Жизненный цикл клетки эукариот (строение генетического аппарата на каждом этапе)

Цикличность стадий интерфазы и митоза. Различия между клетками. Этапы жизненного цикла специализированной клетки, интенсивность метаболизма. Митоз, особенности распределения одинаковых наборов хромосом по двум дочерним клеткам. Профаза, метафаза.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 22.02.2019
Размер файла 836,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра "Общая биология и биохимия"

Реферат

по дисциплине "Молекулярная биология гена"

на тему: «Жизненный цикл клетки эукариот (строение генетического аппарата на каждом этапе)»

Пенза, 2017

1. Жизненный цикл клетки

До сих пор много тайн клетки остаются неразгаданными. Загадочным во многом остается и запрограммированный генетически алгоритм ее жизни, названный жизненным циклом клетки (клеточным циклом). Жизненный цикл клетки (рисунок 1) начинается с момента ее образования после деления родительской клетки и заканчивается либо новым делением, либо

Цикличность (периодическое повторение) стадий интерфазы и митоза можно проиллюстрировать на примере фибробластов - одного из видов клеток соединительной ткани (рисунок 1). Так, нормальные фибробласты эмбриона человека размножаются приблизительно 50 раз. Каков генетически запрограммированный предел возможных делений клетки - это одна из неразгаданных тайн биологии.

Рисунок 1 - Цикличность стадий интерфазы и митоза[1]: 1 - интерфаза(G1,S,G2), стадия подготовки к митозу; 2 - митоз (деление клетки)

Жизненный цикл клеток базального слоя эпидермиса в обычных условиях составляет 28-60 дней. При повреждении кожи (конкретнее - при повреждении мембран и разрушении клеток эпидермиса под воздействием внешних факторов) выделяются особые биологически активные вещества. Они значительно ускоряют процессы деления (это явление называется регенерацией), именно поэтому ранки и ссадины так быстро заживают. Максимальной регенеративной способностью обладает эпителий роговицы: одновременно в стадии митоза находятся 5-6 тысяч клеток, продолжительность жизни каждой из которых 4-8 недель.

Хотя все клетки появляются путем деления предшествующей (материнской) клетки («всякая клетка от клетки»), не все они продолжают делиться. Клетки, достигшие некоторой стадии развития при дифференцировке, могут терять способность к делению.

Дифференцировка - возникновение различий в процессе развития первоначально одинаковых клеток, приводящее к их специализации. Процесс дифференцировки заключается в последовательном считывании и использовании наследственной информации, что обеспечивает синтез различных белков (в первую очередь ферментов), характерных для данного вида клеток. Другими словами, различия между клетками определяются набором белков, синтезируемых в клетках определенного вида.

Различия между клетками определяются набором синтезируемых в них белков.

При дифференцировке набор хромосом в клетке не меняется, изменяется лишь соотношение активных и неактивных генов, кодирующих различные белки.

Существуют два типа регуляции экспрессии (активации или блокирования) генов:

Кратковременная адаптивная активация (реже блокирование), зависящая, в частности, от концентрации вещества, включающегося в обмен веществ (исходного вещества или продукта метаболизма). Этот механизм выработался эволюционно как приспособительная реакция и особенно ярко проявляется у животных (например, быстрый синтез пигментов у хамелеона в зависимости от условий).

Длительное (в течение всей жизни клетки и/или многих генераций клеток!) блокирование или активация гена, возникающее в ходе клеточной дифференцировки. Например, в ДНК любой клетки желудка есть ген, отвечающий за синтез белков, из которых состоит ноготь. Но он необратимо блокирован гистонами и другими белками (этот участок ДНК плотно упакован), что никогда не позволит считывать с него информацию. Поэтому в желудке не растут ногти; а гены, ответственные за синтез гемоглобина, функционируют только у молодых форм эритроцитов, но не действуют в зрелых эритроцитах или других клетках.

На рисунке 2 цифрами 3 и 4 отмечены этапы дифференцировки и активного функционирования специализированной клетки.

Нервные клетки мозга, однажды возникнув, уже не делятся. В течение жизни число нейронов постепенно уменьшается. Поврежденные ткани мозга неспособны восстанавливаться путем регенерации. Однако изначально число нейронов в мозге настолько велико, что до конца жизни человека они способны поддерживать необходимые связи в нервной системе.

В качестве примера клеток, неспособных к делению, можно рассмотреть эритроциты. Как известно, эритроциты в процессе специализации теряют ядро, следовательно, не имеют в своем составе ДНК. Возникают эритроциты из так называемой стволовой клетки костного мозга. Клеткой-предшественницей (стволовой клеткой) называют клетки кроветворной ткани, которые на протяжении всей жизни человека сохраняют способность делиться и, тем самым, поставлять дочерние клетки, которые в дальнейшем будут специализироваться в одном направлении и замещать погибшие клетки. Срок жизни и активного функционирования эритроцитов невелик (около 4 месяцев), затем они разрушаются, в основном в селезенке.

Этапы жизни специализированной клетки, неспособной к делению (нейрона, эритроцита), условно можно изобразить на оси времени линией, разделенной на несколько отрезков (рисунок 2). Эти отрезки дают представление о временном соотношении периодов жизни такой клетки: рождения, созревания и активного функционирования, угасания (старения) и естественной гибели.

Рисунок 2 - Этапы жизненного цикла специализированной клетки [1]: 1 - рождение в процессе деления материнской клетки; 2 - созревание и дифференцировка; 3 - активное функционирование; 4 - угасание (старение); 5 - запрограммированная клеточная гибель

Время протекания каждого этапа и продолжительность жизненного цикла для однотипных клеток в нормальных условиях практически одинаковы. Продолжительность жизненного цикла однотипных клеток в нормальных условиях практически одинакова.

Например, эритроциты живут 90-125 дней, а тромбоциты - всего 4 суток. Это говорит о том, что клетки используют для отсчета времени своей жизни некий механизм, алгоритм, заложенный в них природой. И в каждый момент жизни клетка строго следует законам, продиктованным этим алгоритмом.

На всех этапах клеточного цикла варьируют значения некоторых параметров жизнедеятельности клетки, и, в частности, отмечается различная скорость и интенсивность протекания процессов метаболизма (рисунок 3). Это обусловлено, в первую очередь, непрерывно меняющейся активностью ферментов, благодаря которым протекают все реакции в клетке. Ферменты могут синтезироваться в клетке “по мере надобности”, активироваться, временно блокироваться или полностью разрушаться.

Рисунок 3 - Интенсивность метаболизма на различных этапах жизни клетки [1]: 1 - рождение; 2 - созревание и дифференцировка; 3 - активное функционирование; 4 - угасание (старение); 5 - запрограммированная клеточная гибель

Клеточный цикл - митоз: описание фаз G0, G1, G2, S

Рисунок 4 - Фазы клеточного цикла [2]

Рост тела человека обусловлен увеличением размера и количества клеток, при этом последнее обеспечивается процессом деления, или митозом. Пролиферация клеток происходит под воздействием внеклеточных факторов роста, а сами клетки проходят через повторяющуюся последовательность событий, известную как клеточный цикл.

Различают четыре основные фазы клеточного цикла: G1 (пресинтетическая), S (синтетическая), G2 (постсинтетическая) и М (митотическая). Затем следует разделение цитоплазмы и плазматической мембраны, в результате чего возникают две одинаковые дочерние клетки. Фазы Gl, S и G2 входят в состав интерфазы. Репликация хромосом происходит во время синтетической фазы, или S-фазы. Большинство клеток не подвержено активному делению, их митотическая активность подавляется во время фазы GO, входящей в состав фазы G1.

2. G1-фаза клеточного цикла

G1-фаза -- промежуточная стадия между М- и S-фазами, во время которой происходит увеличение количества цитоплазмы. Кроме того, в конце фазы G1 расположена первая контрольная точка, на которой происходят репарация ДНК и проверка условий окружающей среды (достаточно ли они благоприятны для перехода к S-фазе).

В случае если ядерная ДНК повреждена, усиливается активность белка р53, который стимулирует транскрипцию р21. Последний связывается со специфическим циклин-ЦЗК-комплексом, ответственным за перевод клетки в S-фазу, и тормозит её деление на стадии Gl-фазы. Это позволяет репарационным ферментам исправить повреждённые фрагменты ДНК.

При возникновении патологий белка р53 репликация дефективной ДНК продолжается, что позволяет делящимся клеткам накапливать мутации и способствует развитию опухолевых процессов. Именно поэтому белок р53 часто называют «стражем генома».

митоз клетка метаболизм хромосом

3. S фаза клеточного цикла

Стандартное количество двойных спиралей ДНК в каждой клетке, соответствующее диплоидному набору одноцепочечных хромосом, принято обозначать как 2С. Набор 2С сохраняется на протяжении фазы G1 и удваивается (4С) во время S-фазы, когда синтезируется новая хромосомная ДНК.

Начиная с конца S-фазы и до М-фазы (включая фазу G2) каждая видимая хромосома содержит две плотно связанные друг с другом молекулы ДНК, называемые сестринскими хроматидами. Таким образом, в клетках человека начиная с конца S-фазы и до середины М-фазы присутствуют 23 пары хромосом (46 видимых единиц), но 4С (92) двойные спирали ядерной ДНК.

В процессе митоза происходит распределение одинаковых наборов хромосом по двум дочерним клеткам таким образом, чтобы в каждой из них содержалось по 23 пары 2С-молекул ДНК. Следует отметить, что фазы G1 и G0 -- единственные фазы клеточного цикла, во время которых в клетках 46 хромосомам соответствует 2С-набор молекул ДНК.

4. G2-фаза клеточного цикла

Вторая контрольная точка, на которой проверяется размер клетки, находится в конце фазы G2, расположенной между S-фазой и митозом. Кроме того, на данной стадии, прежде чем перейти к митозу, происходит проверка полноты репликации и целостности ДНК. Митоз (М-фаза)

1. Профаза. Хромосомы, каждая из которых состоит из двух одинаковых хроматид, начинают уплотняться и становятся видимыми внутри ядра. На противоположных полюсах клетки вокруг двух центросом из волокон тубулина начинает образовываться веретеноподобный аппарат.

2. Прометафаза. Происходит разделение мембраны ядра. Вокруг центромер хромосом формируются кинетохоры. Волокна тубулина проникают внутрь ядра и концентрируются вблизи кинетохор, соединяя их с волокнами, исходящими из центросом.

3. Метафаза. Натяжение волокон заставляет хромосомы выстраиваться посередине в линию между полюсами веретена, формируя тем самым метафазную пластинку.

4. Анафаза. ДНК центромер, разделённая между сестринскими хроматидами, дуплицируется, хроматиды разделяются и расходятся ближе к полюсам.

5. Телофаза. Разделённые сестринские хроматиды (которые с этого момента считают хромосомами) достигают полюсов. Вокруг каждой из групп возникает ядерная мембрана. Уплотнённый хроматин рассеивается и происходит формирование ядрышек.

6. Цитокинез. Клеточная мембрана сокращается и посередине между полюсами образуется борозда дробления, которая со временем разделяет две дочерние клетки.

5. M-фаза клеточного цикла

Продолжительность М-фазы составляет 30--60 мин, в то время как весь клеточный цикл проходит примерно за 20 ч. В зависимости от возраста нормальные (не опухолевые) клетки человека претерпевают до 80 митотических циклов.

Процессы клеточного цикла контролируются последовательно повторяющимися активацией и инактивацией ключевых ферментов, называемых цик дин зависимыми протеинкиназами (ЦЗК), а также их кофакторов -- циклинов. При этом под воздействием фосфокиназ и фосфатаз происходят фосфорилирование и дефосфорилирование особых циклин-ЦЗК-комплексов, ответственных за начало тех или иных фаз цикла.

Кроме того, на соответствующих стадиях подобные ЦЗК-белки вызывают уплотнение хромосом, разрыв ядерной оболочки и реорганизацию микротрубочек цитоскелета в целях формирования веретена деления (митотического веретена).

6. G0-фаза клеточного цикла

Пролиферация клеток у млекопитающих возможна только при участии секретируемых другими клетками внеклеточных факторов роста, которые оказывают своё воздействие через каскадную сигнальную трансдукцию протоонкогенов. Если во время фазы G1 клетка не получает соответствующих сигналов, то она выходит из клеточного цикла и переходит в состояние G0, в котором может находиться несколько лет.

Блок G0 происходит при помощи белков -- супрессоров митоза, один из которых -- ретинобластомный белок (Rb-белок), кодируемый нормальными аллелями гена ретинобластомы. Данный белок прикрепляется кособым регуляторным протеинам, блокируя стимуляцию транскрипции генов, необходимых для пролиферации клеток.

Внеклеточные факторы роста разрушают блок путём активации Gl-специфических циклин-ЦЗК-комплексов, которые фосфорилируют Rb-белок и изменяют его конформацию, в результате чего разрывается связь с регуляторными белками. При этом последние активируют транскрипцию кодируемых ими генов, которые запускают процесс пролиферации.

7. Регуляция клеточного цикла

Рисунок 5 - Схема регуляции клеточного цикла [3]

Пролиферация клеток, происходящая путём митоза, жёстко регулируется множеством молекулярных сигналов. Регуляторы клеточного цикла и митоза подразделяют на внутриклеточные и межклеточные. Внутриклеточные молекулярные сигналы многочисленны, среди них в первую очередь следует назвать собственно регуляторы клеточного цикла (циклины, циклин-зависимые протеинкиназы, их активаторы и ингибиторы) и онкосупрессоры [5].

Скоординированная деятельность этих многочисленных регуляторов клеточного цикла обеспечивает как переход клеток от фазы к фазе клеточного цикла, так и точное выполнение событий каждой фазы. Нарушения же такой скоординированной деятельности приводят как к искажениям прохождения клетки по фазам клеточного цикла (патология митоза), так и к потере контроля за пролиферативными потенциями клетки, что может привести к бесконтрольной её пролиферации - появлению неконтролируемого клона, т.е. к опухолевому росту [6].

Клетки таких клонов называют трансформированными, или малигнизированными. Главная причина появления пролиферативно неконтролируемых клеток - мутации генов, кодирующих структуру собственных регуляторов клеточного цикла.  Циклины - особые белки, которые играют важную роль в регуляции клеточного цикла. Идентифицировано шесть классов циклинов: A, B, C, D, E, F. Название этих белков отражает цикличность процессов сборки и разборки макромолекулярного комплекса в процессе каждого клеточного цикла. Циклины различаются экспрессией на определенных стадиях клеточного цикла и соответственно на различных стадиях регулируют деление клетки. К середине M-фазы концентрация циклинов в клетке резко уменьшается с последующим нарастанием синтеза на протяжении всего цикла. [7]

Рисунок 6 - Концентрация циклинов на разных стадиях клеточного цикла[4]

Cdk (cyclin dependent protein kinase) - циклин-зависимые протеинкиназы. Комплекс циклинов с циклин-зависимыми протеинкиназами играет центральную роль в клеточном цикле. Последовательная активация циклин-зависимых протеинкиназ и последующее фосфорилирование ими критических субстратов контролируют клеточный цикл, переключая его с одной фазы на другую (с G1 на S или G2 на M).  Белки, связывающиеся с этим комплексом и ингибирующие его каталитическую активность, блокируют клеточный цикл в ответ на антипролиферативные сигналы (TGFb, факторы дифференцировки миогенных, миелоидных и нервных клеток). Интеграция вируса гепатита В в ген циклина А обнаружена при гепатоклеточной карциноме [8].

Существуют специальные вещества, подавляющие развитие опухолей - онкосупрессоры, которые в нормальной клетке постоянно контролируют множество процессов, в том числе и пролиферацию клеток (точнее, онкосупрессоры блокируют клеточный цикл). Известно множество онкосупрессоров (например, Rb, p27, p53, PTEN), среди которых p53 известен как главный супрессор развития опухоли. Мутации генов онкосупрессоров неизбежно приводят к появлению бесконтрольно пролиферирующего клеточного клона [9]. 

Белок p27 связывается с циклинами и Cdk и блокирует вхождение клетки в S-фазу цикла. Определение р27 используют в диагностике рака молочной железы. Снижение уровня р27 является плохим прогностическим признаком.  Белок р53 - один из важнейших регуляторов клеточного цикла, специфически связывается с ДНК и подавляет рост клеток в фазе G1. р53 регистрирует различные сигналы при внешних воздействиях на клетку (вирусная инфекция, гипоксия) и состояние её генома (активация онкогенов, повреждения ДНК). [10]

При неблагоприятной информации о состоянии клетки р53 блокирует клеточный цикл до тех пор, пока нарушения не будут устранены. В повреждённых клетках содержание р53 возрастает. Это даёт клеткам шансы восстановить ДНК путём блокирования клеточного цикла. При серьёзных повреждениях р53 инициирует самоубийство клетки - апоптоз. Опухоли (практически в 50%) сопровождаются мутациями гена р53. При этом, несмотря на возможные нарушения генома (включая изменения в количестве хромосом), клетки не входят в апоптоз и вступают в беспрерывный клеточный цикл. Репертуар мутаций гена р53 довольно широк.  Они приводят к бесконтрольному размножению клеток при раке толстой кишки, печени, легкого, пищевода, молочной железы, глиальных опухолях мозга, опухолях лимфоидной системы. При синдроме Li Fraumeni врождённый дефект р53 является причиной высокой частоты поражения раком [11].

На множество важных клеточных функций (экспрессия конкретных генов и специфическая дифференцировка, поддержание дифференцированного состояния и т.д.) влияют различные информационные сигналы, поступающие к клетке извне. Регуляция клеточного цикла и пролиферация (или блок пролиферации) клеток также регулируются внеклеточными сигналами в виде гормонов (например, гормон роста, эстрогены, фолликулостимулирующий гормон), цитокинов (например, интерлейкины и интерфероны), факторов роста (например, фактор роста эпидермиса - EGF). Некоторые из таких молекулярных сигналов расцениваются как стимулирующие митогенную активность факторы (митогены). Существенное влияние на пролиферативную активность клеток имеют и контакты с элементами межклеточного матрикса (например, с ламинином и фибронектином) [12].

После взаимодействия с соответствующими рецепторами такие митогенные сигналы (в значительном числе случаев при помощи связанных с G-белками протеинкиназ) передаются на соответствующие участки генома, активируя транскрипцию контролирующих фазы клеточного цикла генов (например, циклин-зависимых протеинкиназ). Информационные РНК выходят из ядра в законченном виде для выполнения своих функций в цитоплазме. После транскрипции, модификации и процессинга информационная РНК переходит из ядра в цитоплазму и нанизывает на себя определенное число рибосом, образуя полисому - своего рода конвейер, который начинает синтезировать белки [13].

Соотношение «полисомы: мономеры цитоплазматических (SOS) рибосом: 40S- и 60S-субчастицы» в фазе G2 возрастает - почти все рибосомальные субчастицы объединяются в моносомы, а из моносом в то же время образуются полисомы. Высокая концентрация полисом в фазе G2 по сравнению с фазой G1 позволяет  предполагать, что соответственно в исходной родительской клетке должен иметь место более интенсивный белковый синтез, чем в молодых дочерних клетках. В фазе G1 синтез полипептидов на полисомах идет гораздо активнее, чем в фазе G2. Таким образом, меньшему количеству полисом на одну клетку в фазе G1 соответствует более высокая скорость белкового синтеза, а большему количеству полисом в фазе G2 - меньшая скорость синтеза [10].

В старых клетках происходит активная мобилизация субчастиц рибосом для построения моносом с последующим быстрым образованием полисом. Поскольку в фазе G2 обнаруживаются гораздо более крупные полисомы, чем в фазе G1, возникает вопрос, одинакова ли скорость передвижения рибосом вдоль цепи мРНК в малых и больших полисомах. Считается, что эта скорость обратно пропорциональна длине мРНК. Биосинтез белков наиболее интенсивно протекает в двух фазах клеточного цикла - G1 и G2. Напротив, в фазе S, для которой характерен синтез ДНК, отмечается спад белкового синтеза. Таким образом, еще раз подтверждается правило «или ДНК, или белок» [14].

Заключение

Клеточный цикл - это жизнь клетки от одного деления до другого. Про клетки, которые делиться больше не будут, обычно говорят, что они вышли из клеточного цикла. Продолжительность клеточного цикла у разных организмов варьирует. Так, у бактерий она может составлять всего 20-30 мин, а у клеток эукариот цикл обычно длится не менее 10-12 ч, часто сутки и более. Исключение составляют быстро делящиеся клетки самых ранних зародышей, весь цикл у них может проходить за 15-20 мин. [15].

Клетки взрослых многоклеточных организмов, как животных, так и растений, обладают разной способностью к делению. В одних тканях, например нервной, мышечной,  клетки  вообще  не делятся. Другие ткани, напротив, постоянно обновляются.  В этом случае существуют группы клеток, которые постоянно делятся,  а их потомки перестают делиться, некоторое  время  функционируют и отмирают. Так происходит с клетками крови (делящиеся клетки находятся в костном мозге, а зрелые выходят в кровь), кожи, кишечника, в проводящей системе растений [16].

Выход клеток из цикла может быть необратимым, но многие клетки, не размножающиеся в обычных условиях, могут приобрести эту способность вновь. Клетки печени, например, в норме почти не делятся, но после удаления части органа вступают в клеточный цикл и делятся один-два раза.  Клетки коры некоторых многолетних растений способны, начав делиться, восстанавливать механические повреждения коры [17].

Для правильного прохождения клеточного цикла у всех живых организмов существуют специальные системы регуляции. Систематическое изучение молекулярно-генетических основ клеточного цикла началось с середины 70-х гг. XX в. В результате наиболее ранних исследований была сформулирована гипотеза о том, что направленность процессов в клеточном цикле обусловлена сменой функционирования отдельных генов, ответственных за прохождение клеткой определенных его этапов. Дальнейшие исследования в этой области были направлены на выявление степени участия генома в регуляции отдельных процессов, развертывающихся на протяжении митотического цикла. [10].

Согласно современным представлениям, в отличие от регуляции клеточного цикла в целом, которая в значительной степени базируется на дифференциальной активности генов, регуляция митоза осуществляется белковой «машиной» клеточного цикла на посттрансляционном уровне. Детальное исследование механизмов регуляции клеточного цикла и деления и путей воздействия на эти механизмы дает возможность целенаправленного управления судьбой клеток. Такой подход имеет огромное значение для медицины и биотехнологии. [1]

Список литературы

1. «Клеточный цикл - митоз: описание фаз G0, G1, G2, S». [электронный ресурс] // «meduniver.com». URL: http://meduniver.com/Medical/genetika/fazi_kletochnogo_cikla.html. (Дата обращения: 17.12.2017)

2. «Клеточный цикл -- митоз: описание фаз G0, G1, G2, S». [электронный ресурс] // «peworanta.ru». URL: http://peworanta.ru/kletochnyy-cikl-mitoz-opisanie-faz-g0-g1-g2-s/. (Дата обращения: 17.12.2017).

3. «Клеточный цикл эукариот». [Электронный ресурс]// «mirznanii.com». URL: http://mirznanii.com/a/9057/kletochnyy-tsikl-eukariot. (Дата обращения: 17.12.2017).

4. «Циклин». [Электронный ресурс ] // «wikipediya.ru». URL: http://http-wikipediya.ru/wiki/%D0%A6%D0%B8%D0%BA%D0%BB%D0%B8%D0%BD

5. Lewis J., Raff M., Roberts K., Walter P. Molecular Biology of the Cell. - New York: Garland Science. - 2002. - 702 c.

6. Абдукаева Н.С., Пашкина Н.С. И др. Биология клетки. - Спб.: Издательство СПбГПМА. 2002. - 108 с.  

7. Дондуа А.К. Биология развития. Клеточные и молекулярные основы индивидуального развития. Т. 2. - Спб.: Издательство Санкт-Петербургского университета. - 2005. - 240 с.

8. Заяц Р. Г., Бутвиловский В. Э., Давыдов В. В. И др. Медицинская биология и общая генетика.  -  Минск: Вышэйшая школа. - 2011. - 496 с.  

9. Зенгбуш П. Молекулярная и клеточная биология. 3 т. - М.: Издательство Академия. - 2007. - 499 с.   

10. Клаг У., Каммингс М. Основы генетики. - М.: Издательство Техносфера. 2006. - 896 с.  

11. Курчанов  Н.А. Генетика человека с основами общей генетики. - М.: Издательство СпецЛит. - 2009. - 192 с.  

12. Полевой В. В., Саламатова Т. С. Живое состояние клетки и биология старения. - Спб.: Издательство Санкт-Петербургского университета. 2004. - 136 с.  

13. Полевой В. В., Саламатова Т. С. Живое состояние клетки и биология старения. - Спб.: Издательство Санкт-Петербургского университета. 2004. - 136 с.  

14. Рубан Э.Д. Генетика человека с основами медицинской генетики. -  Ростов-на-Дону: Издательство Феникс. - 2012. - 320 с.  

15. Топорнина Н.А. Генетика человека. - М.: Издательство Академия. 2001.- 96 с.  

16. Уилсон Дж., Хант Т. Молекулярная биология клетки. - М.: Издательство Академия. - 2004. - 500 с.  

17. Хандорина Е.К., Терехова И. Д. Генетика человека с основами медицинской генетики. - М.: Издательство ГЭОТАР-Медиа. - 2011. - 232 с.  

18. Ченцов Ю.С. Введение в клеточную биологию. - М.: Издательство Академкнига. - 2005. - 496 с.

Размещено на Allbest.ru

...

Подобные документы

  • Изучение процесса митоза как непрямого деления клетки и распространенного способа репродукции эукариотических клеток, его биологическое значение. Мейоз как редукционное деление клетки. Интерфаза, профаза, метафаза, анафаза и телофаза мейоза и митоза.

    презентация [7,6 M], добавлен 21.02.2013

  • Сущность и значение митоза - процесса распределения скопированных хромосом между дочерними клетками. Общая характеристика основных стадий митоза – профазы, метафазы, анафазы и телофазы, а также описание особенностей разделения клеточных хромосом в них.

    презентация [321,9 K], добавлен 04.12.2010

  • Митоз как непрямое деление клетки, в результате которого образуются соматические клетки. Стадии клеточного цикла. Подготовка к делению эукариотических организмов. Основные этапы кариокинеза. Разделение цитоплазмы с органоидами между дочерними клетками.

    презентация [2,3 M], добавлен 06.11.2013

  • Ядро эукариотической клетки. Клетки, имеющие более двух наборов хромосом. Процесс деления у эукариот. Объединенные пары гомологичных хромосом. Онтогенез растительной клетки. Процесс разъединения клеток в результате разрушения срединной пластинки.

    реферат [759,3 K], добавлен 28.01.2011

  • Клеточный цикл как период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или гибели. Принципы и методы его регуляции. Этапы и биологическое значение митоза, мейоза, обоснование данных процессов.

    презентация [1,1 M], добавлен 07.12.2014

  • Периоды и фазы клеточного цикла. Последовательное прохождение клеткой периодов цикла без пропуска или возврата к предыдущим стадиям. Деление исходной клетки на две дочерние клетки. Циклины и циклин-зависимые киназы; деление эукариотической клетки; митоз.

    контрольная работа [25,0 K], добавлен 21.11.2009

  • Значение роста и развития клеток. Жизненный и митотический циклы клеток. Продолжительность жизни разных типов клеток в многоклеточном организме. Рассмотрение митоза как универсального способа размножения, сохраняющего постоянство числа хромосом в клетках.

    презентация [4,1 M], добавлен 05.12.2014

  • Период жизнедеятельности клетки, в котором происходят все обменные процессы и деление. Интерфаза, метафаза и анафаза, деление клетки. Биологический смысл митоза. Вирусы и бактериофаги как неклеточные формы жизни. Виды и формы размножения организмов.

    реферат [20,3 K], добавлен 06.07.2010

  • Характеристика жизненного цикла клетки, особенности периодов ее существования от деления до следующего деления или смерти. Стадии митоза, их продолжительность, сущность и роль амитоза. Биологическое значение мейоза, его основные этапы и разновидности.

    лекция [169,6 K], добавлен 27.07.2013

  • Основные фазы клеточного цикла: интерфаза и митоз. Определение понятия "митоз" как непрямого деления клетки, наиболее распространенного способа репродукции эукариотических клеток. Характеристика и особенности процессов деления: амитоза и мейоза.

    презентация [799,4 K], добавлен 25.10.2011

  • Основные механизмы клеточного деления. Микротрубочки, образование веретена деления и метафаза. Правильное присоединение микротрубочек к кинетохорам. Обзор противоопухолевых препаратов. Использование особенностей механизма деления клетки в медицине.

    курсовая работа [1,7 M], добавлен 15.02.2016

  • Исследование основных видов размножения: воспроизведения себе подобных, обеспечивающего непрерывность жизни. Понятие митоза – такого деления клеточного ядра, при котором образуется два дочерних ядра с набором хромосом, идентичных родительской клетки.

    презентация [2,5 M], добавлен 19.01.2011

  • История развития, предмет цитологии. Основные положения современной клеточной теории. Клеточное строение живых организмов. Жизненный цикл клетки. Сравнение процессов митоза и мейоза. Единство и многообразие клеточных типов. Значение клеточной теории.

    реферат [17,1 K], добавлен 27.09.2009

  • Сущность клеточного цикла - периода жизни клетки от одного деления до другого или от деления до смерти. Биологическое значение митоза, его основные регуляторные механизмы. Два периода митотического деления. Схема активации циклинзависимой киназы.

    презентация [823,0 K], добавлен 28.10.2014

  • Клеточная теория Шлейдена и Шванна. Состав вирусов. Методы изучения клетки. Строение и функции ее поверхностного аппарата, мембраны, надмембранного комплекса, хромопластов, лейкопластов, рибосом, органелл, ядра, ядерной оболочки, кариоплазмы, хромосом.

    презентация [3,6 M], добавлен 13.11.2014

  • Строение животной клетки. Основные положения клеточной теории, понятие про прокариоты и эукариоты. Структура цитоплазмы и эндоплазматический ретикулум. Хромосомный набор человека. Способы деления клетки (амитоз, митоз и мейоз) и ее химический состав.

    презентация [3,1 M], добавлен 09.10.2013

  • Составляющие растительной клетки. Плазматическая мембрана, ее функции. Компоненты клеточной стенки. Типы митоза эукариот. Образовательные ткани в теле растений и их расположение. Механические свойства растительных клеток. Наружные выделительные ткани.

    учебное пособие [76,4 K], добавлен 12.12.2009

  • Гаметы как репродуктивные клетки, имеющие гаплоидный (одинарный) набор хромосом и участвующие в гаметном, в частности, половом размножении. Основные этапы их жизненного цикла. Строение сперматозоида и яйцеклетки. Процесс оплодотворения, влияющие факторы.

    презентация [1,5 M], добавлен 16.12.2014

  • Этапы развития генетики, ее связь с другими науками. Вклад отечественных учёных в ее развитие. Строение ядра и хромосом. Свойство хромосом и понятие о кариотипе. Особенности кариотипов разных видов с/х животных. Митоз, его биологическое значение.

    шпаргалка [98,7 K], добавлен 08.05.2009

  • Трансляция клетки как процесс биосинтеза белка, определяемый матричной РНК. Понятие генетического кода, его свойства. Отклонения от универсального генетического кода. Строение рибосом, механизм элонгации и терминации. Белки в эволюции и онтогенезе.

    презентация [2,2 M], добавлен 21.02.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.