабжать растения микроэлементами и усиливать устойчивость к водным стрессам повышает приживаемость рассады и саженцев на 50-60%. При использовании биопрепарата прибавки урожая колеблются от 15 до 50% в зависимости от культуры. Применение Микофила под сорго стабильно обеспечивает увеличение урожая на 60-100%.

...

Подобные документы

  • Описания изменений в ДНК клетки, возникающих под действием ультрафиолета и рентгеновских лучей. Характеристика особенностей генных и хромосомных мутаций. Причины и передача цитоплазматических мутаций. Исследование мутаций в соматических клетках растений.

    презентация [62,2 K], добавлен 17.09.2015

  • Распространение плодов и семян. Почки и их типы. Происхождение и морфологическое строение цветка. Стерильные и фертильные его части, андроцей и гинецей. Видоизменения клеточной оболочки. Проводящие ткани и их функции. Строение корня однодольных растений.

    контрольная работа [31,3 K], добавлен 17.01.2011

  • Исследование молекулярно-цитологических основ мутационной изменчивости. Изучение разнообразия соматических и генеративных мутаций. Выявление причин возникновения мутаций. Значение мутаций в природе и жизни человека. Биологические и физические мутагены.

    презентация [19,1 M], добавлен 24.04.2016

  • История становления и современное состояние клеточной теории. Биосинтез белка. Формы полового и бесполого размножения, их биологическое значение. Жизненный цикл паразитов. Этапы происхождения жизни на Земле. Строение и виды хромосом. Норма реакции.

    курсовая работа [51,9 K], добавлен 19.05.2010

  • Характерные черты и признаки бесполого размножения организмов. Основные формы бесполого размножения и их особенности. Прямое и бинарное деление, шизогония и спорообразование, почкование и фрагментация, вегетативное и полиэмбриония, клонирование.

    презентация [3,0 M], добавлен 21.03.2012

  • Мутация - устойчивые и явные изменения генетического материала, выведенные в наследственные признаки. Морфологические, физиологические, биохимические свойства мутантных организмов. Факторы среды, вызывающие появление генных, хромосомных, геномных мутаций.

    курсовая работа [129,5 K], добавлен 07.02.2015

  • Сущность, особенности и формы бесполого размножения организмов. Сравнение соматических клеток с половыми. Понятие и сравнительный анализ спорообразования, размножения и оплодотворения. Особенности созревания и основные функции мужских и женских гамет.

    доклад [90,7 K], добавлен 09.12.2009

  • Рассмотрение основных функций тканей высших растений. Изучение места обитания, строения, питания и способов размножения водорослей, их роль в природе и в жизни человека. Ознакомление с разнообразием растений тундры и их адаптивными особенностями.

    контрольная работа [22,9 K], добавлен 26.10.2011

  • Размножение частями тела растения или низшего животного. Виды бесполого размножения. Деление клетки, митоз, почкование, спороношение и вегетативное размножение. Использование специальных органов растений. Значение бесполого размножения в растениеводстве.

    презентация [197,9 K], добавлен 14.12.2011

  • Способность размножаться как одна из основных способностей живых организмов, ее роль в жизнедеятельности, выживании организмов. Типы размножения, их характеристика, особенности. Преимущества полового размножения перед бесполым. Этапы развития организмов.

    реферат [2,0 M], добавлен 09.02.2009

  • Водоросли как представители фотоавтотрофных организмов нашей планеты, их происхождение и этапы развития. Способы и условия питания водорослей. Воспроизведение себе подобных у водорослей посредством вегетативного, бесполого и полового размножения.

    реферат [59,4 K], добавлен 18.03.2014

  • Изучение типов и строения простейших организмов – инфузорий. Отличительные черты инфузории туфельки, инфузории-стилохонии, инфузории трубач, инфузории балантидий. Характеристика бесполого и полового размножение, органов дыхания, движения, осморегуляции.

    реферат [20,1 K], добавлен 02.02.2010

  • Прослеживание эволюции от простейших поведенческих актов у животных к сексуальным отношениям человека. Исследования полового поведения у человекообразных обезьян. Моногамия и полигиния как социальный проект человека на определенном этапе эволюции.

    реферат [17,3 K], добавлен 13.12.2010

  • Биологические системы, организация живой природы. Цитология: строение ядра, деление клетки; молекулярная биология. Размножение и развитие организмов, общая и медицинская генетика, хромосомная теория наследственности; теория эволюции и антропогенез.

    курс лекций [301,1 K], добавлен 13.02.2012

  • Покровная, пучковая и основная ткани растений. Ткани и локальные структуры, выполняющее одинаковые структуры функции. Клеточное строение ассимиляционного участка листа. Внутреннее строение стебля. Отличие однодольных растений от двудольных растений.

    презентация [15,3 M], добавлен 27.03.2016

  • История возникновения генетики и ее основные функции. Исследование наследования и скрещивания. Изменчивость и проблема генных мутаций. Современные возможности науки: трансгенные организмы, клонирование, лечение и предупреждение наследственных болезней.

    реферат [55,6 K], добавлен 20.11.2012

  • Внутреннее строение мужских половых органов: предстательной железы, мошонки и полового члена. Строение внутренних половых органов женщины. Вены, несущие кровь от промежности. Функции органа слуха. Слуховые восприятия в процессе развития человека.

    реферат [518,0 K], добавлен 16.10.2013

  • Основы функционирования нейронов и глии. Нейрон как структурно-функциональная единица центральной нервной системы человека и общие принципы функционального объединения нейронов. Анатомическое и функциональное понятие о нервных центрах человека.

    учебное пособие [998,4 K], добавлен 13.11.2013

  • Органоиды клетки, строение и функции. Методы изучения наследственности человека. Значение цитологического, цитогенетического метода. Человеческие расы и видовое единство человечества. Критика расизма и социал-дарвинизма. Отряд блохи, особенности строения.

    контрольная работа [282,0 K], добавлен 19.05.2014

  • Необходимые условия размножения. Сроки полового созревания у различных видов животных. Элементы и функции полового аппарата самцов, периоды сперматогенеза. Схема яичника у самки и овулярный цикл. Особенности процессов оплодотворения, беременности и родов.

    презентация [286,8 K], добавлен 05.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.