Липиды и углеводы, их роль в организме человека

Определение понятия липидов, характеристика их функций в организме человека. Анализ химических, биологических и физических свойств жиров. Анализ роли углеводов в питании современного человека. Характеристика свободного окисления и его биологической роли.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 15.01.2017
Размер файла 73,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Понятие о простых липидах. Их роль в организме

Роль углеводов в питании современного человека

Свободное окисление и его биологическая роль. Микросомальное окисление

Использованная литература

Понятие о простых липидах. Их роль в организме

Липиды и их роль в организме. Жиры. Клеточные липиды. Фосфолипиды. Холестерин. Липиды организма человека -- это, главным образом, нейтральные сложные эфиры глицерина и высших жирных кислот -- триглицериды, фосфолипиды и стерины. Высшие жирные кислоты, входящие в состав сложных липидных молекул в виде углеводородных радикалов, бывают насыщенными и ненасыщенными, содержащими одну и более двойных связей. Липиды играют в организме энергетическую и пластическую роль. По сравнению с молекулами углеводов и белков молекула липидов является более энергоемкой. Поэтому при окислении липидов в организме образуется больше молекул АТФ и тепла. За счет окисления жиров обеспечивается около 50 % потребности в энергии взрослого организма. Запасы нейтральных жиров-триглицеридов в жировых депо человека в среднем составляют 10--20 % массы его тела. Из них около половины локализуется в подкожной жировой клетчатке. Кроме того, значительные запасы нейтрального жира откладываются в большом сальнике, околопочечной клетчатке, в области гениталий и между мышцами. Жиры, откладываясь в жировых депо, служат долгосрочным резервом питания организма. Нарушения обмена липидов у детей приводит к различным расстройствам. Особенно актуально нарушение обмена жиров в жаркое время года, что грозит психическими расстройствами. Жиры являются источником образования эндогенной воды. При окислении 100 г нейтрального жира в организме образуется около 107 г воды. Если в удовлетворении энергетических потребностей организма основную роль играют нейтральные молекулы жира (триглицериды), то пластическая функция липидов в организме осуществляется, главным образом, за счет фосфолипидов, холестерина, жирных кислот. Эти липидные молекулы являются структурными компонентами клеточных мембран (липопротеинов) и предшественниками синтеза стероидных гормонов, желчных кислот и простагландинов. Клеточные липиды В состав клеточных липидов входят фосфолипиды и холестерин, являющиеся необходимыми структурными компонентами поверхностной и внутриклеточных мембран. Триглицериды откладываются в клетках в виде жировых капель, формируя жировые депо. Последние являются не инертной массой, а активной динамической тканью, в которой запасенные жиры подвергаются постоянному расщеплению и ресинтезу. При действии на организм холода, в состоянии голода, при физической или психоэмоциональной нагрузке происходит интенсивное расщепление (липолиз) запасенных триглицеридов. Образующиеся при этом неэстерифицированные жирные кислоты используются в организме как энергодающие или как пластические вещества, необходимые для синтеза сложных липидных молекул. В условиях покоя после приема пищи происходят ресинтез и отложение нейтральных липидов в подкожной жировой клетчатке, брюшной полости, мышцах.

Обычно считают, что жиры в организме человека выполняют роль поставщиков энергии (калорий). Но это не совсем правильно. Конечно, значительная часть жиров расходуется в качестве энергетического материала. Причем, жир служит в организме источником энергии либо при непосредственном использовании, либо потенциально - в форме запасов в жировой ткани. Однако в определенной степени жиры являются пластическим материалом, так как входят в состав клеточных компонентов (в виде комплексов с белками - липопротеинов), в частности, мембран, т.е. являются незаменимым фактором питания. Кроме того, жир в организме обеспечивает теплоизоляцию, скапливаясь в подкожном слое и вокруг определенных органов. Кроме того, жиры действуют как пищевые растворители жирорастворимых витаминов и служат источником незаменимых полиненасыщенных жирных кислот (линоленовая, арахидоновая).

При длительном ограничении жиров в питании наблюдаются нарушения в физиологическом состоянии организма: нарушается деятельность центральной нервной системы, ослабляется иммунитет и сокращается продолжительность жизни. Однако избыточное потребление насыщенных жиров приводит к нарушению обмена холестерина, усилению свертывающих свойств крови, заболеваниям почек и печени, способствует развитию атеросклероза и ожирения со всеми вытекающими отсюда последствиями.

Определение липидов, приводимое в литературе - неоднозначно. Жиры (более правильный термин «липиды») - это органические соединения, растворимые в ряде органических растворителей и нерастворимые в воде. Основным компонентом жиров являются тригицериды и липоидные вещества, к которым относятся фосфолипиды, стерины, воски и др. В пищевой технологии используют термин «жир», под которым подразумевают сумму веществ, извлекаемых органическими растворителями. При практически полном извлечении жира из пищевых продуктов термин «жир» равнозначен термину «липиды».

Более предпочтительным представляется определение липидов, как природных производных жирных кислот и родственных им соединений, входящих в состав всех живых клеток и извлекаемых из организмов и тканей неполярными растворителями.

Согласно классификации Блора липиды делят на три группы:

- простые, 

- сложные,

- предшественники и производные липидов.

Простые липиды. Простыми липидами называют сложные эфиры жирных кислот с различными спиртами. К ним относятся, например, жиры и воски.

Жиры (триглицериды). Жиры (триглицериды) - сложные эфиры жирных кислот с глицерином. Если они находятся в жидком состоянии, их называют маслами. В состав триглицеридов входят глицерин (около 9%) и жирные кислоты с разной длиной углеводородной цепочки и степени насыщенности, от строения которой зависят свойства триглецеридов.

Животные и растительные жиры обладают различными физическими свойствами и составом. Животные жиры - это твердые вещества, в состав которых входит большое количество насыщенных жирных кислот, имеющих высокую температуру плавления. Растительные жиры, как правило, жидкие вещества, содержащие в основном ненасыщенные жирные кислоты, имеющие низкую температуру плавления. Источником растительных жиров являются в основном растительные масла (99,9% жира), орехи (53-65%), овсяные (6,1%) и гречневые (3,3%) крупы. Источником животных жиров - шпик свиной (90-92% жира), сливочное масло (72-82%), жирная свинина (49%), колбасы (20-40%), сметана (30%), сыры (15-30%).

Основным компонентом липидов являются жирные кислоты. Тригицериды природного происхождения содержат по крайней мере две различные жирные кислоты.

1-Пальмитоил-2,3-дистеароилгицерин

Химические, биологические и физические свойства жиров определяются входящими в его состав триглицеридом и, в первую очередь, длиной цепи, степенью насыщенности жирных кислот. В состав жиров входят в основном неразветвленные жирные кислоты, содержащие четное число атомов углерода (4-26) как насыщенные, так и моно- и полиненасыщенные кислоты.

Насыщенные жирные кислоты (пальмитиновая, стеариновая и др.) используются организмом в целом как энергетический материал. Пальмитиновая и стеариновая кислоты встречаются во всех животных и растительных жирах. Наибольшее количество насыщенных жирных кислот содержится в животных жирах: например, в говяжьем и свином жире - 25% пальмитиновой, соответственно 20% и 13% стеариновой кислот, в масле сливочном - 7% стеариновой, 25% пальмитиновой и 8% миристиновой кислот. Они могут частично синтезироваться в организме из углеводов (и даже из белков).

Ненасыщенные жирные кислоты различаются по степени «ненасыщенности». Мононенасыщенные жирные кислоты содержат одну ненасыщенную водородом связь между углеродными атомами, полиненасыщенные - несколько связей (2-6). К числу наиболее распространенных мононенасыщенных жирных кислот относится олеиновая кислота, которой много в оливковом масле (65%), маргаринах (43-47%), свином и говяжьем жире, сливочном масле и мясе гусей (11-16%).

Большинство жирных кислот, входящих в состав триглицеридов содержат 20 атомов углерода в молекуле. В молекулах олеиновой, линолевой, линоленовой 18 атомов углерода и они являются дегидропроизводными стеариновой кислоты, цис-изомерами.

Наиболее часто встречающиеся в триглицеридах насыщенные жирные кислоты: стеариновая (С17Н35СООН), пальмитиновая (С15Н31СООН), миристиновая (С13Н27СООН), арахиновая (С19Н39СООН), лауриновая (С11Н23СООН).

Особое значение имеют полиненасыщенные жирные кислоты, такие, как линолевая, линоленовая и арахидоновая, которые входят в состав клеточных мембран и других структурных элементов тканей и выполняют в организме ряд важный функций, в том числе обеспечивают нормальный рост и обмен веществ, эластичность сосудов и др. Большинство полиненасыщенных кислот не может синтезироваться в организме человека и поэтому эти кислоты являются незаменимыми, как являются незаменимыми некоторые аминокислоты и витамины. С другой стороны, эти кислоты, главным образом линолевая и арахидоновая, служат предшественниками гормоноподобных веществ - простогландинов, предотвращают отложение холестерина в стенках кровеносных сосудов (способствуют удалению его из организма), повышают эластичность стенок кровеносных сосудов. Следует отметить, что указанные функции выполняют только цис-изомеры ненасыщенных кислот.

Насыщенные жирные кислоты выполняют в основном энергетическую функцию в организме и их избыток в питании часто приводит к нарушению обмена жиров, повышению уровня холестерина в крови

Состав жиров, синтезируемых в различных частях одного и того же организма - разный. Так, у свиней внешние слои подкожного жира обладают большей ненасыщенностью, чем внутренние. Кислотный состав жиров человека близок к составу топленного говяжьего сала.

Воски. Воски - сложные эфиры жирных кислот с одноатомными спиртами. Воски - историческое название разных по составу и происхождению продуктов, преимущественно природных, которые по свойствам близки к пчелиному воску. Большинство природных восков содержит сложные эфиры одноосновных насыщенных карбоновых кислот нормального строения и стеринов с 12-46 атомами углерода в молекуле. Такие воски по химическим свойствам близки к жирам (триглицеридам), но омыляюются только в щелочной среде. Воски отличаются от жиров тем, что вместо глицерина в их состав входят стерины или высшие алифатические спирты с четным числом атомов углерода (16-36). Растительные воски также содержат парафиновые углеводороды.

Воски широко распространены в природе. В растениях они покрывают тонким слоем листья, стебли, плоды, предохраняя их от смачивания водой, высыхания, действия микроорганизмов. Содержание восков в зерне и плодах невелико. В оболочках семян подсолнечника содержится до 0,2% восков от массы оболочки, в семенах сои - 0,01%, риса - 0,05%.

Сложные липиды. Сложными липидами называют сложные эфиры жирных кислот со спиртами, дополнительно содержащие и другие группы.

Фосфолипиды. Важнейшими представителями сложных липидов являются фосфолипиды. Это - липиды, содержащие помимо жирных кислот и спирта остаток фосфорной кислоты. В их состав входят азотистые основания (чаще всего холин+OH - или этаноламин HO-CH2-CH2-NH2), остатки аминоксилот и другие компоненты. В зависимости от спирта, входящего в состав молекулы, фосфолипид относится либо к глицерофосфолипидам (в роли спирта выступает глицерин), либо к сфингофосфолипидам, в состав которого входит сфингозин. Молекулы фосфолипидов содержат неполярные гидрофобные уголеводородные радикалы - «хвосты» и полярную гидрофильную «головку» (остатки фосфорной кислоты и азотистого основания), что определяет способность фосфолипидов формировать биологические мембраны. Входя в состав клеточных оболочек, фосфолипиды играют существенную роль для их проницаемости и обмена веществ между клетками и внутриклеточным пространством.

Наиболее распространенная группа фосфолипидов - фосфоглицериды. В их состав входят глицерин, жирные кислоты, фосфорная кислота и аминоспирты (например, холин в лецетине, этаноламин в кефалине). Аминоспирт, входящий в состав фосфолипида, определяет биологическое действие фосфолипида. Так, например, лецитин представляет собой глицерид, этерифицированный двумя, обычно разными жирными кислотами (например, стеариновой и олеиновой) и соодержащий фосфохолиновую группировку, которая при омылении дает неорганический фосфат и четвертичное основание - холин.

Лецитин проявляет липотропное действие, т.е. способствует выведению холестерина из организма. Лецитин и холин препятствуют ожирению печени и эти препараты используют для профилактики заболеваний печени. Холин, кроме того, входит в состав нервной ткани, в частности в ткани головного мозга. Ацетилхолин играет важную роль в передаче нервных импульсов. В организме человека холин может образовываться из серина, но биосинтез холина ограничен и холин должен дополнительно поступать с пищей. Таким образом, холин, как и полиненасыщенные жирные кислоты и ряд аминокислот, является незаменимым пищевым веществом.

Фосфолипиды пищевых продуктов различаются по химическому составу и биологическому действию. Последнее, как уже говорилось, во многом зависит от природы входящего в их состав аминоспирта. В пищевых продуктах встречаются в основном лецитин, в состав которого входит холин - аминоспирт, а также кефалин, в состав которого входит этаноламин.

Фосфолипиды, содержащиеся в пищевых продуктах, способствуют лучшему усвоению жиров. Так, жир в молоке находится в тонкодисперсном состоянии в значительной степени благодаря фосфолипидам молока. Именно молочный жир считается одним из наиболее легко усваиваемых жиров. Наибольшее количество фосфолипидов содержится в яйце (3,4%), относительно много (0,3-0,9%) в зерне и бобовых и нерафинированных маслах. При хранении нерафинированного растительного масла фосфолипиды выпадают в осадок. При рафинировании растительных масел содержание фосфолипидов в них снижается до 0,2-0,3%. Считают, что оптимальное содержание фосфолипидов в пище должно быть 5-10 г в день.

Помимо фосфолипидов к сложным липидам относят г ликолипиды (гликосфинголипиды), содержащие жирную кислоту, сфингозин и углеводный компонент. Гликолипиды в заметных количествах присутствуют в растительных продуктах (липиды пшеницы, овса, кукурузы, подсолнечника) Содержатся они также в животных и микроорганизмах. Гликолипиды выполняют структурные функции, участвуют в построении мембран, им принадлежит важная роль в формировании клейковинных белков пшеницы, определяющих хлебопекарное достоинство муки. Сложными липидами являются также сульфолипиды, аминолипиды. К этой категории относят и липопротеины.

Предшественники и производные липидов. К этой группе относятся жирные кислоты, глицерин, стероиды и прочие спирты, альдегиды жирных кислот и кетоновые тела, углеводороды, жирорастворимые витамины и гормоны.

Стерины (стеролы). Стерины (стеролы) - алициклические природные спирты (одноатомные вторичные спирты ряда циклопентанопергидрофенантрена, содержащие гидрооксильную группу при атоме углерода в положении 3 и метильные группы при атомах С10 и С13), относящиеся к стероидам. Стерины - составная часть неомыляемой фракции животных и растительных липидов. Различают животные (зоостерины), растительные стерины (фитостерины) и стерины грибов (микостерины). Основной стерин высших животных - холестерин, а растительный - b-ситостерин. Холестерин обнаружен в тканях всех животных и отсутствует, или присутствует в незначительном количестве, в растениях. Фитостерины, в отличие от холестерина, не усваиваются организмом.

Стерины, наряду с липидами и фосфолипидами, являются основным структурным компонентом клеточных мембран. Предполагают, что они влияют на клеточный метаболизм. Свои функции в организме стерины реализуют в виде комплексов с белками (липопротеидов) и сложных эфиров высших жирных кислот, являясь переносчиками их во все органы и ткани через систему кровотока. Холестерин участвует также в обмене желчных кислот и гормонов. До 80% холестерина в организме человека синтезируется в печени и других тканях. Содержание холестерина в яйцах достигает 0,57%, а в сырах - 0,28-1,61%. В сливочном масле содержится порядка 0,20%, а в мясе - 0,06-0,10%. Считается, что суточное потребление холестерина с пищей не должно превышать 0,5 г. В противном случае повышается уровень его содержания в крови, а значит, возрастает и опасность возникновения и развития атеросклероза.

Значение липидов. При рассмотрении групп липидов упоминались их разнообразные функции в организме. Обобщая выше изложенное, можно выделить следующие функции липидов в живом организме.

Липиды, входя в состав стенок клеток, выполняют в организме пластическую функцию и называются структурными. Они входят в состав мембраны клеток и участвуют в разнообразных процессах, происходящих в клетке.

Причем, как уже говорилось, липиды могут служить в организме источником энергии либо при непосредственном использовании, либо потенциально - в форме запасов в жировой ткани. В то время, как жировые отложения состоят главным образом из глицеридов, ткани головного мозга и спинного содержат сложные структурные единицы, построенные из белка, холестерина, а также из фосфолипидов, например, лецитинового типа.

Липиды, находящиеся в специальных «жировых» клетках, называют запасными и они состоят в основном из триглицеридов. Эти липиды являются аккумулятором химической энергии и используются при недостатке пищи. Липиды обладают высокой калорийностью: 1 г составляет 9 ккал - это в 2 раза выше калорийности белков и углеводов. Большинство всех видов растений также содержат запасные липиды, главным образом, в семенах. Липиды помогают растению переносить неблагоприятное воздействие внешней среды, например, низкие температуры, т.е. выполняют защитную функцию.

В растениях липиды накапливаются, главным образом, в семенах и плодах и их содержание зависит от сорта, места и условий произрастания. У животных и рыб липиды концентрируются в подкожных, мозговой и нервной тканях и тканях, окружающих важные органы (сердце, почки). Содержание липидов у животных определяется видом, составом корма, условиями содержания и др.

В состав пищевых продуктов входят так называемые «невидимые» жиры (в мясе, рыбе и молоке) и «видимые» - специально добавляемые в пищу растительные масла и животные жиры. В продуктах питания липиды

Роль углеводов в питании современного человека

Углеводы являются основной частью пищевого рациона. В организм их поступает в два раза больше, чем белков и жиров. Углеводы пищи - это полисахариды: крахмал, гликоген и сахара: моносахара - глюкоза, фруктоза, лактоза, сахароза и дисахариды. Кроме сахаров и крахмала к углеводам относится не усваиваемая клетчатка и пектин. При обычном смешанном питании за счет углеводов обеспечивается около 60 % суточной энергоценности, тогда как за счет белков и жиров вместе взятых - только 40 %. Углеводы в организме используются преимущественно как источник энергии для мышечной работы. Чем интенсивнее физическая нагрузка, тем больше требуется углеводов. При малоподвижном образе жизни, напротив, потребность в углеводах уменьшается.

Углеводы пищи - это полисахариды: крахмал, гликоген и сахара: моносахара - глюкоза, фруктоза, лактоза, сахароза и дисахариды. Кроме сахаров и крахмала к углеводам относится не усваиваемая клетчатка и пектин.

Углеводы содержатся в различных пищевых продуктах: крупы, бобовые, макароны, хлеб, овощи и так далее.

На протяжении жизни человек в среднем потребляет около 14 тонн углеводов, и том числе более 2,5 тонн простых углеводов.

Около 52-66 % углеводов потребляется с зерновыми продуктами, 14-26 % - с сахаром и сахаропродуктами, около 8-10% с клубне- и корнеплодами, 5-7 % с овощами, фруктами.

Углеводы -- органические соединения, состоящие из углерода, водорода и кислорода. Они синтезируются в растениях из воды и углекислого газа под действием солнечного света.

Значение углеводов в питании.

С пищей поступают простые и сложные, усвояемые и неусвояемые углеводы. Основными простыми углеводами являются глюкоза, галактоза и фруктоза (моносахариды), сахароза, лактоза и мальтоза (дисахариды). К сложным углеводам (полисахариды) относятся крахмал, гликоген, клетчатка, пектины, гемицеллюлоза.

Углеводы необходимы для нормального обмена белков и жиров в организме человека. В комплексе с белками они образуют некоторые гормоны и ферменты, секреты слюнных и других образующих слизь желез, а также другие важные соединения.

Особое значение имеют клетчатка, пектины, гемицеллюлоза, которые только частично перевариваются в кишечнике и являются незначительным источником энергии. Однако эти полисахариды составляют основу пищевых волокон и играют важную роль в питании. Содержатся углеводы в основном в продуктах растительного происхождения.

Глюкоза

Глюкоза -- главный поставщик энергии для мозга. Она содержится в плодах и ягодах и необходима для снабжения энергией и образования в печени гликогена.

Фруктоза

Фруктоза почти не требует для своего усвоения гормона инсулина, что позволяет рекомендовать ее источники при сахарном диабете, но в ограниченном количестве. Основными поставщиками сахарозы служат сахар, кондитерские изделия, варенье, мороженое, сладкие напитки, а также некоторые овощи и фрукты: свекла, морковь, абрикосы, персики, сладкая слива и другие. В кишечнике сахароза расщепляется на глюкозу и фруктозу.

Лактоза

Лактоза содержится в молочных продуктах. При врожденном или приобретенном (чаще всего в результате заболеваний кишечника) недостатке фермента лактозы в кишечнике нарушается распад лактозы на глюкозу и галактозу и возникает непереносимость молочных продуктов.

В кисломолочных продуктах лактозы меньше, чем в молоке, так как при сквашивании молока из лактозы образуется молочная кислота.

Мальтоза

Мальтоза (солодовый сахар) -- промежуточный продукт расщепления крахмала пищеварительными ферментами и ферментами проросшего зерна (солода). Образующаяся мальтоза распадается до глюкозы. В свободном виде мальтоза содержится в меде, экстракте из солода (патоке мальтозной), пиве. Крахмал

Крахмал составляет 80% и более от всех углеводов в питании человека. Его источниками являются мука, крупы, макаронные изделия, хлеб, бобовые и картофель. липид жир углевод окисление

Крахмал относительно медленно переваривается, расщепляясь до глюкозы. Легче и быстрее переваривается крахмал из риса и манной крупы, чем из пшена, гречневой, перловой и ячневой круп, из картофеля и хлеба.

Сложный углевод

Сложный углевод клетчатка не переваривается в организме человека, но стимулирует работу кишечника, создает условия для развития полезных бактерий. В продуктах питания она должна присутствовать обязательно (содержится в овощах, фруктах, пшеничных отрубях).

Пектины

Пектины стимулируют пищеварение и способствуют выведению вредных веществ. Особенно много их в яблоках, сливе, крыжовнике, клюкве.

Недостаток углеводов приводит к нарушению обмена жиров и белков, расходу белков пищи и тканевых белков. В крови накапливаются вредные продукты неполного окисления жирных кислот и некоторых аминокислот, кислотно-основное состояние организма сдвигается в кислую сторону. При сильном дефиците углеводов возникают слабость, сонливость, головокружение, головные боли, чувство голода, тошнота, потливость, дрожь в руках. Эти явления быстро проходят после приема сахара. При длительном ограничении углеводов в диете их количество все же не должно быть ниже 100 г.

Избыток углеводов может приводить к ожирению. Систематическое чрезмерное потребление сахара и других легкоусвояемых углеводов способствует проявлению скрытого сахарного диабета из-за перегрузки, а затем истощения клеток поджелудочной железы, вырабатывающих необходимый для усвоения глюкозы инсулин.

Но сам сахар и содержащие его продукты не вызывают сахарный диабет, а только могут быть факторами риска развития уже возникшего заболевания.

Свободное окисление и его биологическая роль

Кроме энергетического, в клетке протекает свободное окисление, Не сопряженное с синтезом,микросомальное (в гладком эндоплазматическом ретикулуме) и пероксимальное Основная роль свободного окисления- пластическая и антитоксическая: гидроксилирование углеводородных компонентов, в том числе ароматических; синтес стероидных гармонов и желчных кислот; обезвреживание токсинов и т.д. В свободном окислении участвуют особые флавиновые ферменты и цитохромы способные выполнить эти специфические функции. Свободнорадикальное перекисное окисление липидов в клетке протекает самопроизвольно и постоянно, затрагивая в первую первую очередь ненасыщенные жирные кислоты в составе мембранных фосфолипидов ; в результате получаются окисленные продукты, которые затем распадаются.

Перекисное окисление липидов (ПОЛ) малой интенсивности играет определенную роль, так как способствует обновлению компонентов клетки. Вместе с тем чрезмерная активация процессов ПОЛ привести к разрушению биомембран, нарушению жизненно важных процессов и гибели клетки. Перекисному окислению противостоит система антиоксидантов, включающая как низкомолекулярн низкомолекулярные вещества- «ловушки» свободных радикалов (витамины Е и А, глутатион,цистеин, аскорбиновая кислота и др.), так и ферменты (супероксиддисмутаза,пероксидаза и каталаза), превращающие свободные радиклы вещества, их генерирующие, в менее опасные соединения.

Окисление биологическое,совокупность реакций окисления, протекающих во всех живых клетках. Основная функция О. б. -- обеспечение организма энергией в доступной для использования форме. Реакции О. б. в клетках катализируют ферменты, объе-диняемые в класс оксидоредуктаз. О. б. в клетках связано с передачей т. н. восстанавливающих эквивалентов (ВЭ) -- атомов водорода или электронов -- от одного соединения -- донора, к другому -- акцептору. У аэробов -- большинства животных, растений и многих микроорганизмов -- конечным акцептором ВЭ служит кислород. Поставщиками ВЭ могут быть как органические, так и неорганические вещества (см. таблицу). Основной путь использования энергии, освобождающейся при О. б., -- накопление её в молекулах аденозинтрифосфорной кислоты (АТФ) и др. макроэргических соединений.О. б., со-провождающееся синтезом АТФ из аденозиндифосфорной кислоты (АДФ) и неорганического фосфата, происходит при гликолизе, окислении a-кетоглутаровой кислоты и при переносе ВЭ в цепи окислительных (дыхательных) ферментов, обычно называют окислительным фосфорилированием (см. схему). В процессе дыхания углеводы, жиры и белки подвергаются многоступенчатому окислению, которое приводит к вос-становлению основных поставщиков ВЭ для дыхательных флави-нов, никотинамидадениндинуклеотида (НАД), никотинамидаде-ниндинуклеотидфосфата (НАДФ) и липоевой кислоты. Восстановление этих соединений в значительной мере осуществляется в трикарбоновых кислот цикле, которым завершаются основные пути окислительного расщепления углеводов (оно начинается с гликолиза), жиров и аминокислот. Помимо цикла трикарбоновых кислот, некоторое количество восстановленных коферментов -- ФАД (флавинадениндинуклеотида) и НАД -- образуется при окислении жирных кислот, а также при окислительном дезаминировании глутаминовой кислоты (НАД) и в пентозофосфатном цикле (восстановленный НАДФ). Одновременно развивалось направление, где в основу классификации ферментов был положен тип реакции, подвергающейся каталитическому воздейсвию. Наряду с ферментами, ускоряющими реакции гидролиза (гидролазы), были изучены ферменты, участвующие в реакциях переноса атомов и атомных групп (феразы), в изомеризации (изомеразы), расщеплении (лиазы), различных синтезах (синтетазы) и т. д. Это направление в классификации ферментов оказалось наибо-лее плодотворным, так как объе-диняло ферменты в группы не по надуманным, формальным признакам, а по типу важнейших биохимических процессов, лежащих в основе жизнедеятельности любого организма. По этому принципу все ферменты делят на 6 классов.1. Оксидоредуктазы -- ускоряют реакции окисления -- восстановления. 2. Трансферазы -- ускоряют реакции переноса функциональных групп и молекулярных остатков. 3. Гидролазы -- ускоряют реакции гидролитического распада. 4. Лиазы -- ускоряют негидролитическое отщепление от субстратов определенных групп атомов с образованием двойной связи (или присоединяют группы атомов по двойной связи). 5. Изомеразы -- ускоряют пространственные или структурные перестройки в пределах одной молекулы. 6. Лигазы -- ускоряют реакции синтеза, сопряженные с распадом богатых энергией связей.

Микросомальное окисление

Микросомальное окисление осуществляется ферментными системами, локализованными преимущественно во фракциях микросом печени и надпочечников2. В отличие от митохондриального окисления, где ведущую роль, как было показано выше, играют реакции дегидрирования, а кислород является конечным акцептором электронов и используется лишь для образования воды, в процессах микросомального окисления активированный кислород непосредственно внедряется в окисляемое вещество. При этом функциональная роль митохондриального и микросомального окисления в клетке различна. Митохондриальное окисление -- механизм использования кислорода в биоэнергетических процессах. Микросомальное окисление -- механизм использования кислорода с «пластическими» целями.

Ферментные системы, локализованные в микросомной фракции и способные использовать молекулярный кислород для окисления специфических органических соединений, делятся на две группы: диоксигеназы и монооксигеназы. Диоксигеназы катализируют реакции, в которых в молекулу органического субстрата включаются оба атома молекулы кислорода. А + С)2 -А О г, Монооксигеназы (эту группу

ферментов называют также гидроксилазами, их содержание в тканях относительно велико) присоединяют к субстрату только один из двух атомов кислорода. Обычно поставщиком атомов водорода для восстановления второго атома кислорода до воды служит НАДФН2 (реже НАДН2). Например:

ЯН + + НАДФН2-э^ОН + Н20 + НАДФ +

1 Трансмембранные электрохимические потенциалы ионов могут служить источником энергии не только для синтеза АТФ, но и транспорта веществ, движения бактериальных клеток и других энергозависимых процессов.

2 Микросомы - морфологически замкнутые везикулы, в которые превращается эндоплаэ-матическая сеть при гомогенизации тканей. Следовательно, микросомную фракцию, выделяемую при дифференциальном центрифугировании гомогенатов, образуют преимущественно мембраны эндоплазматической сети и некоторые другие субклеточные структуры.

ФЛП -- флавопротеин, кофактором которого служит ФАД; Fe-белок -- белок, содержащий негемовое железо; RH -- субстрат окисления; Р450 - цитохром Р450.

Микросомальиая цепь ферментов, осуществляющая гидроксилирование, в значительной мере изучена. Она содержит: цитохром Р-450, восстановленный СО-комплекс которого имеет максимум поглощения при длине волны 450 нм; флавопротеин, кофер-ментом которого служит ФАД; белок (адренодоксин), содержащий негемовое железо.

Необходимо еще раз подчеркнуть, что основная роль этой цепи заключается в гид-роксилироващщ, а не в окислительном фосфорилировании. Поэтому флавопротеины и цитохромы, которые функционируют в микросомальной цепи окисления, резко отличаются от ферментов митохондриальной дыхательной цепи. В общей форме цепь переноса электронов в микросомах, при участии которой осуществляется гидроксилирование, представлена на рис. 8.5. Электроны НАДФН2, обладающие высоким энергетическим потенциалом, переносятся на флавопротеин этой цепи; затем они передаются на адренодоксин (белок, содержащий негемовое железо); последний переносит электроны на окисленную форму цитохрома Р-450; после чего восстановленная форма Р-450 активирует кислород. Считается, что цитохром Р-450 выполняет двоякую функцию. Во-первых, он связывает субстрат гидроксилирования, во-вторых, на нем происходит активация молекулярного кислорода.

К числу эндогенных субстратов микросомального окисления следует отнести стероидные гормоны и холестерин, а также, по-видимому, ненасыщенные жирные кислоты. В последнее время появились указания на возможную роль реакций микросомального окисления в биосинтезе простагландинов (см. главу 6). Велико значение микросомального окисления в метаболизме лекарственных средств и ряда токсичных соединений.

Иногда ошибочно считают, что монооксигеназная цепь микросом печени предназначена для окисления только ксенобиотиков. На самом же деле она служит универсальной биологической системой окисления неполярных соединений любого происхождения. Субстрат, окисляемый цитохромом Р-450, должен отвечать одному требованию -- быть неполярным, т. е. в данном случае проявляется специфичность не к структуре, а к физико-химическим свойствам субстрата.

В настоящее время известно свыше 7000 соединений, способных окисляться при участии монооксигеназной цепи. При этом гидроксилирование делает вещество более полярным. В результате то или иное потенциально токсичное соединение легче растворяется в водной среде, подвергается дальнейшим превращениям и выводится из организма. К сожалению, иногда бывает наоборот, например, монооксигеназная цепь, окисляя нетоксичный бензгшрен (содержащийся в табачном дыму, копченостях), приводит к образованию токсичного оксибензпирена, являющегося сильным канцерогеном.

Использованная литература

1. Med Univer. Com

2. Березов Т.Т., Коровкин Б.Ф. Биологическая химия 3е издание

3. Северин Е.С. 2е издание:- М.:ГЭОТАР-МЕД. 2004 с ил серия ХХI век

Размещено на Allbest.ru

...

Подобные документы

  • Классификация липидов по строению, физиологическому значению и способности к гидролизу. Основные карбоновые кислоты, входящие в состав природных масел и жиров. Схема вероятной структуры фосфолипидов. Функции основных классов липидов в организме человека.

    реферат [264,9 K], добавлен 14.01.2010

  • Понятие и классификация углеводов, основные функции в организме. Краткая характеристика эколого-биологической роли. Гликолипиды и гликопротеины как структурно-функциональные компоненты клетки. Наследственные нарушения обмена моносахаридов и дисахаридов.

    контрольная работа [415,8 K], добавлен 03.12.2014

  • Органические соединения в организме человека. Строение, функции и классификация белков. Нуклеиновые кислоты (полинуклеотиды), особенности строений и свойства РНК н ДНК. Углеводы в природе и организме человека. Липиды - жиры и жироподобные вещества.

    реферат [403,4 K], добавлен 06.09.2009

  • Метаболизм липидов в организме, его закономерности и особенности. Общность промежуточных продуктов. Взаимосвязь между обменами углеводов, липидов и белков. Центральная роль ацетил-КоА во взаимосвязи процессов обмена. Расщепление углеводов, его этапы.

    контрольная работа [26,8 K], добавлен 10.06.2015

  • Изучение значения обмена липидов в организме человека. Переваривание и всасывание липидов. Анализ роли желчных кислот. Гидролиз триглицеридов. Основные продукты расщепления жиров. Активация жирных кислот и их проникновение из цитоплазмы в митохондрии.

    презентация [11,9 M], добавлен 13.10.2013

  • Обмен белков, липидов и углеводов. Типы питания человека: всеядность, раздельное и низкоуглеводное питание, вегетарианство, сыроедение. Роль белков в обмене веществ. Недостаток жиров в организме. Изменения в организме в результате изменения типа питания.

    курсовая работа [33,5 K], добавлен 02.02.2014

  • Функции обмена веществ в организме: обеспечение органов и систем энергией, вырабатываемой при расщеплении пищевых веществ; превращение молекул пищевых продуктов в строительные блоки; образование нуклеиновых кислот, липидов, углеводов и других компонентов.

    реферат [28,0 K], добавлен 20.01.2009

  • Значение белков в организме человека. Характеристика углеводов как природных органических соединений, их виды. Пищевая ценность жиров. Классификация витаминов, их содержание в продуктах. Роль минеральных веществ в питании человека. Значение воды.

    реферат [26,6 K], добавлен 29.03.2010

  • Липиды - обширная группа природных органических соединений, включающая жиры и жироподобные вещества. Классификация, строение и синтез липидов в организме. Биологические функции: энергетическая, структурная, регуляторная, защитная. Липиды в диете человека.

    презентация [174,7 K], добавлен 15.09.2013

  • Обзор классификации, свойств и биологической роли витаминов, анализ их основных природных источников и антагонистов. Изучение липидов, процесса брожения и его типов. Характеристика физико-химических свойств белков и уровней организации белковых молекул.

    шпаргалка [53,8 K], добавлен 16.05.2010

  • Энергетическая, запасающая и опорно-строительная функции углеводов. Свойства моносахаридов как основного источника энергии в организме человека; глюкоза. Основные представители дисахаридов; сахароза. Полисахариды, образование крахмала, углеводный обмен.

    доклад [14,5 K], добавлен 30.04.2010

  • Роль и значение белков, жиров и углеводов для нормального протекания всех жизненно важных процессов. Состав, структура и ключевые свойства белков, жиров и углеводов, их важнейшие задачи и функции в организме. Основные источники данных пищевых веществ.

    презентация [322,6 K], добавлен 11.04.2013

  • Углеводы и их роль в животном организме. Всасывание и обмен углеводов в тканях. Роль жиров в животном организме. Регуляция углеводно-жирового обмена. Особенности углеводного обмена у жвачных. Взаимосвязь белкового, углеводного и жирового обмена.

    презентация [2,0 M], добавлен 07.02.2016

  • Характеристика структуры холестериновых молекул как важного компонента клеточной мембраны. Исследование механизмов регуляции обмена холестерина в организме человека. Анализ особенностей возникновения избытка липопротеидов низкой плотности в кровотоке.

    реферат [699,7 K], добавлен 17.06.2012

  • Человек как белковый организм. Особенности баланса азота при рациональном питании детей, последствия его нарушений. Изменения при недостатке или избытке белков в пище. Жиры как обязательный элемент сбалансированного рациона. Роль углеводов в организме.

    презентация [5,4 M], добавлен 11.10.2016

  • Состав минеральных веществ в организме взрослого человека. Основные функции минеральных веществ в организме: пластическая, участие в обменных процессах, поддержание осмотического давления в клетках, воздействие на иммунную систему и свертываемость крови.

    реферат [41,7 K], добавлен 21.11.2014

  • Результат расщепления и функции белков, жиров и углеводов. Состав белков и их содержание в пищевых продуктах. Механизмы регулирования белкового и жирового обмена. Роль углеводов в организме. Соотношение белков, жиров и углеводов в полноценном рационе.

    презентация [23,8 M], добавлен 28.11.2013

  • Классификация химических элементов в организме человека на макро-, микро- и ультрамикроэлементы: кальций, натрий, калий, железо, медь, цинк, кремний, селен, мышьяк, хлор, бром, фтор и йод. Обеспечение гомеостаза организма неорганическими соединениями.

    презентация [992,3 K], добавлен 16.01.2012

  • Специфические свойства, структура и основные функции, продукты распада жиров, белков и углеводов. Переваривание и всасывание жиров в организме. Расщепление сложных углеводов пищи. Параметры регулирования углеводного обмена. Роль печени в обмене веществ.

    курсовая работа [261,6 K], добавлен 12.11.2014

  • Биологическая роль воды в организме человека. Важные условия для многих биохимических и окислительно-восстановительных процессов, идущих в организме. Наиболее значимые моменты, связанные с потреблением воды. Повышенный гистаминовый фон в организме.

    презентация [688,5 K], добавлен 26.04.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.