Клеточное строение живых организмов

Вакуоли и сферосомы растительных клеток. Локализация рибосом в клетке. Рибосомы прокариот и эукариот. Размножение и превращения пластид. Уровни структурной организации хроматина. Регуляция клеточного цикла и митоза. Общая характеристика эпителиев.

Рубрика Биология и естествознание
Вид курсовая работа
Язык русский
Дата добавления 10.12.2017
Размер файла 201,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ

1. МЕМБРАННАЯ СИСТЕМА КЛЕТКИ

1.1 Плазмолемма

1.2 Плазматическая сеть

1.3 Пластинчатый комплекс

1.4 Лизосомы

1.5 Другие органоиды мембранной системы

1.5.1 Пероксисомы

1.5.2 Эндосомы

1.5.3 Секретоорные везикулы и гранулы

1.5.4 Вакуоли и сферосомы растительных клеток

2. РИБОСОМЫ

2.1 Локализация рибосом в клетке

2.2 Рибосомы прокариот и эукариот

2.3 Морфология рибосом

2.4 Химический состав рибосом

2.5 Белоксинтезирующая система

2.6 Биосинтез белка

3. ЦИТОСКЕЛЕТ

3.1 Микрофиламенты

3.2 Микротрубочки

3.3 Промежуточные филаменты

3.4 Микротрабекулярная сеть

4. МИТОХОНДРИИ И ПЛАСТИДЫ

4.1 Митохондрии

4.1.1 Ультраструктура митохондрий

4.1.2 Функции митохондрий

4.1.3 Размножение митохондрий

4.1.4 Гипотезы присхождения митохондрий

4.2 Пластиды

4.2.1 Хлоропласт

4.2.2 Геном хлоропластов

4.2.3 Размножение и превращения пластид

5. КЛЕТОЧНОЕ ЯДРО

5.1 Структура клеточного ядра

5.2 Хроматин

5.2.1 Свойства эукариотической ДНК

5.2.2 Белки хроматина

5.2.3 Уровни структурной организации хроматина

5.3 Ядрышко

6. ВКЛЮЧЕНИЯ

6.1 Экзогенные включения

6.2 Эндогенные включения

6.3 Вирусные включения

7. РАЗМНОЖЕНИЕ И ГИБЕЛЬ КЛЕТОК

7.1 Клеточный цикл и митоз

7.2 Регуляция клеточного цикла и митоза

7.3 Апоптоз

7.4 Мейоз

8. ЭПИТЕЛИАЛЬНЫЕ ТКАНИ

8.1 Общая характеристика эпителиев

8.2 Эпителий кишечника

8.3 Эпидермис

8.4 Железистый эпителий

9. ТКАНИ ВНУТРЕННЕЙ СРЕДЫ

9.1 Рыхлая волокнистая соединительная ткань

9.2 Плотные соединительные ткани

9.3 Специальные соединительные ткани

9.4 Хрящевая ткань

9.5 Костная ткань

9.6 Кровь

9.6.1 Форменные элементы крови

9.6.2 Гистогенез крови

10. МЫШЕЧНЫЕ ТКАНИ

10.1 Поперечно-полосатая мышечная ткань

10.2 Сердечная мышечная ткань

10.3 Гладкая мышечная ткань

10.4 Гистогенез мышечных тканей

11. НЕРВНАЯ ТКАНЬ

11.1 Клетки нервной ткани

11.2 Нервные волокна

11.3 Синапсы

11.4 Нервные окончания

ВВЕДЕНИЕ

Цитология - это биологическая наука, которая изучает строение, функции, индивидуальное развитие и эволюцию клеток. Термин “цитология” образован из двух греческих слов: китос - сосуд и логос - наука. Как самостоятельная наука цитология сформировалась к концу XIX в. В 1884 г. вышла книга французского ученого Жана Батиста Карнуа “Биология клетки”, в которой был обобщен накопленный к этому времени материал и дано обоснование трех основных задач микроскопического исследования живых организмов общей, сравнительной и специальной биологии клетки или цитологии. Эту дату и можно считать началом самостоятельного развития цитологии.

Как каждая самостоятельная наука, цитология имеет собственный предмет, методы и теоретическую основу. Предметом цитологии является клетка, основным методом исследований - микроскопия, а теоретической основой - клеточная теория. Поэтому на формирование цитологии наибольшее влияние оказали такие события, как изобретение микроскопа, открытие клетки и создание клеточной теории.

Первый микроскоп был сконструирован итальянским физиком Г. Галилеем в 1609 г. как модификация созданного им ранее телескопа. Он представлял собой длинную трубу с выпуклым объективом и вогнутым окуляром и дальнейшего распространения не получил. С помощью этого микроскопа Ф. Стеллучи в 1625 г. обнаружил фасеточное строение глаза пчелы, а Ф. Чези в 1628 г. изучал споры папоротника. Последующие модели микроскопов, которые изготавливали по схеме И. Кеплера, представляли собой настольные приборы с выпуклым объективом и окуляром. Одновременно с конца XVI в. стали широко использоваться так называемые “простые микроскопы”, состоявшие из одной двояковыпуклой линзы небольшого диаметра. Именно таким прибором пользовался открывший простейших голландец А. Левенгук (16321723).

Клетки растений были впервые описаны английским физиком Р. Гуком в книге “Микрография”, опубликованной в 1665 г. Изучая срезы пробки, сердцевины бузины и мякоти других растений, Р. Гук обнаружил, что все они состоят из однотипных структур - замкнутых пузырьков, которым он дал название cellula (ячейка). Он также вычислил, что в одном кубическом дюйме растительной ткани (1 дюйм=25,4 мм) содержится около 125 млн. клеток. Открытие клетки Р. Гуком стимулировало микроскопические исследования живых организмов. В 1671 г. вышли в свет работы итальянца М. Мальпиги “Анатомия растений” и англичанина Н. Грю “Начала анатомии растений”, которые были посвящены изучению микроскопического строения растений. Полагая, что органы растений состоят в основном из переплетенных волокон, Н. Грю ввел в цитологию понятие “ткань”.

Клеточная теория была изложена немецким ученым Т. Шванном в монографии “Микроскопические исследования”, которая была опубликована в 1839 г. В ней Т. Шванн обосновал принципы, заложившие теоретические основы цитологии:

Как растения, так и животные состоят из универсальных микроскопических структур - клеток.

Сходство растительной и животной клеток вытекает из общих принципов их строения и размножения.

Каждая клетка самостоятельна в своей жизнедеятельности.

Организм представляет собой совокупность большого числа клеток.

Понимание универсальности клеточного строения живых организмов явилось одним из главных факторов развития цитологии и других биологических наук.

1. МЕМБРАННАЯ СИСТЕМА КЛЕТКИ

Новые мембраны в клетке образуются только на основе существующих уже мембран. Поэтому все мембраны цитоплазмы связаны между собой в единую систему. В нее входят плазмолемма, плазматическая сеть, пластинчатый комплекс, эндосомы, лизосомы, пероксисомы и другие мембранные органоиды.

1.1 Плазмолемма

Плазмолемма (цитолемма, плазматическая мембрана) создает селективный барьер между клеткой и внешней средой. Уже в начале XIX в. было обнаружено набухание и сжатие клеток, погруженных в растворы различной ионной силы, что свидетельствовало о наличии на поверхности клетки полупроницаемой мембраны. В 30-е гг. XX в. было доказано, что она состоит из липидов и белков, причем липиды образуют в ней бимолекулярный слой. Плазмолемма непроницаема для макромолекул, поэтому белки цитоплазмы создают в клетке осмотическое давление, под действием которого вода непрерывно поступала бы в клетку, если бы вне клетки не поддерживалась уравновешивающая концентрация других веществ. Это равновесие создается, прежде всего, молекулярным насосом, который выкачивает из клетки ионы натрия и закачивает в клетку ионы калия. З счет разности концентраций ионов внутри и вне клетки плазмолемма приобретает потенциал до +85 мВ.

В электронном микроскопе плазмолемма выглядит как типичная биологическая мембрана, состоящая из двух электронноплотных слоев, между которыми находится электроннопрозрачный слой. Общая толщина всех трех слоев в плазмолемме составляет 12-14 нм. Однако надо отметить, что эта трехслойная структура является лишь основой плазмолеммы, поскольку к ней снаружи и изнутри примыкают слабоконтрастируемые молекулярные комплексы.

Плазмолемма обладает асимметрией, которая выражается в различиях состава липидов и белков наружной и внутренней частей. Асимметрия плазмолеммы проявляется у животных клеток, в частности, в том, что они имеют на своей внешней поверхности особый углеводный слой - гликокаликс. Он образован входящими в состав мембраны олигосахаридами и липидами в комплексе с белками. Гликокаликс присутствует у всех животных клеток, однако степень его развития может быть разной. В наибольшей степени он развит у всасывающих клеток кишечного эпителия. Гликокаликс этих клеток создает среду для пристеночного пищеварения, а также защищает плазмолемму от повреждений. Вирус гриппа содержит фермент нейраминидазу, который необходим для удаления одного из компонентов гликокаликса сиаловой кислоты, препятствующей прикреплению вирусных частиц к плазмолемме эпителиальных клеток. Гликокаликс обладает выраженными антигенными свойствами, что облегчает опознание клеток при их взаимодействии между собой.

С внутренней стороны плазмолемма связана с такими компонентами цитоскелета, как микротрубочки и микрофиламенты. Это позволяет животной клетке не только поддерживать определенную форму, но и активно изменять ее. Взаимодействие плазмолеммы с цитоскелетом лежит в основе активного движения фибробластов и макрофагов, удлинения проходящих по капиллярам эритроцитов, изменения формы клетки при фагоцитозе и секреции.

Плазмолемма, отграничивая содержимое клетки от внешней среды, одновременно обеспечивает избирательный обмен веществ между клеткой и средой. Транспорт веществ через плазмолемму осуществляется при помощи различных механизмов.

Транспорт веществ через плазмолемму

Пассивный

Активный

Диффузия:

Насосы:

простая

натрий-калиевый

облегченная

протонный

кальциевый

транспортер глюкозы

Мембраноопосредованный:

Эндоцитоз

Экзоцитоз

Пассивный транспорт не требует затрат энергии. Путем простой диффузии через плазмолемму проходят молекулы кислорода, воды, углекислого газа и др. Он малоспецифичен и идет по градиенту концентрации соответствующего вещества. Облегченная диффузия обеспечивается каналами в плазмолемме и специальными белками-переносчиками - пермеазами.

Активный транспорт осуществляется с затратой энергии. Существуют две основные разновидности активного транспорта. Одна из них обеспечивается с помощью встроенных в плазмолемму молекулярных насосов, которые обладают высокой специфичностью, транспортируя только определенные виды молекул. К ним относятся натрий-калиевый, протонный и кальциевый насосы, а также транспортер глюкозы. Вторая разновидность активного транспорта связана с пространственными преобразованиями плазмолеммы и включает эндоцитоз, обеспечивающий транспорт макромолекул в клетку, и экзоцитоз, который осуществляет выведение веществ из клетки. Процессы эндоцитоза и экзоцитоза сбалансированы таким образом, что площадь поверхности плазмолеммы обычно остается постоянной.

Важная роль в клетке принадлежит встроенным в плазмолемму белкам-рецепторам. Их центры связывания располагаются на поверхности плазмолеммы, обеспечивая восприятие лигандов молекулярных сигналов, посылаемых другими клетками. Связывание лиганда рецептором осуществляется обратимо на основе их пространственной комплементарности в соответствии с законом действующих масс. Все это определяет высокую чувствительность и избирательность межклеточных коммуникаций.

Рецепторы часто сопряжены с насосами, регулируя их активность. Например, пептидный гормон инсулин через специфический к нему рецептор регулирует активность транспортера глюкозы. Рецепторы образуют также комплексы с расположенными на цитоплазматической стороне плазмолеммы протеинкиназами - ферментами, которые фосфорилируют специфические белки и регулируют тем самым метаболизм в клетке. Многие из них через G-белки связаны с аденилатциклазой ферментом, который активирует такие вторичные посредники как циклический АМФ и кальций. Увеличение концентрации вторичных посредников в цитоплазме, в свою очередь, приводит к активации клеток. Например, при повышении уровня циклического АМФ содержащиеся в крови нейтрофильные гранулоциты приобретают способность прикрепляться к стенкам сосудов и атаковать проникшие в организм бактерии.

В плазмолемму встроены особые трансмембранные белки - интегрины. Они участвуют в распознавании клеток друг другом, а также обеспечивают их взаимодействие с компонентами межклеточного вещества при формировании тканевых структур.

Таким образом, плазмолемма выполняет в клетке ряд функций. Наиболее важными из них являются:

межмембранный транспорт молекул и надмолекулярных комплексов;

межклеточные коммуникации;

распознавание других клеток и образование клеточных комплексов;

поддержание размеров и формы клетки, а также ее активное передвижение;

распознавание компонентов межклеточного вещества и прикрепление к ним;

1.2 Плазматическая сеть

При исследовании эукариотической клетки с помощью электронного микроскопа в ее цитоплазме обнаруживаются канальцы и уплощенные цистерны, стенки которых образованы мембраной толщиной около 7 нм. В клетках, специализирующихся на синтезе большого количества белков или липидов, канальцы и цистерны особенно многочисленны и формируют сложную трехмерную сеть. Вот почему этот мембранный органоид получил наименование плазматическая сеть (эндоплазматический ретикулум). Мембраны плазматической сети разграничивают цитоплазму на два различных объема гиалоплазму, которая находится снаружи от цистерн и канальцев, и межмембранное пространство.

Плазматическая сеть (ПС) выполняет ряд важных функций в клетке. Прежде всего, она является местом обновления мембран клетки, поскольку в ней синтезируются и встраиваются в существующие мембраны специфические для них белки и липиды (1). Мембраны ПС разграничивают пространство цитоплазмы, формируя трехмерные поверхности сложной формы (2). Эта функция ПС (компартментализация) обеспечивает пространственную организацию метаболизма в клетке. Внутри канальцев ПС осуществляется транспорт и накопление вновь синтезированных веществ, которые необходимы для клетки, а также детоксикация метаболитов (3). На мембранах ПС происходит также синтез веществ, которые выводятся из клетки для нужд всего организма (4).

Различают две разновидности ПС - гладкую и гранулярную (шероховатую). Несмотря на структурно-функциональные различия, мембраны одной разновидности ПС могут непосредственно переходить в мембраны другой.

Гладкая ПС состоит из переплетающихся канальцев и везикул небольшого диаметра. Она специализируется в основном на синтезе, транспорте и накоплении липидов. Гладкая ПС хорошо развита в клетках коры надпочечников, где участвует в синтезе стероидных гормонов, в клетках печени, обеспечивая детоксикацию метаболитов, в секреторных клетках растений. Особенно сильно гладкая ПС развита в мышечных волокнах скелетной мускулатуры, где она формирует L-систему, которая концентрирует ионы кальция с помощью встроенных в мембраны кальциевых насосов.

Гранулярная ПС отличается от гладкой тем, что на ее внешней поверхности, обращенной к гиалоплазме, находятся рибосомы. Она специализируется на синтезе, транспорте и посттрансляционной модификации белков.

В отличие от свободных рибосом и полисом, синтезирующих водорастворимые белки гиалоплазмы, входящие в состав гранулярной ПС рибосомы синтезируют или мембранные белки, или секреторные белки, выводимые из клетки. Прикрепление рибосом к мембране ПС обеспечивается специальными внутримембранными гликопротеидами - рибофоринами. Рибосомы прикрепляются к мембране большой субъединицей. При этом они ориентируются так, что ось, которая соединяет большую и малую субъединицы, проходит почти параллельно поверхности мембраны. Рибосома как бы лежит на боку, под небольшим углом к мембране ПС.

В самом начале синтеза мембранных и секреторных белков рибосомы не связаны с мембраной. В отличие от водорастворимых белков, синтезирующихся в гиалоплазме, мембранные и секреторные белки содержат на N-конце сигнальную последовательность из 15-30 аминокислотных остатков. Сигнальная последовательность захватывается небольшой рибонуклеопротеидной частицей, состоящей из РНК длиной 300 пар нуклеотидов и шести белков (сигнал узнающая частица, или SRP). После захвата N-конца синтез полипептида временно останавливается. Входящий в состав мембраны “причальный белок” связывает SRP, обеспечивая посадку рибосомы и погружение сигнальной последовательности в липидную фазу мембраны. После посадки рибосомы трансляция возобновляется, и полипептид появляется на внутренней стороне мембраны. Специальная пептидаза отщепляет сигнальную последовательность, после чего полипептид приобретает нативную конформацию и встраивается в мембрану или транспортируется по канальцам ПС в платинчатый комплекс.

Гранулярная ПС хорошо развита в тех клетках, которые специализируются на синтезе и выделении большого количества белков. В таких случаях она формирует систему расположенных параллельно друг другу уплощенных цистерн, занимающую значительную часть цитоплазмы клетки. Примерами могут служить клетки печени, где на мембранах гранулярной ПС происходит синтез белков плазмы крови (альбуминов, фибриногена, глобулинов, белковых факторов свертывания крови), плазматические клетки - “фабрики антител”, экзокринные клетки поджелудочной железы, синтезирующие ферменты для полостного пищеварения. Наибольшей сложности гранулярная плазматическая сеть достигает в полиплоидных клетках беспозвоночных и простейших.

1.3 Пластинчатый комплекс

Пластинчатый комплекс (аппарат Гольджи) представляет собой специализированную часть мембранной системы клетки, которая выполняет интегративные функции по отношению к ПС и другим мембранным органоидам. Он состоит из диктиосом - стопок прилегающих друг к другу уплощенных цистерн, которые окружены одномембранными пузырьками различного размера и особой зоной гиалоплазмы. При наличии одной диктиосомы пластинчатый комплекс располагается всегда в определенном месте цитоплазмы около клеточного центра. Со стороны пластинчатого комплекса и клеточного центра в ядре обычно имеется инвагинация. В секреторных клетках животных, нейронах и некоторых растительных клетках пластинчатый комплекс может состоять из нескольких диктиосом.

Диктиосома содержит от 5 до 20 сильно уплощенных мембранных цистерн, связанных между собой по периферии сетью мембранных канальцев. Ее участок, состоящий из более тонких и коротких цистерн и обращенный внутрь цитоплазмы, называется проксимальным (ближним), а противоположный, представленный более мощными цистернами с расширениями на концах, называется дистальным (дальним). Проксимальный участок диктиосомы связан с мембранами ПС. Дистальный участок окружен множеством везикул. Зона гиалоплазмы вокруг диктиосомы содержит полирибосомы, которые синтезируют специфические для пластинчатого комплекса структурные белки и ферменты. Цитохимическим маркером мембранных структур пластинчатого комплекса являются гликозилтрансферазы.

Сетчатая форма пластинчатого комплекса представляет собой систему из нескольких диктиосом, которые связаны мембранными канальцами. Эта форма органоида характерна для нейронов, где он был впервые описан К. Гольджи под названием “внутренний сетчатый аппарат” (1898). Диффузная форма пластинчатого комплекса, которая отличается отсутствием связи между диктиосомами, встречается у растительных клеток.

Пластинчатый комплекс обеспечивает в клетке ряд важных процессов. В цистернах диктиосом происходит синтез полисахаридов и ковалентная сшивка их с молекулами белков, поступающих сюда из ПС. Поэтому пластинчатый комплекс хорошо развит в клетках, специализирующихся на синтезе и выделении полисахаридов и гликопротеидов - протеогликанов, ферментов, гормонов, антител, рецепторов и т. д.

Наряду с обеспечением анаболических процессов в секреторных клетках пластинчатый комплекс принимает участие и в катаболических процессах, являясь местом образования лизосом и пероксисом. Особенно хорошо эта функция выражена у макрофагов - клеток, которые специализируются на фагоцитозе. Макрофаги способны опознавать молекулярные продукты чужих геномов, разрезать их на пептиды и представлять для более точного распознавания другим клеткам иммунной системы. Тем самым они запускают сложную цепь реакций, обеспечивающих защиту организма от бактериальной или вирусной инфекции. Макрофаги также способны утилизировать погибшие клетки своего организма.

Несмотря на своеобразие морфо-функциональной специализации пластинчатого комплекса в различных типах клеток, этот органоид выполняет ряд универсальных функций, которые связаны с процессингом и секрецией белков. Белки подвергаются первичной посттрансляционной модификации непосредственно после их синтеза рибосомами гранулярной ПС. Например, к лизосомальным гидролазам присоединяются олигосахаридные цепи, состоящие из N-ацетилгликозамина, маннозы и глюкозы. Затем модифицированные белки транспортируются по канальцам ПС в цистерны проксимального участка пластинчатого комплекса. В клетках экзокринной части поджелудочной железы и бокаловидных клетках кишечника новые молекулы появляются в диктиосоме через 30 мин после начала синтеза белка. По мере продвижения белков от проксимального конца диктиосомы к дистальному концу с помощью специальных ферментов происходит их вторичная модификация - отщепление глюкозы и части молекул маннозы и дополнительное гликозилирование, фосфорилирование и сульфатирование. При этом характер модификации различен для лизосомальных гидролаз, белков секреторных гранул и гликопротеидов плазмолеммы. Например, к олигосахаридам секреторных гликопротеидов присоединяются галактоза и сиаловая кислота, тогда как олигосахариды лизосомальных гидролаз фосфорилируются.

В дистальном участке диктиосомы осуществляется пространственная сегрегация белков. Молекулярный механизм сегрегации основан на специфическом узнавании прикрепленных к белкам олигосахаридов встроенными в мембрану рецепторами. Опознание белков по олигосахаридным меткам происходит внутри цистерн диктиосомы. После накопления белка участки мембран отпочковываются, превращаясь в опушенные везикулы. Судьба содержащих белок опушенных везикул может быть различной. В случае лизосомальных белков опушенные везикулы теряют поверхностный белок клатрин и сливаются с эндосомами. Если же белок предназначен для выведения из клетки, возможны два сценария дальнейших событий. Первый из них, который характерен в основном для экзокринных желез, состоит в том, что опушенные везикулы сливаются между собой, формируя все более крупные вакуоли. По мере укрупнения вакуоли сдвигаются к плазматической мембране, сливаются с ней и выводят из клетки содержимое. Второй сценарий связан с формированием секреторных гранул и часто наблюдается в клетках эндокринных желез. В этом случае переносимые опушенными везикулами секреторные белки концентрируются в вакуолях, которые постепенно превращаются в плотные секреторные гранулы. У многих клеток наблюдается специфичность размеров и формы секреторных гранул.

Опушенные везикулы могут также транспортировать гликопротеиды от пластинчатого комплекса к плазмолемме для их последующего экспонирования на поверхности клетки. Многие опушенные везикулы, которые встроились в мембраны эндосом или плазмолемму, могут в дальнейшем отщепляться и возвращаться в пластинчатый комплекс. Тем самым обеспечивается рециклизация мембран и связанных с ними лиганд-рецепторных комплексов.

Пластинчатый комплекс может также специализироваться на синтезе полисахаридов. Например, в пластинчатом комплексе фибробластов синтезируются гликозаминогликаны полисахариды, образующие аморфный компонент межклеточного вещества соединительной ткани. Гликозаминогликаны составляют значительную часть муцинов слизистых веществ, секретируемых клетками животных и растений. Хорошо изученным примером таких клеток являются бокаловидные клетки кишечника. У растений в пластинчатом комплексе синтезируются гемицеллюлозы и пектины полисахариды, входящие в состав клеточной стенки.

1.4 Лизосомы

Лизосомы представляют собой пузырьки диаметром от 100 нм до нескольких микрометров, которые обнаруживаются в цитоплазме клеток простейших, растений и животных. Они содержат широкий набор гидролитических ферментов, способных расщеплять любые биогенные вещества - белки, нуклеиновые кислоты, углеводы и липиды. Состав и количество лизосомальных гидролаз обладает видовой и тканевой специфичностью. Морфологически лизосомы неоднородны и претерпевают различные изменения при слиянии с другими органоидами. Для идентификации лизосом используется реакция на кислую фосфатазу.

Если приготовить гомогенат клеток печени и определить в нем активность кислой фосфатазы, то она окажется низкой. При обработке гомогената ультразвуком либо повторяющимися циклами замораживания-оттаивания активность фермента резко повышается. Объясняется это тем, что при обработке гомогената нарушается целостность мембран, гидролазы выходят из лизосом и активируются. Следовательно, гидролазы находятся в лизосомах в неактивном, латентном состоянии. Изучение явления латентности гидролаз и привело бельгийскго биохимика К. де Дюва к открытию лизосом (1955).

Латентность лизосомальных гидролаз обусловлена рядом факторов. Прежде всего, она объясняется наличием мембраны, которая препятствует взаимодействию ферментов с субстратами. Часть гидролаз встроено в мембрану и блокировано за счет связи с липидами. Другая часть ферментов инактивирована углеводами мембраны и матрикса. Кроме того, внутренняя среда лизосомы сильно закислена, тогда как максимальная активность гидролаз проявляется в слабо кислой среде.

Лизосомальная мембрана способна удерживать в органоиде не только ферменты, но и макромолекулярные субстраты. Низкомолекулярные продукты распада (свободные аминокислоты, сахара, нуклеотиды) выходят из лизосомы в гиалоплазму с помощью встроенных в мембрану специальных транспортных белков.

Морфологически лизосомы подразделяют на четыре типа - первичные лизосомы, вторичные лизосомы, аутофагосомы и остаточные тельца.

Первичные лизосомы образуются в пластинчатом комплексе в виде одномембранных пузырьков с бесструктурным содержимым. Они служат для временного хранения и инактивации гидролаз. Первичные лизосомы способны перемещаться в цитоплазме с помощью микротрубочек, а также сливаться с эндосомами и плазмолеммой. Диаметр их составляет 100500 нм.

Вторичные лизосомы (фаголизосомы, пищеварительные вакуоли) образуются в результате слияния первичных лизосом с фагоцитарными или пиноцитозными вакуолями. При этом наблюдается активация лизосомальных гидролаз, распад поступивших в клетку веществ и выведение низкомолекулярных веществ в гиалоплазму для включения в метаболические процессы клетки. Морфологически вторичные лизосомы отличаются от первичных лизосом более крупными размерами и наличием фагоцитируемого материала.

Аутолизосомы морфологически почти идентичны вторичным лизосомам, отличаясь только тем, что содержат внутри митохондрии, пластиды, рибосомы, включения и другие органоиды клетки или их фрагменты. Поэтому они рассматриваются как специальные органоиды, обеспечивающие аутофагоцитоз. Это явление наблюдается в клетках растений и животных, например, при физиологической регенерации внутриклеточных структур и гидролизе запасных питательных веществ.

Остаточные тельца (телолизосомы) представляют собой лизосомы с уплотненным структурированным материалом. Они содержат меньше гидролаз и служат местом накопления липидов, пигментов и других продуктов метаболизма.

Лизосомы представляют особый тип мембранного органоида, который осуществляет в клетке процессы распада. В специализированных клетках лизосомы могут обеспечивать внутриклеточное пищеварение, защиту от микроорганизмов и их продуктов, реконструкцию клетки. При осуществлении этих функций лизосомы взаимодействуют с другими мембранными органоидами - ПС, пластинчатым комплексом, эндосомами, включениями и плазмолеммой.

Функция внутриклеточного пищеварения, которое осуществляется с помощью лизосом, особенно выражена у простейших и беспозвоночных. Пищеварительные клетки имеются, например, в кишечном эпителии у моллюсков и клещей. Они содержат стабильные пиноцитозные вакуоли, которые постоянно снабжаются лизосомальными ферментами.

Защитная роль клеток-фагоцитов была обнаружена И. И. Мечниковым у беспозвоночных еще в конце XIX в. У позвоночных он описал два типа фагоцитов: микрофаги и макрофаги. В цитоплазме микрофагов содержится большое количество упакованных в мембрану гранул, которые представляют собой не что иное, как разновидность первичных лизосом. При активации клетки из них выходят гидролазы, которые разрушают внеклеточные субстраты. Микрофаги также способны к ограниченному фагоцитозу бактериальных клеток. К микрофагам у млекопитающих относятся нейтрофильные гранулоциты крови, которые обеспечивают защиту организма от бактерий. Макрофаги отличаются крупными размерами, способностью к амебоидному движению и активному фагоцитозу. Они содержат интенсивно функционирующие вторичные лизосомы, которые, кроме полного разрушения поступающих извне веществ, участвуют также в частичном протеолизе белковых антигенов для их последующего представления другим иммунокомпетентным клеткам. У млекопитающих к макрофагам относятся моноциты крови, которые после выхода из капилляров превращаются в гистиоциты соединительной ткани, альвеолярные и перитонеальные макрофаги, остеокласты костной ткани, клетки Купфера в печени и другие формы тканевых макрофагов.

Реконструктивная функция лизосом широко распространена как у животных, так и у растений. Она заключается в ограниченной аутофагии цитоплазматических структур для регуляции обмена веществ, развития тканей и органов, а также в условиях недостатка энергии и питательных веществ. Примерами могут служить гидролиз запасных питательных веществ при прорастании семян, частичный протеолиз тироглобулина эпителиальными клетками щитовидной железы с образованием гормонов трийодтиронина и тироксина, разрушение межклеточных контактов при физиологической регенерации ороговевающего эпителия. Особенно отчетливо эта функция лизосом проявляется в разрушении ими цитоплазматических структур в условиях голодания (эндогенное питание).

Значение лизосом для нормального функционирования организма человека подчеркивается существованием “болезней накопления”, которые обусловлены мутациями, полностью или частично нарушающими работу лизосомальных гидролаз. В результате в лизосомах наблюдается избыточное накопление соответствующих субстратов, что приводит к изменению размеров, формы и тонкой структуры этого органоида. При болезни Уолмена, например, отсутствует кислая липаза, что приводит к накоплению в лизосомах эфиров холестерина и триглицеридов и формированию липидных включений. Болезнь Помпа связана с недостатком гликозидазы, что вызывает накопление гликогена. Особенно тяжелым заболеванием является псевдохерлерова дистрофия, при которой в фибробластах отсутствуют почти все лизосомальные ферменты, кроме протеаз. В результате блокируется обмен таких компонентов соединительных тканей как протеогликаны и сложные липиды.

1.5 Другие органоиды мембранной системы

Кроме плазматической сети, пластинчатого комплекса и лизосом к мембранной системе относятся и другие одномембранные органоиды - пероксисомы, эндосомы, секреторные везикулы и гранулы, а также характерные для растительных клеток вакуоли и сферосомы.

1.5.1 Пероксисомы

Пероксисомы (микротельца, глиоксисомы) представляют собой одномембранные вакуоли диаметром 3001500 нм. Они имеют гранулярный матрикс, в центре которого располагаются состоящие из фибриллярного материала псевдокристаллические структуры. Пероксисомы присутствуют в клетках простейших и специализированных клетках растений и животных. Особенно много пероксисом содержится в клетках печени, где они участвуют в метаболизме перекиси водорода. Пероксисомы печени локализованы вблизи ПС и содержат набор ферментов, участвующих в метаболизме перекиси водорода - каталазу, уратоксидазу и т. п. Пероксисомы растений и животных могут также содержать ферменты катаболизма пуринов и глиоксалатного цикла. У растений пероксисомы часто взаимодействуют с митохондриями и пластидами. Происхождение пероксисом и роль их в клетках изучены недостаточно. Обращают на себя внимание высокие темпы обновления этого органоида, механизм которого неизвестен.

1.5.2 Эндосомы

Эндосомы являются одномембранными органоидами, которые обеспечивают эндоцитоз транспорт биогенных макромолекул и их комплексов от плазматической мембраны внутрь клетки. Существуют три разновидности эндоцитоза фагоцитоз, пиноцитоз и специфический эндоцитоз, каждой из которых соответствует свой вариант эндосомы - фагосома, пиносома и опушенная везикула. Все эндосомы являются производными плазматической мембраны клетки и функционируют при эндоцитозе сходным образом.

Фагоцитоз рассматривают как поглощение клеткой твердых веществ, которые в дальнейшем транспортируются в цитоплазму фагосомой и после слияния ее с лизосомами распадаются в фаголизосомах (пищеварительных вакуолях, или фагосомах). Фагосомы наиболее крупные из эндосом, они достигают размеров нескольких микрометров.

Пиноцитоз состоит в захвате клеткой мелких капель воды с растворенными в ней веществами. Пиноцитоз обеспечивается пиносомой, она отличается от фагосомы меньшими размерами (0,30,6 мкм). Пиносома аналогично фагосоме переносит поглощенные вещества до встречи с лизосомой. Специфический эндоцитоз представляет собой поглощение клеткой молекулярных комплексов “лиганд-рецептор” и транспорт их в пластинчатый комплекс, другой участок плазматической мембраны или к лизосомам. Он обеспечивается особым типом эндосом - опушенными везикулами диаметром 20 нм. Их название отражает то, что с наружной стороны этих эндосом выступают равномерно встроенные в мембрану молекулы белка клатрина. Первичным местом образования опушенных везикул является пластинчатый комплекс. Последующее встраивание опушенных везикул в плазматическую мембрану приводит к формированию особых ее участков - окаймленных ямок. При этом слой клатрина оказывается на внутренней стороне плазмолеммы, а на ее внешней стороне экспонируются молекулы белков-рецепторов. Избирательное связывание ими специфических молекулярных сигналов лигандов, вызывает отщепление окаймленной ямки от плазмолеммы и вторичное образование опушенной везикулы, внутри которой будут находиться комплексы “лиганд-рецептор”.

1.5.3 Секреторные везикулы и гранулы

Этот тип одномембранных органоидов связан с экзоцитозом - синтезом и выделением веществ из клетки. Различают две разновидности экзоцитоза: секрецию и экскрецию. Под секрецией понимают выделение клеткой синтезированных ею продуктов - простых и сложных белков, липидов, углеводов, биогенных аминов и т. п. При экскреции из клетки во внешнюю среду выделяются продукты распада.

В секреции принимают участие многие компоненты мембранной системы клетки - ПС, пластинчатый комплекс, опушенные везикулы и др. Синтез секретируемых веществ осуществляется мембраннами ПС. Затем они транспортируются в пластинчатый комплекс, где подвергаются модификациям и концентрируются в везикулах, которые отщепляются от мембран диктиосомы. В зависимости от химической природы секретируемого вещества и способа его упаковки везикулы превращаются в секреторные вакуоли или гранулы. Размеры секреторных пузырьков варьируют в широких пределах: от 20 нм у клеток аденогипофиза, секретирующих тиротропный гормон, до 600 нм у бокаловидных клеток кишечника, секретирующих слизь.

1.5.4 Вакуоли и сферосомы растительных клеток

В растительных клетках имеются особые формы одномембранных органоидов, которые образуются из мембран ПС вакуоли и сферосомы.

Вакуоли могут занимать значительную часть цитоплазмы растительной клетки. У зрелых клеток отдельные вакуоли сливаются в одну большую центральную вакуоль. Мембрана, отделяющая вакуоль от гиалоплазмы, называется тонопластом. Вакуоли выполняют ряд важных для растительной клетки функций: поддерживают осмотическое давление, обеспечивают экскрецию метаболитов и накапливают запасные питательные вещества.

Сферосомы (микросомы) представляют собой одномембранные пузырьки, служащие в растительной клетке местом накопления липидов и белков.

2. РИБОСОМЫ

Рибосомы были обнаружены в цитоплазме животных клеток с помощью электронного микроскопа американским исследователем Г. Паладе (1955). В период с 1956 по 1958 гг. рибосомы были выделены из дрожжей, растений, животных и бактерий. Они оказались рибонуклеопротеидными частицами диаметром около 25 нм, содержащими основную массу цитоплазматической РНК. В 1958 г. на симпозиуме в Массачусетском технологическом институте Р. Робертс предложил назвать эти частицы “рибосомами”.

Первые данные о том, что рибосомы отвечают за включение аминокислот в новые белки, были получены в лаборатории П. Замечника (1955). К 1959 г. было окончательно доказано, что рибосомы обеспечивают биосинтез белка.

2.1 Локализация рибосом в клетке

Рибосомы локализуются в цитоплазме эукариотической клетки. В секреторных клетках значительная часть рибосом прикреплена к мембранам плазматической сети со стороны гиалоплазмы. Синтез белков для собственных потребностей клетки происходит на свободных, не связанных с мембранами рибосомах, которые рассеяны по гиалоплазме. Количество рибосом в клетке пропорционально ее метаболической активности, прежде всего уровню белкового синтеза.

Рибосомы образуются в ядрышке и поэтому их компоненты можно обнаружить в клеточном ядре. Однако в ядре клетки они еще не активны и там никогда не наблюдается биосинтез белка.

Кроме гиалоплазмы, рибосомы содержатся также в митохондриях и хлоропластах. Рибосомы этих органоидов, однако, имеют ряд структурно-функциональных отличий от цитоплазматических рибосом.

2.2 Рибосомы прокариот и эукариот

Клетки бактерий, сине-зеленых водорослей и актиномицетов содержат рибосомы с коэффициентом седиментации 70S. Этот коэффициент является мерой относительной плавучей плотности частиц при их центрифугировании в градиенте плотности хлористого цезия или сахарозы. Единица плавучей плотности S (сведберг) названа так в честь изобретателя ультрацентрифуги шведского ученого Т. Сведберга. Коэффициент седиментации зависит как от массы, так и от формы частицы. Молекулярная масса прокариотических рибосом составляет 2,5 мД, форма округлая со средним диаметром 25 нм. Общее количество рибосом в бактериальной клетке достигает 30 % ее сухого веса. Относительное количество белка в них в два раза меньше, чем РНК.

Рибосомы прокариотического типа с коэффициентом седиментации 70S содержатся также в хлоропластах высших растений. Однако рибосомы митохондрий, хотя и похожи на бактериальные, обладают более высокой видовой специфичностью. В частности, митохондриальные рибосомы дрожжей несколько крупнее типичных прокариотических рибосом (75S), тогда как митохондриальные рибосомы млекопитающих, наоборот, значительно меньше бактериальных (55S).

Клетки животных, растений, грибов и простейших содержат рибосомы с коэффициентом седиментации 80S. Их молекулярная масса составляет 4 мД, а средний диаметр 30 нм. Относительное количество белка в них приблизительно равно количеству РНК. Эукариотический тип рибосом не имеет видовых различий.

2.3 Морфология рибосом

На малом увеличении электронного микроскопа (до 20 000х) рибосомы выглядят как электронно-плотные округлые частицы диаметром 2530 нм. На большом увеличении (выше 100 000х) видно, что они разделены бороздкой на две неравные части, представляющие собой малую и большую субъединицы с соотношением масс 1:2.

В физиологических условиях рибосомы обратимо диссоциируют на субъединицы. При этом прокариотические рибосомы диссоциируют по схеме:

70S <=> 30S + 50S,

тогда как эукариотические рибосомы диссоциируют по схеме:

80S <=> 40S + 60S

Дефицит коэффициента седиментации связан с тем, что плавучая плотность рибосом зависит не только от массы субъединиц, но и от их формы.

Малая субъединица прокариотической рибосомы 30S имеет продолговатую форму, ее длина составляет 23 нм, а ширина - 12 нм. Она разделена на доли, которые называются “головка”, “тело” и “боковой выступ”. Наиболее выражена поперечная борозда, которая разделяет головку и тело. Малая субъединица эукариотической рибосомы 40S похожа на малую прокариотическую субъединицу 30S, но имеет две дополнительные детали - выступ головки со стороны, противоположной боковому выступу тела, а также раздвоенность дистального конца тела.

Большая субъединица прокариотической рибосомы 50S диаметром 25 нм внешне идентична большой субъединице эукариотической рибосомы 60S. В большой субъединице имеются три выступа: средний выступ или “головка”, боковая доля или “ручка”, палочковидный отросток или “носик”. В целом форма большой субъединицы напоминает чайник для заварки.

Объединение субъединиц в полную рибосому происходит строго закономерным образом. При этом головки и боковые выступы малой и большой субъединиц ориентируются в одну сторону и накладываются друг на друга. Уплощенные поверхности субъединиц также взаимно дополняют друг друга в пространстве.

2.4 Химический состав рибосом

Рибосома состоит из РНК и белков, причем основные структурно-функциональные свойства этого органоида определяются рибосомальной РНК.

Прокариотические рибосомы содержат три, а эукариотические - четыре молекулы рибосомальной РНК.

Рибосомальные РНК

Малая частица

Большая частица

Прокариотическая рибосома

16S

23S+5S

Эукариотическая рибосома

18S

26S+5S+5,8S

РНК малой субъединицы с коэффициентами седиментации 16S и 18S имеет от 1500 до 1800 нуклеотидных остатков. Она обладает значительной внутренней комплементарностью, за счет чего формируется около трех десятков коротких двуспиральных участков - “шпилек”, которые детерминируют форму малой субчастицы.

Длинная молекула РНК большой субъединицы с коэффициентом седиментации 18S или 26S содержит от 3000 до 4800 нуклеотидных остатков. За счет внутренней комплементарности в ней формируется более 100 двойных спиралей, которые определяют форму субъединицы.

Кроме длинной РНК, большая субъединица прокариотических и эукариотических рибосом содержит также короткую 5S РНК, состоящую из 120 нуклеотидных остатков, которая за счет внутренней комплементарности формирует Т-образную структуру с 5 спиральными участками.

Большая субъединица эукариотических рибосом содержит дополнительно 5,8S РНК. Она состоит из 160 нуклеотидных остатков и комплементарно связана с 26S РНК. Следует отметить, что 5,8S РНК большой субъединицы эукариотических рибосом гомологична 5'-концу бактериальной 23S РНК.

Таким образом, основная функция рибосомальных РНК состоит в формировании молекулярного скелета малой и большой субъединиц рибосомы.

Рибосомы содержат 5070 различных белков, причем большинство из них представлено лишь одной молекулой. Молекулярная масса рибосомальных белков находится в пределах 1030 кД, хотя отдельные полипептиды достигают массы 70 кД. Среди рибосомальных белков преобладают основные полипептиды, но встречаются также нейтральные и кислые белки. Малая субъединица прокариотической рибосомы содержит 20 белков, а большая - 30 белков. У эукариотических рибосом белков значительно больше: малая субъединица содержит 30 белков, а большая 40.

Рибосомальные белки осуществляют разнообразные функции, связанные с ролью рибосомы как организатора биосинтеза белка:

формируют участки малой и большой субъединиц;

образуют центры связывания молекул;

катализируют химические реакции;

участвуют в регуляции биосинтеза белка;

Многие рибосомальные белки выполняют одновременно несколько функций.

2.5 Белоксинтезирующая система

Наследственная информация закодирована в первичной структуре ДНК, которая в эукариотических клетках сосредоточена в клеточном ядре. Участки ДНК, кодирующие первичную структуру полипептида - структурные гены, являются матрицами для синтеза информационной РНК (иРНК). Процесс образования функциональных копий генов в виде иРНК называется транскрипцией.

Отредактированные в ходе сплайсинга иРНК поступают затем в цитоплазму, где связываются с рибосомами. Используя информацию, закодированную в иРНК, рибосомы синтезируют полипептид в ходе процесса, называемого трансляцией. Синтез полипептида из аминокислот осуществляется в соответствии с генетическим кодом, который представляет собой правила соответствия аминокислот триплетам нуклеотидов в иРНК (кодонам).

Кроме иРНК и рибосом для осуществления трансляции необходим еще ряд других молекул. Рибосомы совместно с молекулами, принимающими участие в трансляции, образуют белоксинтезирующую систему, которая может функционировать вне клетки. Составы минимальной и полной бесклеточной систем трансляции на прокариотических рибосомах представлены в следующей таблице.

Бесклеточная система трансляции

Минимальная

Полная

70S рибосомы E. coli

70S рибосомы E. Coli

иРНК

ИРНК

набор из 20 аминоацил-тРНК

набор из 20 аминокислот

фактор элонгации EF-Tu

набор 20 аминоацил-тРНК-синтетаз

фактор элонгации EF-Ts

набор из 20 тРНК

фактор элонгации EF-G

факторы инициации IF-1, IF-2, IF-3

ГТФ

фактор элонгации EF-Tu

Mg2+ (3-20 мМ)

фактор элонгации EF-Ts

фактор элонгации EF-G

фактор s терминации RF-1,RF-2,RF-3

источники энергии: АТФ, ГТФ

Mg2+ (3-20 мМ)

Минимальная система трансляции состоит из 8 компонентов. Ее основой являются рибосомы, выделенные из кишечной палочки, в качестве матрицы можно использовать синтетические или выделенные из прокариотических клеток иРНК. Материалом для синтеза полипептида служат присоединенные к транспортным РНК (тРНК) аминокислотные остатки - молекулы аминоацил-тРНК, а источником энергии - молекулы ГТФ. Кроме того, необходимы особые белки - факторы элонгации, которые участвуют в регуляции синтеза полипептида, а также ионы магния, предотвращающие диссоциацию рибосом на субъединицы.

Полная система трансляции содержит 17 компонентов. Она работает более эффективно и способна транслировать любые матрицы, в том числе эукариотические иРНК. В ней аминокислоты не активированы, но для их активации имеются 20 видов тРНК и набор особых ферментов - аминоацил-тРНК-синтетаз, которые присоединяют аминокислоты к тРНК с затратой энергии АТФ. Дополнительно к факторам элонгации добавлены факторы инициации и терминации, которые представляют собой регуляторные белки, обеспечивающие сборку и разборку белоксинтезирующей системы. Большое значение для функционирования белоксинтезирующей системы имеет также концентрация одновалентных ионов и температура.

Вместо прокариотических можно использовать эукариотические рибосомы, например, из проростков пшеницы. Однако для ее эффективной работы необходимо заменить все прокариотические регуляторные белки на соответствующие эукариотические. При этом вместо 3 факторов элонгации используются 2 эукариотических фактора - EF-1 и EF-2, вместо трех факторов инициации используются 10 эукариотических факторов eIF-1, eIF-2, eIF-3, eIF4A, eIF4B, eIF4C, eIF4D, eIF4E, eIF4F и eIF-5, а вместо 3 факторов терминации - эукариотический фактор терминации eRF.

Уже из краткого описания белоксинтезирующих систем видно, что эукариотическая система содержит больше регуляторных белков, причем точкой приложения большинства из них являются начальные этапы трансляции, связанные со сборкой системы.

2.6 Биосинтез белка

Биосинтез белка состоит из трех этапов - инициации, элонгации и терминации.

На этапе инициации происходит сборка белоксинтезирующей системы. Она начинается с присоединения малой субъединицы рибосомы к 5'-концу иРНК. РНК-матрицы содержат копии структукрных генов рамки считывания на некотором удалении от 5'-конца. Поэтому после присоединения к иРНК малая субъединица рибосомы сканирует нуклеотидную последовательность, передвигаясь от 5'- к 3'-концу, пока не найдет начало рамки считывания стартовый кодон. В качестве стартового кодона прокариотическая рибосома использует кодон AUG и, реже, кодоны GUG и UUG. Эукариотическая рибосома в качестве стартового кодона использует только AUG.

В таблице генетического кода кодону AUG соответствует аминокислота метионин. Однако стартовый кодон в прокариотической белоксинтезирующей системе узнается специальной инициаторной тРНК, которая связана с модифицированной формой метионина - формилметионином. Поэтому любой полипептид, синтезированный in vitro с помощью бактериальных рибосом начинается с аминокислоты формилметионина. Эукариотическая белоксинтезирующая система также начинает полипептид с метионина, но это отнюдь не означает, что клеточные белки на N-конце всегда имеют метионин. После завершения трансляции они, как правило, подвергаются действию ферментов, которые удаляют или модифицируют их N-конец.

После опознания стартового кодона и связывания инициирующей тРНК субъединицы объединяются в полную рибосому. Процесс формирования рибосомы идет с затратой энергии ГТФ. При этом в рибосоме происходит восстановление двух центров связывания - аминоацильного и пептидильного. Аминоацильный центр способен распознавать и связывать аминоацил-тРНК (аминокислотные остатки в комплексе с тРНК), тогда как пептидильный центр удерживает пептидил-тРНК (синтезируемый полипептид в комплексе с тРНК). В синтезе полипептида принимает участие также и третий пептидилтрансферазный центр, расположенный на большой субъединице рибосомы, который катализирует образование пептидной связи.

Этап элонгации представляет собой собственно процесс синтеза полипептида в соответствии с таблицей генетического кода. Он состоит из повторяющихся стадий связывания, транспептидации и транслокации.

Перед началом следующего рабочего цикла аминоацильный центр (A-центр), расположенный в бороздке между субъединицами, содержит текущий кодон иРНК. На этой же поверхности в бороздке, но на некотором удалении от A-центра располагается пептидильный центр (Р-центр), который удерживает пептидил-тРНК. Между A-центром и Р-центром на большой субъединице располагается пептидилтрансферазный центр. Свободный N-конец полипептида обычно свисает в пространство, выходя по мере его удлинения за пределы рибосомы.

Стадия связывания состоит в распознавании и удержании рибосомой “клеверного листа” аминоацил-тРНК. При этом происходит конкуренция между разными аминоацил-тРНК, но в A-центре задерживается только та молекула, антикодон которой (триплет на вершине среднего лепестка клеверного листа) комплементарен находящемуся в A-центре кодону иРНК. В связывании аминоацил-тРНК с A-центром участвует фактор элонгации EF-Tu и затрачивается энергия ГТФ.

На стадии транспептидации аминоацил-тРНК в A-центре взаимодействует с пептидил-тРНК в P-центре таким образом, что происходит перенос C-конца полипептида из Р-центра в A-центр. При этом С-конец полипептида присоединяется к аминоацил-тРНК с образованием пептидной связи в ходе реакции, которая катализируется пептидилтрансферазным центром.

Во время стадии транслокации рибосома с участием EF-G и ГТФ, обеспечивает перенос пептидил-тРНК из A-центра обратно в Р-центр, из которого перед этим уходит свободная тРНК. Одновременно с возвратом полипептида в Р-центр происходит перемещение иРНК в направлении от 5'- к 3'-концу на один кодон.

Этап терминации наступает в тот момент, когда рибосома встретит в иРНК один из трех терминирующих кодонов - UAA, UGA или UAG. Эти кодоны не кодируют аминокислот и служат сигналами для окончания процесса биосинтеза белка. Терминирующий кодон ограничивает рамку считывания иРНК. Иногда рамка считывания ограничивается даже двумя и более терминирующими кодонами. Когда терминирующий кодон оказывается в A-центре рибосомы, он распознается факторами терминации RF-1 и RF-2 (или eRF эукариот). Связывание факторов терминации A-центром вызывает разрыв связи между тРНК и полипептидом в P-центре и выход белка из рибосомы. После этого из A-центра уходит фактор терминации, из Р-центра - свободная тРНК, а рибосома диссоциирует на субъединицы. Процесс разборки белоксинтезирующей системы идет с затратой ГТФ, с ним взаимодействует RF-3.

...

Подобные документы

  • Одноклеточные живые организмы, не обладающие оформленным клеточным ядром. Строение и размножение прокариот. Основные группы прокариот: фототрофы, хемоавтотрофы, органотрофы и бактерии-паразиты. Сравнительная характеристика прокариот и эукариот.

    презентация [748,9 K], добавлен 01.02.2011

  • Организация наследственного материала прокариот. Химический состав эукариот. Общая морфология митотических хромосом. Структура, ДНК, химия и основные белки хроматина. Уровни компактизации ДНК. Методика дифференцированного окрашивания препаратов хромосом.

    презентация [7,4 M], добавлен 07.01.2013

  • Элементы строения клетки и их характеристика. Функции мембраны, ядра, цитоплазмы, клеточного центра, рибосомы, эндоплазматической сети, комплекса Гольджи, лизосом, митохондрий и пластид. Отличия в строении клетки представителей разных царств организмов.

    презентация [2,9 M], добавлен 26.11.2013

  • Сущность и сравнительная характеристика прокариотов и эукариотов. Понятие и структура вирусов, механизм их жизнедеятельности и оценка влияния на организм. Строение бактерий и их разновидности. Отличительные свойства животных и растительных клеток.

    презентация [2,1 M], добавлен 12.02.2017

  • Дифференциальная экспрессия генов и ее значение в жизнедеятельности организмов. Особенности регуляции активности генов у эукариот и их характеристики. Индуцибельные и репрессибельные опероны. Уровни и механизмы регуляции экспрессии генов у прокариот.

    лекция [2,8 M], добавлен 31.10.2016

  • Механизмы регуляции экспрессии генов у прокариот и эукариот. Регуляция содержания РНК в процессе биосинтеза. Согласованная регуляция экспрессии прокариотических родственных генов. Репрессия триптофанового оперона. Суммарный эффект аттенуации и репрессии.

    лекция [24,2 K], добавлен 21.07.2009

  • Клетка как структурно-функциональная единица развития живых организмов. Мембранные и немембранные компоненты: лизосомы, митохондрия, пластиды, вакуоли и рибосомы. Эндоплазматическая сеть и комплекс Гольджи. Строение животной клетки. Функции органоидов.

    презентация [3,5 M], добавлен 07.11.2014

  • Общая характеристика клетки: форма, химический состав, отличия эукариот от прокариот. Особенности строения клеток различных организмов. Внутриклеточное движение цитоплазмы клетки, метаболизм. Функции липидов, углеводов, белков и нуклеиновых кислот.

    лекция [44,4 K], добавлен 27.07.2013

  • Транскрипция – процесс переноса генетической информации от ДНК к РНК. Природа информационной связи между ДНК и белками. Строение и организация единиц транскрипции у прокариот и эукариот. Синтез РНК - выделение стадий инициации, элонгации и терминации.

    лекция [27,1 K], добавлен 21.07.2009

  • История развития, предмет цитологии. Основные положения современной клеточной теории. Клеточное строение живых организмов. Жизненный цикл клетки. Сравнение процессов митоза и мейоза. Единство и многообразие клеточных типов. Значение клеточной теории.

    реферат [17,1 K], добавлен 27.09.2009

  • Исследование структуры гена и его экспрессия. Геном современных прокариотических клеток. Общие принципы организации наследственного материала, представленного нуклеиновыми кислотами. Единица транскрипции у прокариот. Промотор и терминатор (ДНК).

    курсовая работа [100,4 K], добавлен 23.03.2014

  • Составляющие растительной клетки. Плазматическая мембрана, ее функции. Компоненты клеточной стенки. Типы митоза эукариот. Образовательные ткани в теле растений и их расположение. Механические свойства растительных клеток. Наружные выделительные ткани.

    учебное пособие [76,4 K], добавлен 12.12.2009

  • Трансляция – синтез белка на матрице-РНК. Различие в рибосомах про- и эукариот. Процесс образования аминоацил-тРНК. Этапы трансляции, их сущность и краткая характеристика. Сопряженность с транскрипцией в прокариотических и эукариотических клетках.

    презентация [832,8 K], добавлен 05.12.2012

  • Клеточный цикл как период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или гибели. Принципы и методы его регуляции. Этапы и биологическое значение митоза, мейоза, обоснование данных процессов.

    презентация [1,1 M], добавлен 07.12.2014

  • Определение понятия и описание общих особенностей трансляции как процесса синтеза белка по матрице РНК, осуществляемого в рибосомах. Схематическое представление синтеза рибосом у эукариот. Определение сопряженности транскрипции и трансляции у прокариот.

    презентация [2,8 M], добавлен 14.04.2014

  • Систематика. Строение прокариот. Размножение. Образ жизни. Основніе группы прокариот: бактерии – фототрофы, бактерии – хемоавтотрофы, бактерии – органотрофы, бактерии – паразиты. Сине-зеленые водоросли.

    реферат [18,1 K], добавлен 22.10.2003

  • Способность размножаться как одна из основных способностей живых организмов, ее роль в жизнедеятельности, выживании организмов. Типы размножения, их характеристика, особенности. Преимущества полового размножения перед бесполым. Этапы развития организмов.

    реферат [2,0 M], добавлен 09.02.2009

  • Методика и задачи проведения урока биологии на тему: "Строение клеток", а также формы работы с учащимися. Сравнительная характеристика прокариотических и эукариотических клеток. Структура, назначение и функции основных органоидов клеток живых организмов.

    конспект урока [34,4 K], добавлен 16.02.2010

  • Понятие и функции в организме хромосомы как комплекса ДНК с белками (гистоновыми и негистоновыми). История разработки и содержание хромосомной теории наследственности. Типы хромосом в клетке в зависимости от фазы клеточного цикла, уровни организации.

    презентация [5,8 M], добавлен 11.11.2014

  • Цитология - наука о биологии клетки как элементарной единицы живого. Клеточная теория – обобщенные представления о строении клеток, их размножении и роли в формировании многоклеточных организмов; гомологичность и тотипотентность, прокариоты, эукариоты.

    лекция [35,3 K], добавлен 27.07.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.