Влияние света на живые организмы

Лечение желтухи у новорожденных. Фотопериодизм у животных. Свет как сигнальный управляющий энергетический фактор. Поведение растений в состоянии невесомости. Проведение исследования о влиянии различных концентраций ауксина на рост побегов у растений.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 25.01.2016
Размер файла 27,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

1. Теоретическая часть. Влияние света на организм человека, животных, растений

1.1 В объятиях солнца

Избирательность действия света

Биологический эффект зависит от длины волны электромагнитного излучения, включая ультрафиолетовый и видимый свет.

Граница солнечного света у поверхности Земли над уровнем моря определяется длиной волны 285 нм. Особенно важная роль в фильтрации солнечного излучения принадлежит слою атмосферного озона.

К фотобиологическим относятся процессы, начинающиеся с поглощения кванта света биологически важной молекулой и заканчиваются какой-либо физиологической реакцией (позитивной или негативной) на уровне организма. Ясно, что фотобиологический процесс инициирует только при условии поглощения кванта света подходящей молекулой - акцептором.

Например, бактерицидные эффекты возникают в результате поглощения света молекулами ДНК в клетках бактерий и последующих химических реакций, запасающих энергию квантов света. Следовательно, бактерицидные эффекты можно вызвать только тем светом, который поглощают молекулы ДНК. свет организм фотопериодизм

На этом основана избирательность действия света - важная черта фотобиологии, выгодно отличающая ее от радиобиологии.

Поглощение квантов рентгеновского или гамма-излучения осуществляется не молекулами, а атомами и не зависит от того, в состав каких молекул эти атомы входят, поэтому поглощение ионизирующего излучения происходит в основном теми элементами, которых в организме больше. А так как наш организм на 80% состоит из воды, то радиохимические процессы приводят преимущественно к появлению свободных радикалов воды, которые в дальнейшем повреждают белки, нуклеиновые кислоты и другие биомолекулы. Отсюда понятно, что ионизирующее излучение не может действовать избирательно.

1.2 Ультрафиолетовое излучение. Влияние на человека

Ультрафиолетовые лучи практически полностью поглощаются эпидермисом, едва проникая в кожу человека.

Эритема

Эритема зависит от интервала времени между окончанием облучения и проявлением покраснения. Дело в том, что фотохимические реакции, ответственные за возникновение эритемы, протекают в глубине эпидермиса. На пути ультрафиолетового света к молекулам лежит поверхностный роговой слой, состоящий из уплотненных мертвых клеток. Роговой слой из-за высокого в нем содержания белков и нуклеиновых кислот исполняет роль светофильтра.

Под действием ультрафиолетового света в эпидермисе происходит фотохимическое разрушение витамина Е, который является природным антиокси-дантом, защищающим клетки от процессов пероксидного окисления насыщенных липидов.

Загар

Ультрафиолетовое излучение, кроме эритемы, вызывает гиперпигментацию кожи - загар. Загар является замедленным процессом и начинает развиваться в коже через 3 суток после облучения, достигая максимума на 13-21 день и затем угасать за несколько месяцев. Ультрафиолетовое излучение запускает сложную цепь реакций биосинтеза меланина в специализированных клетках -меланоцитах. Появление меланина в коже является важной защитной реакцией организма.

В настоящее время установлены три механизма защитного действия меланина:

а) меланин служит оптическим экраном, поглощающим ультрафиолетовый свет, таким образом, он физически защищает клетки кожи от пагубного действия ультрафиолета.

б) Два химических механизма под действием ультрафиолета в коже образуют свободные радикалы, запускающие цепные реакции пероксидного окисления липидов. С одной стороны, меланин является перехватчиком свободных радикалов и за счет этого он обрывает цепные реакции окисления. С другой стороны, меланин способен связывать ионы двухвалентного железа. И железо утрачивает способность к окислению.

Практический смысл вышесказанного в следующем: попав весной на пляж, нельзя забывать, что кожа за зиму утратила меланиновую защиту, и не следует злоупотреблять пребыванием на солнце.

Ультрафиолетовый свет вызывает не только красивую пигментацию кожи, но и нежелательный эффект старения кожи. Последствием хронического облучения может стать рак кожи.

1.3 Видимый свет

а) Лечение желтухи у новорожденных

Синий свет используется в родильных домах для лечения желтухи у новорожденных. Это заболевание является следствием резкого повышения в организме концентрации биллирубина, придающего коже желтоватый оттенок. Если новорожденных детей освещать синим светом, то фотоизомерациябиллирубина происходит в кровеносных сосудах.

б) Фотопериодизм у животных

Вся жизнедеятельность животных периодична. Внешними факторами, регулирующими ритмы, являются суточные и годовые колебания интенсивности света, температуры, уровня шумов и другое. Однако периодичность освещения, соотношения длительности дня и ночи является важным синхронизатором суточных и годовых ритмов жизнедеятельности организмов.

в) Гормоны - водители фотопериодических ритмов

Биохимический механизм -изменение под действием света содержания в организме ряда гормонов. Важная роль эндокринной системы доказывается тремя группами фактов.

Во-первых, хирургическое удаление некоторых желез внутренней секреции снимает фотопериодические реакции.

Во-вторых, обнаружены зависимые от света процессы биосинтеза некоторых гормонов. В-третьих, экзогенное поведение животных вызывается светом.

г) Органы - рецепторы света при фотопериодической регуляции

Они существенно отличаются у разных животных. Так, у птиц - это средняя часть мозга. У рыб, амфибий, рептилий - эпифиз. Фоторецептор у рыб расположен в области гипоталамуса - гипофизарного тракта. У млекопитающих - глаза.

II. Самостоятельное исследование

Влияние света на развитие и рост растений

2.1 Свет как сигнальный управляющий энергетический фактор

а) Движение растущих органов растений

Особое значение в жизни растения имеет свет. Во-первых, он может вызвать одни движения и препятствовать другим, кроме того, солнечный свет это источник биологической энергии. Для понимания процессов, обусловленных внешним светом, я решил несколько ближе познакомиться с основными теоретическими положениями, проверяя их несложными исследованиями.

У живых существ самое заметное проявление в жизни - это движение. Это относится и к растениям. В растительном мире свойствами свободного передвижения обладают лишь низшие растения - одноклеточные водоросли. Но это не типично для остальных растений. Хочу отметить, что способность к быстрым движениям не является признаком высокой организации - это следствие способа питания. Растению нет необходимости гоняться за пищей, так как углекислый газ, минеральные соли, вода и свет есть повсюду в окружающей среде.

На первый взгляд кажется, что растение не способно к самостоятельному движению. Однако при внимательном наблюдении можно заметить, что оно обладает ясно выраженной подвижностью

У растения очень медленно движутся органы: листья, стебли, корни, цветы. Движутся они путем изгиба или скручивания. Движения органов растений многообразны. Я остановился на некоторых из них. Меня очень заинтересовало движение, связанное с ростом. Ростовые движения возникают под влиянием односторонних внешних факторов, их называют тропизмы

Термин этот пришел из греческого языка, в котором „тропо" означает поворот. В зависимости от характера раздражения (свет, сила тяжести, прикосновение, химикаты, вода, электрический ток, тепло, ранение) повороты, представляющие собой тропизмы, называют: фототропизмы, геотропизмы, хемо-тропизмы, гидротропизмы, термотропизмы, тигмотропизмы, травмотропизмы. Характер ответной реакции может быть разным. Те органы, которые поворачиваются к источнику раздражения, оказываются положительно тропичными, а в противном случае - отрицательно тропичными.

В основе тропизмов лежат, как правило, процессы роста. Поэтому к движениям способны лишь растущие органы и их части.

б) Фототропизм

Среди факторов вызывающих проявление тропизмов, свет был, бесспорно, первым, на действие которого человек обратил внимание. Греческий философ Теофраст, которого считают основоположником научной ботаники, упоминал, что все листья обращены своими верхними сторонами к свету (286 г. до н. э.). Римский ученый Варрон (27 г. до н. э.) отмечал, что цветки некоторых растений с утра обращены в сторону восходящего солнца. Фототропные реакции растений можно наблюдать в природе и у комнатных растений. Комнатные растения особенно часто реагируют на одностороннее освещение ростовыми движениями - характерным положением стебля и листьев.

Методика проведения исследования-

Для исследования я взял растение Колеус.

Все листовые пластинки были обращены к окну, к свету. Я развернул это растение на 90°. На следующий день уже было заметно движение листьев, через 15 дней появился изгиб стеблей в сторону света к окну. (См. приложение рис. 1,2,3).

Особенно ясно, что вызываемые светом движения можно наблюдать у молодых проростков пшеницы, если их прикрыть картонной коробкой с небольшим отверстием в одной из стенок.

Через 4 дня все проростки резко согнулись по направлению к падающему на них через это отверстие свету. Я повернул чашку с проростками так, чтобы они оказались обращенными от света, и увидел через 3 дня, что проростки согнулись в обратную сторону, но опять-таки направленному к свету. (См. приложение рис.4,5,6).

Знакомство ботаников с явлением фототропизма привело к новым открытиям. Были открыты новые вещества, названные фотогормонами, или ростовыми веществами.

Опыты Дарвина с канареечной травой подтвердили мысль о том, что в основе фототропизма лежит распространение вдоль проростка некоторого вещества, содержащегося в его верхушке. Верхушка проростка поставляет некое химическое вещество, и его перемещение определяет изгиб при одностороннем освещении. Академик Н.Г. Холодный и голландский ученый Ф. Вент в 1928 году дали объяснение изгибам проростков. Они создали гормональную теорию

тропизма, суть ее в следующем: под влиянием одностороннего освещения гормон смещается на затемненную сторону проростка. Повышение его концентрации вызывает усиление роста, и проросток изгибается по направлению к свету. Доктор Ф. Вент обнаружил этот гормон в верхушках колеоптилий овса. Это основной гормон роста - ауксин.

Результаты исследования

По углу искривления судят о концентрации гормона. Чем больше угол, тем больше гормона ауксина в этих клетках. (См. приложение рис.7)

в) Геотропизм

После того, как мы рассмотрели многообразие влияний света на растения, обратимся теперь к тому источнику раздражения, который мы не можем ни увидеть, ни услышать, ни понюхать, ни попробовать на вкус, ни потрогать, но все-таки чувствуем его. Сила его воздействия на земле повсюду одинакова. Наряду со светом он представляет основной фактор, определяющий положение растений в пространстве. Речь идет о способности всех растений воспринимать земное притяжение и реагировать на него. Это называют геотропизмом.

Геотропизм - это такое движение, при котором корни и стебли располагаются по прямой, направленной к центру земли при условии равномерного питания и освещения.

Растение всегда строго определенным образом расположено в пространстве. Корни его идут вниз, в землю, а стебли поднимаются вверх и раскидывают свои листья, подставляя их солнечным лучам. Кому не приходилось наблюдать, как поднимаются вверх стволы вековых сосен и елей, как прямо вверх выносят свои колосья хлебные злаки, как ровно стоят стебли подсолнечника или кукурузы.

Семена растений падают на землю в различных положениях, строго вертикальное положение стеблей достигается не тем, как ляжет семя при своем падении на землю, а направленными движениями вверх молодых растущих проростков. Эти движения обнаружить очень легко.

Методика проведения исследования-16

Я взял крупные семена гороха, намочил в воде и дал им наклюнуться, т.е. дождался того, чтобы корешок показался из кожуры и самые сильные поместил в стеклянную трубку. Чтобы прорастающие семена были во влажной среде, поместил трубку с семенами в чашку Петри, на дне которой была вода. И стал наблюдать за поведением молодого корешка и стебелька.

Через 5 дней вытянувшийся корешок и стебелек приняли горизонтальное положение.

Через 7 дней я увидел, что корешок проростка изогнулся вниз, а стебелек принял положение вверх.

Я повернул трубку и проросшее семя на 180°, чтобы корешок был направлен вверх, а стебелек вниз.

Через 7 дней было видно, что корешок и проросток опять изменили свое положение. Корешок проростка направлен вниз, а стебелек изогнулся вверх.

При этом растение приняло причудливую форму. Повернем еще раз - опять получим новые изгибы.

Методика проведения исследования-

Я проделал такое же исследование с более взрослыми растениями: Бегония и Катарантус.

Комнатные растения в горшке положили на бок. Через несколько дней побег согнулся, и его верхняя часть снова приняла вертикальное положение.

Результаты исследования

Проведенные исследования показывают, что изгибы корня и стебля -следствие одностороннего действия силы тяжести.

г) Поведение растений в состоянии невесомости В 1974 - 1975 годах на борту орбитальной станции „Салют-4" проводились эксперименты по изучению влияния факторов полета на прорастания семян и рост растений. Опыты с горохом показали, что начальная фаза роста проростков в космосе не отличается от земных. В дальнейшем рост проростков в условиях невесомости замедлялся, и они погибали на разных стадиях развития. Следовательно, сила тяжести - необходимый экологический фактор для роста и размножения растений.

Это способность всех растений воспринимать земное притяжение и реагировать на него.

Растения, в отличие от животных, не имеют нервной системы. Передача принятых раздражений у растений идет, не в виде пробегающего по нервам биотока, как происходит у животных, а в виде растекающегося из точки роста потока, особого вещества - ауксина.

д) Ростовые вещества растений

Изгибы стеблей совершаются следующим образом: пока стебель растет прямо, выделяемый ауксин из растущей верхушки спускается вниз по стеблю, равномерно распределяясь по всем его сторонам, которые растут с одинаковой скоростью. Но если стебель положить горизонтально, ауксин начнёт концентрироваться преимущественно на нижней стороне, которая станет расти быстрее и стебель изогнется к верху. Изгиб будет продолжаться до тех пор, пока верхушка не примет снова вертикальное положение, и ауксин окажется вновь равномерно расположенным по всем сторонам стебля.

Немецкий химик Ф. Кегель в 1932 году определил химическую природу растительного гормона - ауксина. Природный ауксин представляет собой индолил - 3 - уксусную кислоту сокращено ИУК. Индолилуксусная кислота образуется у всех высших растений. Ауксин образуется в быстрорастущих меристемах побегов, семяпочках, листьях. Количество ауксина в растениях ничтожно мало. Много ауксина находиться в созревших семенах злаков, особенно в кукурузе -- до 100 миллиграммов на 1 кг семян.

Несколько труднее оказалось решить другой вопрос: почему корень изгибается вниз, а не вверх. Ауксин в корне скапливается преимущественно на нижней стороне.

Но здесь сказывается замечательное свойство ауксина: он усиливает рост лишь до тех пор, пока его мало.

Различные органы растений не одинаково чувствительны к ауксину. Те его количества, которые усиливают рост стеблей, могут тормозить рост корней. Различная чувствительность корня и стебля к ауксину - вот в чем лежала разгадка их неодинакового поведения при горизонтальном положении проростка гороха. Эту разгадку принесли нам исследования ученого академика Н.Г. Холодного.

Способность растений изгибаться под влиянием одностороннего освещения также вызывается неравномерным ростом. Быстрее растет сторона проростка, удаленная от света, а задерживается в росте сторона, обращенная к свету. Такие различия в скорости роста также связаны с неравномерным распределением спускающегося по проростку ауксина. Под влиянием света поток ауксина отклоняется на слабо освещенную сторону и, усиливая рост, вызывает наклон всего проростка по направлению к свету.

е) Хемотропизм

Не только свет и сила тяжести, но и химические вещества тоже могут вызвать направленные ростовые движения. Раздражение вызывают растворенные и газообразные вещества. Если ответная реакция обнаруживается при повышении концентрации - говорят о положительном хемотропизме, а в противоположных случаях - об отрицательном. Корни проявляют положительный хемотропизм к фосфатам, двуокиси углерода и кислороду. Это помогает им находить богатые питательными веществами и хорошо проветриваемые почвы. Все хемотропные ответные реакции представляют собой ростовые движения.

ж) Гидротропизм

Если ростовые изгибы происходят под влиянием воды или уменьшения влажности воздуха, то говорят о гидротропизме. Движения в направлении более высокой влажности называют положительным гидротропизмом, а в противоположном - отрицательным.

Гидротропные ответные реакции экологически рациональны, так как вода оказывает влияние на жизнь растений всей нашей планеты.

з) Тигмотропизм

Тигмотропизм - это ответные направленные реакции растений, вызываемые раздражением от прикосновения. Восприятие раздражений, вероятно, связано с некоторой деформацией цитоплазмы.

к) Прочие тропизмы

Изменения положений органов растений могут быть вызваны электрическими, термическими и раневыми раздражениями. Эти тропизмы играют в природе подчинённую роль. Если растение изгибается в сторону источника тепла, то происходит положительная термотропная ответная реакция. Один из феноменов, давно уже привлекавший к себе внимание исследователей, - это возможность вызвать у растений направленные движения с помощью электрического тока. Однако сила используемого тока должна быть очень небольшой. У корней особенно восприимчивы к действию тока их кончики, а изгибаются корни при этом в направлении, поперечном движению тока, отклоняясь в сторону положительного электрода. Положительно электротропны также колеоптили овса.

Травматропные движения вызываются нанесением растению ран или других повреждающих раздражений. Корни, в общем, отрицательно, а колеоптилии положительно травматропны. Механической причиной (например, надрезанием или уколом) или какой-либо другой (химической или тепловой ожог и т.п.) вызвано раздражение - значения не имеет. В основе изгибов, появляющихся вследствие нанесения ранений, лежат изменения в направлении роста.

Размещено на Allbest.ru

...

Подобные документы

  • Сущность понятия "фотопериодизм". Нейтральные, длиннодневные, короткодневные растения. Свет и его роль в жизни растений. Экологические группы растений по отношению к свету. Адаптация растений к световому режиму. Локализация фотопериодических реакций.

    курсовая работа [25,9 K], добавлен 20.05.2011

  • Характеристика пеларгонии - рода многолетних травянистых растений и полукустарников, относящегося к семейству гераниевых. Правила ухода за геранью. Условия освещенности в различных помещениях. Проведение опыта по влиянию света на рост и развитие растений.

    контрольная работа [16,1 K], добавлен 03.12.2013

  • Влияние света на питание и испарение. Значение света для распределения растений. Сила света и направление световых лучей. Классификация растений по отношению к свету. Направление листьев и освещение. Различия в анатомическом строении.

    реферат [17,3 K], добавлен 21.01.2003

  • Влияние разных концентраций нитрата аммония на развитие проростков пшеницы. Накопление нитратов и нитритов в частях растений и в организмах животных, в том числе и человека. Различные отклонения от норм развития живых организмов, вызванные нитратами.

    научная работа [643,1 K], добавлен 18.01.2011

  • Физические свойства воды и почвы. Влияние света и влажности на живые организмы. Основные уровни действия абиотических факторов. Роль продолжительности и интенсивности воздействия света - фотопериода в регуляции активности живых организмов и их развития.

    презентация [2,8 M], добавлен 02.09.2014

  • Земные и космические факторы жизни растений. Солнечная радиация как основной источник света для растений. Фотосинтетически и физиологически активная радиация и ее значение. Влияние интенсивности освещения. Значение тепла и воздуха в жизни растений.

    презентация [2,0 M], добавлен 01.02.2014

  • Почва как среда обитания и основные эдафические факторы, оценка ее роли и значения в жизнедеятельности живых организмов. Распределение животных в почве, отношение растений к ней. Роль микроорганизмов, растений и животных в почвообразовательных процессах.

    курсовая работа [3,7 M], добавлен 04.02.2014

  • Методики исследований грибов, водорослей, лишайников, высших растений, беспозвоночных и позвоночных животных. Правила сбора растений и животных, сушки растений, умерщвления и фиксирования животных. Практические навыки проведения экскурсий в природе.

    отчет по практике [90,6 K], добавлен 04.06.2014

  • Исследование основных жизненных форм растений. Описание тела низших растений. Характеристика функций вегетативных и генеративных органов. Группы растительных тканей. Морфология и физиология корня. Видоизменения листа. Строение почек. Ветвление побегов.

    презентация [21,1 M], добавлен 18.11.2014

  • Клеточные основы роста растений. Рост тканей в зависимости от её специфичности. Процесс превращения эмбриональной клетки в специализированную (дифференциация). Основные части побега. Особенность роста листа однодольных растений. Морфогенез корня.

    курсовая работа [90,0 K], добавлен 23.04.2015

  • Вегетативное размножение - размножение растений при помощи вегетативных органов: ветвей, корней, побегов, листьев или их частей. Преимущества вегетативного размножения. Разные способы размножения растений, методы выращивания растений семенным способом.

    реферат [19,9 K], добавлен 07.06.2010

  • Создания и совершенствования сортов культурных растений и пород домашних животных, применение этих методов в растениеводстве (селекция растений) и животноводстве (селекция животных). Сорта растений и породы животных с нужными биологическими свойствами.

    презентация [598,9 K], добавлен 25.10.2011

  • Свет и его экологическое значение в жизни растений. Спектральный состав лучистой энергии солнца. Фотосинтетически активная радиация. Пигменты листа. Спектры поглощения. Световой режим леса. Индекс листовой поверхности. Понятие компенсационной точки.

    курсовая работа [1,2 M], добавлен 11.09.2012

  • Влияние перегрева растений на их функциональные особенности, виды опасностей. Связь между условиями местообитания растений и жароустойчивостью. Приспособления и адаптация растений к высоким температурам. Экологические группы растений по жароустойчивости.

    реферат [9,8 K], добавлен 23.04.2011

  • Метаморфоз (видоизменение, превращение, переход в другую форму развития) у животных и растений. Онтогенез растений, связанный со сменой выполняемых ими функций или условий функционирования. Регуляция метаморфоза у животных, его отличие от растений.

    презентация [1,1 M], добавлен 16.05.2011

  • Факторы среды, влияющие на рост и развитие растений. Основные этапы органогенеза. Физиологическая сущность покоя растений, методы повышения зимостойкости. Способы уменьшения предуборочного опадания плодов. Физиология накопления белков в зерне злаковых.

    контрольная работа [97,2 K], добавлен 05.09.2011

  • Экологические группы растений: гидатофиты, гидрофиты, гигрофиты, мезофиты и ксерофиты. Общая характеристика ультрафиолетового излучения и его роль в эволюции живого. Влияние УФ-радиации на содержание фотосинтетических пигментов. Понятие стресса растений.

    курсовая работа [43,1 K], добавлен 07.11.2015

  • Растительные гормоны (фитогормоны): ауксины, цитокинины, гиббереллины, брассиностероиды, абсцизины, этилен. Ауксин и плоды. Ауксин как гербицид. История изучения ауксинов. Биосинтез и деградация ауксинов. Физиологические проявления действия ауксинов.

    реферат [18,7 K], добавлен 28.09.2012

  • Пути передачи вирусов от одного растения к другому. Грибковые заболевание в виде белого мучнистого налета на листьях, побегах, бутонах растений. Лечение зараженных растений. Химическое протравливание, сбрызгивание, опыливание и другая обработка растений.

    презентация [6,0 M], добавлен 16.11.2014

  • Индивидуальное развитие организма от зиготы до естественной смерти. Процесс необратимого новообразования структурных элементов, сопровождающийся увеличением массы и размеров организма. Влияние экологических факторов на рост и формообразование растений.

    курсовая работа [96,0 K], добавлен 05.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.