главнаяреклама на сайтезаработоксотрудничество Библиотека Revolution
 
 
Сколько стоит заказать работу?   Искать с помощью Google и Яндекса
 



Радикальная сополимеризация акрилат- и метакрилатгуанидинов с виниловыми мономерами

Синтез новых сополимеров различного состава на основе акрилат- и метакрилатгуанидинов. Проведение радикальной полимеризации и сополимеризации водорастворимых мономеров: кинетические особенности реакций непредельных кислот в водных и органических средах.

Рубрика: Химия
Вид: диссертация
Язык: русский
Дата добавления: 27.12.2009
Размер файла: 4,4 M

Полная информация о работе Полная информация о работе
Скачать работу можно здесь Скачать работу можно здесь

рекомендуем


Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже.

Название работы:
E-mail (не обязательно):
Ваше имя или ник:
Файл:


Cтуденты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны

Подобные работы


1. Анализ сополимеризации индена с малеиновым ангидридом
Теоретические основы процесса комплексно-радикальной полимеризации. Особенности полимеризации индена и кумарона. Методика очистки мономеров и растворителей. Анализ зависимости и состава продуктов сополимеризации инденовой фракции с малеиновым ангидридом.
дипломная работа [386,6 K], добавлена 22.10.2010

2. Влияние механизма формирования полимерно-мономерных частиц на кинетические закономерности эмульсионной полимеризации акриловых мономеров
Практическое проведение эмульсионной полимеризации и сополимеризации акриловых мономеров, скорость и кинетика реакции, влияющие факторы. Способ предварительного создания концентрированной эмульсии, образование микроэмульсии и анализ ее дисперсности.
статья [244,2 K], добавлена 22.02.2010

3. Изучение механизма побочных реакций при термолизе ряда алкоксиаминов и определение константы скорости их термолиза
"Живая" контролируемая радикальная полимеризация. Характеристики получаемого полимера. Признаки протекания полимеризации в контролируемом режиме. Метод диаграмм Фишера. Радикальная "живая" полимеризация гидрофильных мономеров. Анализ продуктов термолиза.
дипломная работа [2,0 M], добавлена 17.10.2013

4. Термодинамический расчет реакции полимеризации диметилолмочевины
Зависимость изменения термодинамических величин от температуры. Метод Сато, Чермена Ван Кревелена, Андрена-Байра-Ватсона. Реакция радикальной сополимеризации. Определение температуры полураспада полиизопрена. Термодинамический анализ основной реакции.
курсовая работа [1,8 M], добавлена 28.05.2012

5. Образование сетки при радиационной трехмерной сополимеризации А и В-дибутил-бис-малеинаттриэтиленгликоля со стиролом
Характеристика, этапы и необходимые условия для образования сетки при трехмерной гомо- или сополимеризации бифункциональных мономеров. Химическое строение растворимого сополимера и содержание в нем микрогеля. Сущность метода Ланге и его применение.
статья [116,4 K], добавлена 22.02.2010

6. Перспективные композиты XXI века на основе органических и неорганических полимеров и новые металлические сплавы, приоритетные технологии, структура, свойства
Импульсное электромагнитное излучение, возникающее при нагружении композитов. Исследование методом инфракрасной спектроскопии процессов полимеризации и сополимеризации в полимерных составах для органических стекол. Зависимость содержания гель-фракции.
краткое изложение [149,6 K], добавлена 05.04.2009

7. Кинетика полимеризации изопрена под влиянием каталитических систем на основе карбоксилатных солей лантаноидов
Изучение основных реакций, обусловливающих формирование молекулярной цепи полиизопрена, и их количественная оценка. Участие молекул мономера и непредельных фрагментов полиизопрена в определении концентрации активных центров в процессе полимеризации.
реферат [513,2 K], добавлена 18.03.2010

8. Методы синтеза блок- и привитых сополимеров
Основные типы сополимеров. Реакции в системе полимер-мономер. Радикальная полимеризация (одностадийный, двухстадийный метод). Ионная полимеризация, механохимический синтез. Реакции в системе полимер-полимер. Введение функциональных групп в макромолекулы.
реферат [710,9 K], добавлена 06.06.2011

9. Теории кислот и оснований. Классификация реакций и реагентов
Электронная теория кислот и оснований Льюиса. Теория электролитической диссоциации Аррениуса. Протонная теория, или теория кислот и оснований Бренстеда. Основность и амфотерность органических соединений. Классификация реагентов органических реакций.
презентация [375,0 K], добавлена 10.12.2012

10. Классификация кислот и их химические свойства
Диссоциирование кислот на катион водорода (протон) и анион кислотного остатка в водных растворах. Классификация кислот по различным признакам. Характеристика основных химических свойств кислот. Распространение органических и неорганических кислот.
презентация [442,5 K], добавлена 23.11.2010


Другие документы, подобные Радикальная сополимеризация акрилат- и метакрилатгуанидинов с виниловыми мономерами


Также на рисунке видно, что образцы сополимера АА:МАГ (кривые 4,5,6) характеризуются большими величинами F по сравнению с ПАА (кривая 1). Сопоставление данных рис. 27. при постоянной концентрации флоккулянтов, свидетельствует о возрастании значений F при переходе к сополимерам с более высоким содержанием звеньев АГ и МАГ (кривые 2-6).

Из рис. 27 также следует, что отвечающий норме D = 0,7 (определен при n = 0,172 и л = 364 нм, соответствующей мутности очищенной воды) достигается при меньших значениях концентрации сополимера АА: МАГ по сравнению с ПАА.

На рисунке видно, что максимальный флоккулирующий эффект наблюдается у сополимера состава 70:30. Очевидно, при этом реализуется оптимальное соотношение между плотностью заряда и гибкостью макромолекул, которое обеспечивает охват полимерными мостиками большего числа частиц дисперсной фазы, увеличению размера флоккул и D.

Видно, что образцы сополимеров МАГ-АА характеризуются большими величинами F по сравнению с АГ-АА, поэтому более подробно изучены флоккулирующие свойства сополимера МАГ-АА.

Несомненное влияние на процесс флоккуляции должен оказывать размер макромолекул или молекулярная масса полимера. Чем больше размер макромолекул, тем относительно больший процент сегментов адсорбированных макромолекул остается свободным и способным к адсорбции на других частицах. Большая макромолекула может связать большее число твердых частиц, образуя, таким образом, более крупные хлопья.

Для выяснения влияния молекулярной массы на степень флоккулирующего действия нами были исследованы образцы сополимеров с различными молекулярными массами. О величине молекулярной массы судили по характеристической вязкости растворов сополимеров.

Таблица 22

Влияние характеристической вязкости на процесс

осветления модельного раствора

Сополимер

АА:МАГ

[з], дл/г

концентрация сополимера,%

Степень осветления

70:30

3,2

0,05

75,8

70:30

2,2

0,05

95,8

70:30

1,6

0,05

72,4

60:40

2,8

0,05

77,5

60:40

1,7

0,05

82,8

60:40

1,0

0,05

66,9

Рассматривая влияние молекулярной массы полиэлектролитов, было обнаружено, что наибольшие скорости и степени осветления суспензии получены с использованием сополимера, имеющего промежуточное значение молекулярной массы. Образцы с меньшей и с большей молекулярной массой проявляют несколько пониженную активность.

Некоторое снижение скорости осветления и степени осветления с ростом молекулярной массы вероятно связано с влиянием диффузионных ограничений, которые влияют на распределение макромолекул по частицам дисперсии. Особенно эффект снижения эффективности осветления проявляется для сополимера с наиболее высокими значениями характеристической вязкости. Хотя скорость осветления для этих сополимеров выше в очень широком диапазоне концентраций, что указывает на формирование крупных флоккул, степень осветления не превышает 76 %.

Видимо, в системе остается достаточно большое количество несфлоккулированных частиц. Вероятно, по мере возрастания размеров макромолекул усиливаются стерические явления и затрудняется подход частиц с адсорбированными макромолекулами к свободной поверхности других частиц.

Причины невозможности флоккуляции в случае больших размеров макромолекул объяснены в работе [199]. Авторы отмечают, что при большом различии в размерах коллоидных частиц и макромолекул полимера флоккуляция вообще становится невозможной вследствие малой вероятности образования полимерных мостиков, что наглядно показано на рис. 28.

а) б)

Рис. 28. Влияние соотношения размеров макромолекул и коллоидных частиц на процесс флоккуляции: а) макромолекулы намного больше коллоидных частиц; б) коллоидные частицы намного больше макромолекул; h- статистический размер макромолекул, d-размер коллоидных частиц.

Таким образом, для флоккуляции необходимо, чтобы молекулы полимера и твердые частицы приближались друг к другу на расстояние, достаточное для осуществления адсорбции и образования полимерных мостиков.

Рис. 29. Зависимость оптической плотности суспензии каолина от времени отстаивания и концентрации сополимера состава 70:30

Рис. 30. Зависимость оптической плотности суспензии каолина

от времени отстаивания и состава флоккулянта

Сочетание высокой скорости осветления и наибольшей степени осаждения частиц достигается при использовании сополимера акриламида с метакрилатом гуанидина состава 70:30. Так в интервале доз полиэлектролита 0,05 - 0,12 масс.% максимальная эффективность осаждения составляет 95 - 96%. Оптимальные концентрации полиэлектролитов на основе сополимеров АА: МАГ, исходя из турбидиметрических кривых, составляют 0,5 - 1,0%.

Для изучения механизма образования флоккул и осадков необходимо использование методов, непосредственно характеризующих кинетическую и агрегативную устойчивость флоккулированных дисперсий. К таким методам относятся определение кинетических параметров осаждения дисперсий.

На рис. 31 представлены кинетические кривые осветления суспензии каолина с концентрацией 0,5 масс. %.

Рис.31 . Кинетические кривые осветления суспензии каолина

при введении 0,01 (кривая 1), 0,03 (кривая 2)

и 0,05 масс. % сополимера АА: МАГ (70:30).

Из рис. 31 видно, что резкое снижение мутности суспензии каолина проходит в течение 100-150 с. Этот период времени соответствует осаждению основного количества сформированных в ходе предварительного перемешивания флоккул. Далее оптическая плотность надосадочной жидкости снижается с меньшей скоростью. После осаждения в течение 500 - 600 с остаточная мутность не изменяется.

Начальные скорости осветления суспензии каолина закономерно повышаются при увеличении концентрации полиэлектролита. Скорость осветления в присутствии полимерных добавок выше в 3 - 4 раза, чем скорость осветления в отсутствие полимеров. Наибольшие значения скорости достигаются при дозах 0,05-0,10 мг/г.

Полученные результаты по осаждению 0,5 % суспензии каолина недостаточны для анализа механизма снижения устойчивости при введении исследуемых сополимеров. Представлялось необходимым изучить процессы осаждения при более высокой концентрации дисперсной фазы (0,8%). Повышенное содержание дисперсной фазы позволяет не только оценивать скорость осаждения флоккул, но и определять динамические параметры образующегося осадка. В таблице 23 представлены зависимости объема осадка от времени в присутствии сополимера ААм: МАГ состава 70:30.

Таблица 23

Образец

Время осаждения, мин.

Объем осадка, мм3

Остаточная мутность, %

1:99

35

3,4

63

5:95

60

4,0

56

70:30

15

4,5

34

Дист. вода+ каолин

140

2,0

55

Скорость осаждения (накопления осадка) и уплотнения осадка закономерно увеличиваются с повышением количества введенного сополимера.

Сравнивая параметры кинетической устойчивости сополимеров АА с МАГ и ПАА, можно видеть, что сополимеры проявляют значительно большую активность, судя по значениям объема и времени уплотнения осадка. Исходя из известных закономерностей динамики дисперсий, можно предположить, что под действием сополимеров образуются флоккулы большего размера или большей плотности, чем в присутствии полиакриламида.

Известно, что эффективность процесса флоккуляции высокомолекулярными соединениями повышается при добавлении в систему низкомолекулярных электролитов [209]. Низкомолекулярные электролиты, сжимая слой противоионов у поверхности коллоидных частиц и нейтрализуя заряд на их поверхности, облегчают подход макромолекул и их адсорбцию. Одновременно происходит изменение структуры макромолекул. Экранирование заряженных звеньев полимера и уменьшение сил внутримолекулярного отталкивания приводит к сжатию макромолекул. Сжатые макромолекулы, занимая меньший объем, плотнее укладываются на поверхности частиц, в результате чего общее количество адсорбированного полимера возрастает.

В качестве коагулянта использовали органомодифицированную бентонитовую глину месторождения Герпегеж. Выполненные нами опыты показали, что при добавлении флоккулянтов к суспензии каолина, к которой предварительно был добавлен органомодифицированный монтмориллонит (ОМ) резко уменьшалась оптическая плотность раствора, происходило образование и быстрое оседание агрегатов частиц. Этот процесс усиливался с повышением количества добавленного ОМ. Эффективность флоккуляции также зависела от того, в какой последовательности дозируются реагенты - коагулирующий электролит и сополимер. Выявлено, что предварительное введение коагулирующего реагента вызывает более эффективную флоккуляцию (таблица 24).

Таким образом, предварительная агрегация коллоидных частиц позволяет получать крупные хлопья с повышенным содержанием твердой фазы. Однако, хотя процесс флоккуляции протекает достаточно быстро, остаточное значение мутности немного выше при добавлении коагулянта-органоглины.

Таблица 24

Влияние порядка дозирования коагулирующего реагента и сополимеров на эффективность флоккуляции

Коагулянт

Порядок

дозирования

Концентрация

сополимера

Остаточная

мутность, %

ОМ

ОМ+сополимер 70:30

0,5 %

10 %

ОМ

сополимер 70:30+ОМ

0,5 %

28 %

а)

б)

Рис. 32: а- осадок суспензии каолина, б-осадок после обработки сополимером МАГ:АА (70:30)

3.6 Определение остаточного полимера в очищенной воде

Для очистки воды могут применяться полимеры, не действующие на человека, животных, фауну и флору водоемов, нетоксичные и малотоксичные.

Существенное влияние на токсичность оказывает количество непрореагировавшего мономера и реагентов используемых при синтезе. Токсичность этих веществ значительно превышает токсичность полимеров. Увеличение молекулярной массы и разветвленность полимера, затрудняющие его диффузию, приводят, по некоторым данным, к снижению токсичности.

Полиакриламид практически нетоксичное вещество [209], а акриламид сильнотоксичное вещество, действующее на центральную нервную систему и ткани дыхательных путей. ПДК для акриламида составляет 156 - 280 мг/кг.

В связи с этим перед использованием для очистки воды высокомолекулярные флоккулянты следует тщательно очищать от низкомолекулярных фракций. В данной работе полученные полимеры многократно переосаждали из воды в ацетон и очищали методом диализа.

При правильно подобранной дозе очищенного от низкомолекулярных веществ флоккулянта и условиях смешения в воде остаются только следы сополимера, который обладает низкой токсичностью по данным исследований с использованием биотестирования на личинках хирономид.

Для определения остаточного сополимера в очищенной воде использовали метод Буркета [210]. Метод основан на добавлении в исследуемую воду суспензии каолина; такое же количество добавляют в стандартные растворы с известным содержанием сополимера. Сопоставляя скорость осаждения или остаточное количество глины в осветленной воде, определяют количество находящегося в ней полимера. Метод позволяет устанавливать содержание высокомолекулярных флоккулянтов до 0,001 - 0,002 мг/л.

Данные, полученные этим методом, показали отсутствие в очищенной воде полимера, что свидетельствует о том, что в исследованных условиях сополимеры практически полностью взаимодействуют с коллоидными частицами. Использование исследованных реагентов для очистки воды, особенно в хозяйственно-питьевом водоснабжении, требует более углубленного изучения токсичности, а также тщательного контроля содержания мономеров.

Таким образом, сочетание в полученных сополимерах высокой бактерицидной активности (за счет содержания гуанидиновых групп) и флоккулирующих свойств позволило нам выявить новые эффективные гуанидинсодержащие биоцидные флоккулянты для очистки и обеззараживания воды.

Литература

1. Кабанов В.А., Топчиев Д.А. // Полимеризация ионизующихся мономеров. - М.: Наука, 1975.

2. Топчиев Д.А., Малкандуев Ю.А. // Радикальная полимеризация N,N - диалкилдиаллиламмоний галогенидов. - Нальчик: КБГУ, 1997.

3. Топчиев Д.А. // Дис. д-ра хим. Наук. - М.: ИНХС, 1973.

4. Кабанов В.А., Зубов В.П., Семчиков Ю.Д. Комплексно-радикальная полимеризация. - М.: Наука, 1987.

5. Butler G.B. // J. Polym. Sci. - 1960. - V.48. - № 1. - P.279.

6. Burtnett M.D., Butler G.B. // J. Org. Chem. - 1960. - V.25. - P.309.

7. Butler G.B. Cyclopolymerization and Cyclocopolymerization. - New York: Marsel Dekker, 1992.

8. Corfield G.C. // Chem. Soc. Rev. - 1972. - V.1. - № 3. - p.523.

9. Butler G.B. //Amer. Chem. Soc. Div., Polym. Chem. Preprints. - 1967. - V.8. - №1. - P.35.

10. Butler G.B., Kimura S. // J. Macromol. Sci. Chem. A. - 1971. - V.5. - №1. - p.181.

11. Butler G.B., Crawshow A., Miller W.L. // J. Am. Chem. Soc. - 1958. - V.80. - №14. - p.3165.

12. Julia M., Maumy M. // Bull. Soc. Chim. Fr. 1966. - V.1. - p.434.

13. Julia M. // Chem. Eng. News. - 1966. - V.41. - P.100.

14. Butler G.B. // J. Am. Chem. Soc. - 1967. - V.89. - P.35.

15. Richey H.G., Rothman A.M. // Tetrahedron Lett. . - 1968. - V.12. - P.1457.

16. Brace N.O. // J. Polym. Sci. . - A-1. - 1970. - V.8. - № 8. - P.2091.

17. Lancaster J.E., Baccei L., Panzer H.P. // J. Polym. Sci., Polym. Lett. Ed. - 1976. - V.14. - № 9. - P. 549.

18. Gibbs W.E., Barton J.M. / in book: Kinetics and Mechanism of Polymerization/ Ed. Hat G.E. - New York: Dekker, 1978, part 1, chapter 2.

19. Panzik H.L., Mulvaney J.E // J. Polym. Sci., Polym. Chem. Ed. -1972. - V.10. - № 12. - P.3469.

20. Uzushido K., Matsumoto A., Giwa M. // J. Polym. Sci., Polym. Chem. Ed. - 1978. - V.16. - № 5. - P.1081.

21. Gray T.F., Butler G.B. // J. Macromol. Sci. Chem. A. - 1975. - V9. - № 1. - P.45.

22. Matsumoto A., Tamura J., Jamawak M., Oiwa M. // J. Polym. Sci., Polym. Chem. Ed. -. 1979. - V.17. - № 5. - P.1419.

23. Johns S.R., Willing R.I., Middleton S., Ong A.K. // J. Macromol. Sci. Chem. A, 1979, V.10, № 5, p.875.

24. Ottenbreit R.M. // Ing. Engng. Chem. Prod. Res. Dev. 1980, V.19, p.520.

25. Bouman L.M., Cha C.I. // J. Polym. Sci. Polym. Lett. Ed. 1979, V.17, № 3, p.167.

26. Wandrey C. // Acta Polym. 1981, V.32, p. 177.

27. Топчиев Д.А., Нажметдинова Г.Т., Крапивин А.М., Шрейдер В.А., Кабанов В.А. // Высокомолек. соед. Б, 1982, Т.24Б № 6, с. 473.

28. Solomon D.H. // J. Macromol. Sci. Chem. A, 1975, V.9, № 1, p.97.

29. Hawthorne D.G., Johns S.R., Willing R.I. // Aust. J. Chem. 1976, V.29, № 9, p.315.

30. Johns S.R., Willing R.I., Middleton S., Ong A.K. // J. Macromol. Sci. Chem. A, 1979, V.10, № 5, p.875.

31. Hawthorne D.G., Johns S.R., Solomon D.H. Willing R.I. // Aust. J. Chem. 1979, V.3, № 215, p.1155.

32. Beckwith A.L., Ong A.K., Solomon D.H. // J. Macromol. Sci. Chem. A,. 1975, № 9, p.125.

33. Beckwith A.L., Hawthorne D.G., Solomon D.H. // Aust. J. Chem. 1976, V.29, № 9, p.995.

34. Solomon D.H. // J. Polym. Sci. Polym. Symposium. 1975, V.49, p.175.

35. Haman S.D., Pompe A., Solomon D.H., Spurling T.H. // Aust. J. Chem. 1976, V.29, № 9, p.1975.

36. Moad G., Solomon D.H. // Chemistry of free radical polymerization. Oxford: Pergamon, 1995.

37. Топчиев Д.А., Бикашева Г.Т., Мартыненко А.И., Капцов Н.М., Гудкова Л.А., Кабанов В.А. // Высокомолек. соед. Б. 1980, Т.22, № 4, с.269.

38. Топчиев Д.А., Бикашева Г.Т., Мартыненко А.И., Капцов Н.М., Гудкова Л.А., Кабанов В.А. Полимерные амины: синтез мономеров, полимери-зация и пути использования в народном хозяйстве. М.: Наука, 1980.

39. Нажметдинова Г.Т. Дис. канд. хим. наук. М.: ИНХС, 1983.

40. Нажметдинова Г.Т., Шрейдер В.А., Топчиев Д.А., Кабанов В.А. // Изв. АН СССР. Сер.хим. 1984, Т.5, с.1024.

41. Топчиев Д.А., Нажметдинова Г.Т. // Высокомол. соед. А, 1983, Т. 25, №3, с.636.

42. Топчиев Д.А., Нажметдинова Г.Т., Кабанов В.А. // Изв. АН СССР. Сер. хим. 1989, Т.9, с.2146.

43. Babaev N.A., Martynenko A.I., Topchiev D.A., Kabanov V.A., Wandrey Ch., Hahn M., Jaeger W., Reinisch G. // Acta Polymerica. 1985, V.36, № 7, p.396.

44. Голубкова Н.А., Мартыненко А.И., Бабаев Н.А., Нечаева А.В., Эфендиев А.А., Топчиев Д.А., Кабанов В.А. // Изв. АН СССР, сер.хим., 1986, Т. 2, с.485.

45. Малкандуев Ю.А., Коршак Ю.В., Микитаев А.К, Топчиев Д.А., Кабанов В.А. // Материалы V Международного микросимпозиума «Радикальная полимеризация». Уфа, 1984, с.46.

46. Бабаев Н.А., Мартыненко А.И., Оппенгейм В.Д., Крапивин A.M., Эфендиев А.А., Топчиев Д.А. // Азерб. хим. журн. 1983, Т.4, с.89.

47. Мартыненко А.И., Вандрей К., Егер В., Хан М., Топчиев Д.А., Райниш Г., Кабанов В.А. // Материалы. V Международного микросимпозиума «Радикальная полимеризация». Уфа, 1984, с.74.

48. Четыркина Г.М., Соколова T.A., Котон М.М. // ВМС. I960. Т. 2. № 8. С. 1207-1212.

49. McCormiek C.L., Johnson СВ. //Polymer Mater. Sci. Eng. 1986. V.55. P.366-370; Chem. Abstr. 1986. V. 105.191686.

50. Morishima Y., Itoh Y., Nozakura S. //Makromol. Chem. 1981. Bd. 182. N11. S.3135-3147.

51. Iton Y., Morishima Y„ Nozakura S. //J. Polymer Sci. Polym. Chem. Ed. 1982. V. 20. N2. P. 467-476.

52. Kurenkov V.F., Myagchenkov V.A. //Acta Polymeiica. 1986. Bd. 37. N8, S. 517-524.

53. Ilavsky M. // Macromolecules. 1982. V. IS. N3. P. 782-788.

54. Стародубцев СП, Рябина B.P. //ВМС. Сер. А. 1987. Т. 29. № 11. С. 2281-2285.

55. Salamone J.C., Tsai С.С., Watterson А.С. et al. Polymeric Amines and Ammonium Salts/Ed. by E.J.Goethals. Oxford: Pergamon Press, 1980. P. 105-112.

56. Salamone J.C., Mahmud N.A., Mahmud M.V. et al. //Polymer. 1982. V. 23. N6. P. 843-848.

57. Bock J., Siano D.B., SchuUD.Het al. //J. Polymer Mater. Sci. Eng. 1986. V. 55. P. 355-360; Chem. Abstr. 1986. V. 105.191685.

58. McCormiek C.L., Nonaka Т., Johnson СВ. // Polymer. 1988. V. 29. N 4. P. 731-739.

59. McCormiek C.L., Hutchinson B.H., Morgan S.E. //Makromol. Chem. 1987. Bd. 188. N 2. S. 357-370.

60. Буянов АЛ., Рееелъская Я.Г., Петропавловский Г.А. и др. // ВМС. Сер. Б. 1989. Т. 31. № 12. С. 883-887.

61. Nyquist В.Е. Functional Monomers. Their Preparation, Polymerization and Application /Ed. by R.H.Yokum. - New York: M. Decker, 1973. - V. 1.- 745p.

62. Kamogawa H., Sekiyo T. I. // Polymer Sci. 1961. V.50. N 153. P. 211-225.

63. Глазомицкий КМ., Кирпиченко K.P., Гольцин Б.Э. и др. //ЖПХ. 1971. Т. 44. № 5. С. 1192-1195.

64. Feldman D., Unguretne С, Crusos A. et al. //Mater, plast. 1976. Т. 13. N 2. P. 69-73; РЖХ. 1977.4T739.

65. Bonardi С, Boutevin В., Pietrasanta Y, et al. //Makromol. Chem. 1985. Bd. 186. N2. S. 261-271.

66. Бектуров E.A., Мягченкое B.A., Куренков В.Ф. Полимеры и сополимеры стирол-сульфокислоты. - Алма-Ата: Наука, 1989. - 200 с.

67. Мягченков B.A., Френкель С.Я. Композиционная неоднородность сополимеров. - Л.; Химия, 1988. - 248 с.

68. Daintan F.S., Sisley W.D. //Tram. Faraday Soc. 1969. V. 59. N 486. Part 6. P. 1385-1389.

69. Hart R., Ttmmerman D. //J. Polymer Sci. I960. V. 48. N 150. P. 151-157.

70. Otsu Т., Inove M., Yamada B. et al. // J. Polymer Sci. Polymer Lett. Bd. 1975. V. 13. N 8. P. 505-510.

71. Петровa Г.А. ., Штрайхман Г.А., ВаншейдтА.А. //ЖФХ. 1959. Т. 33. № 6. С. 1246-1252.

72. Yokoda К., Oda J. //Kogyo Kagaku Zasshi. - 1970. - V.73. - N1. - P. 224-228; Chem. Abstr. - 1970. - V. 72.- 122003.

73. Whistler R.L, GoatleyJ. // J. Polymer Sci. 1961. V. 50. N153. P. 127-132.

74. Sur G.S.,Noh S.K., Choi S.K. //. Polymer Sci., Polymer Chem. Ed. 1981. V. 19. N 2. P. 223-233.

75. Wichterle O., Gregor V. //J. Polymer Sci. 1959. V. 34. N127. P. 309-317.

76. Bork J.F., Wyman D.P. et al. //J. Appl. Polymer. Sci. - l963. - V.7. - N2. - P.451-459.

77. Jordan E.F., Bennett R„ Shumon A.C. et al. // J. Polymer Sci. A-l. 1970. V. 8. N 11. P. 3113-3121.

78. Oishi Т., FujimotoM.Hl. //Polymer Sci. Polymer Chem. Bd. 1982. V.20. N9. P. 2727-2730.

79. Yomada В., Yoshiokt M., Otsu T. //J. Polymer Sci. Polymer Chem. Ed. 1984. V. 22. N 2. P. 463-473.

80. Соколова T.A., Четыркина Г.М. // BMC. 1961. T. 3. № 2. C. 244-547.

81. Glpstein В., Hewett W.A., Need O.U. //J. Polymer Sci. A-l. 1970. V. 8.N 11. P. 3285-3294.

82. Zabransky J, Houske M., KalotJ. // Makromol. Chem. 1985. Bd. 186. N2. S. 247-253.

83. Наволокина P.А., Зилъберман E.H., Кузнецова Т.А. //Физико-хим. основы синтеза и переработки полимеров. - Горький: Изд-во ГГУ, 1983. - С. 15-17.

84. Watanabe К, Sekei М„ Sakakibara Y. et al. //Kogyo Kagaku Zasshi. 1970. V. 73. N 5. P. 1056-1058; Chem. Abstr. 1970. V. 72.122003.

85. Xван P.M., Мусаев У.Н., Бабаев T.M. и др. //Физико-хим. основы синтеза и переработки полимеров. Горький: изд-во ГГУ, 1979. С. 13-18.

86. Мягчевкое В.А., Френкель С.Я. //Успехи химии. 1973. Т. 42. № 5. С.827--853.

87. Мягченков В.А., Френкель С.Я. //Усп. химии. 1978. Т. 47. N* 7. С. 1261-1292.

88. Saint G„ Leoni A., Franco S.Y. //Маkromol. Chem. 1971. Bd. 144. S. 235-244.

89. Chung K.H. Hi. //Korean Chem. Soc. 1970. V. 14. N 4. P. 333-339; Chem. Abstr, 1971. V. 75.118647.

90. Winsfc L.M., Kotlarchik C, Darlak R.S. // J. Polymer Sci. Polymer Chem. Ed. 1973. V. 11. N 2. P. 353-365.

91. Minsk K.M., Kotlarchik C, Meyer G.N. // J. Polymer Sci. Polymer Chem. Ed. 1973. V. 11. N12. P. 3037.

92. Jacob M., SmetsG., DeSchryverF. // J. Polymer Sci. B. 1972. V. 10. N 9. P. 669-673.

93. Chatterjee A.M., Burns CM. //Can. I. Chem. 1971. V.49. N 20. P. 3249-3251.

94. Kamogawa H. //Kogyo Kagaku Zasshi. 19S8. V. 61. P. 1024-1027; Chem. Abstr. 1961. V. 55. P. 17077.

95. Saini G., Leoni A., Franco S. //Makromol. Chem. 1971. Bd. 147. S. 213-218.

96. Leoni A., Francos., Saint G. //Makromol. Chem. 1973. Bd. 167. S. 97-104.

97. Franco S., Leoni A. //Polymer. 1973. V. 14. N1. P. 2-4.

98. Knobloch F.W. //J. Polymer Sci. 1957. V. 25. N10. P. 453-464. 297.

99. Soini G., Leoni A., Franco S. //Makromol. Chem. 1971. Bd. 146. S. 165-171.

100. Kurenkov V.F., Myagchenkov V.A. //Europ. Polym. J. 1980. V. 16. N 11. P. 1229-1239.

101. Хам Д. Сополимеризация. - M.: Химия, 1971.616 с.

102. North A.M., Scallam A.M. //Polymer. 1964. V.5. N 9. P. 447-455.

103. Saini G., Polla-Muttiot G., MeironeM. //J. Polymer Sd. 1961. V. 50. N 153. P. 812-813.

104. Абрамова Л.И., Зилъберман E.H., Чугунова Л.С. //ВМС. Б. 1979. Т. 21. № 11. С. 813-817.

105. Fineman М., RossS.D. H. //J. Polymer Sci. 1950. V. 5. N 2. P. 259-262.

106. Наволокина P.A., Зилъберман Б.Н., Масленникова Т.И. //ВМС. Сер. Б. 1982. Т. 24. Я* 8. С. 609-612.

107. Зилъберман Е.Н., Наволокина Р.А., Абрамова Н.А. //ВМС. Сер. Б. 1983. Т. 25. № 4. С. 279--283.

108. Kelen Г., Tudos Р„ Turmnyi В. et at. //J. Polymer Sci. Polymer Chem. Ed. 1977. V. 15. N12. P. 3047-3074.

109. Tidwell P.W., Mortimer СA. //J.. Polymer Sci. A. 1965. V. 3. N1. P. 369-387.

110. Park K. Y.r Santee E.R., Harwood H.J. //Polymer Prepr. 1986. V. 27. N 2. P. 81-82.

111. Зилъберман Б.Н., Абрамова Л.И., Черненкова ЮМ. и др. //ВМС. Сер. А 1984. Т. 26. № 7. С. 1365-1368.

112. Оудиан Дж. Основы химии полимеров. М.: Мир, 1974, 614 с.

113. Hirooka М., Yabuuchi Я., Kawasumi S, et al. //J. Polymer Sci. Polymer Chem. Ed. 1973. V. 11. N 6. P. 1281-1306.

114. Мягченков B.A., Френкель С.Я. //Усп. химии. 1968. Т. 37. №» 12. С. 2247-2271.

115. Куренков В.Ф., Верижникова А.С., Кузнецов Е.В. и др. //Химия и хим. технология. 1982. Т. 25. № 2. С. 221-226. (Изв. вузов).

116. Мягченков В.А., Ларионова Л.А., Вагапова А.К. и др. //ДАН СССР 1972. Т. 207. С. 337-380.

117. Басова Т.Г., Зилъберман Е.Н., Шварева Г.Н. и др. //ВМС. Сер. Б. 1975. Т. 17. № 5. С. 379-383.

118. Мягченкое В.А., Куренков В.Ф., Френкель С.Я. //ВМС Сер. А. 1968. Т. 10. IP 8. С. 1740-1748.

119. Мягченкое В.А., Куренков В.Ф., Кузнецов Б.В. и др. //ВМС. Сер. А. 1969. Т. 11. К" 8. С. 1789-1792.

120. Мягченкое В.А., Куренков В.Ф., Френкель С.Я. //ДАН СССР 1969. Т. 184. №> 4. С. 880-882.

121. Мягченкое В.Л., Вагапова А.К., Кузнецов Е.Л. и др. //ДАН. 1973. Т. 210. № 1. С. 151-153.

122. Куренков В.Ф. //Химия и технол. элементоорганич. соед. и полимеров. 1974. Т. 314. С. 113-117.

123. Kurenkot V.F., Akhmedjanova R.A., Myagchenkov V.A. // Aсtа Polymerica. 1981. Bd. 32.N 10. S. 612-615.

124. Мягченков В.А., Куренков В.Ф., Кукушкина И.А. и дp. //ДАН СССР. 1977. Т. 236. № 1. С. 157-160.

125. Куренков В. Ф., Кукушкина И.А., Кузнецов Е.В. и др. // Химия и технол. элементо-органич. соед. и полимеров. Т. 5. Казань: КХТИ, 1976, С. 72-76.

126. Myagchenkov V.A., Vagapova А.К., Kurenkov V.F. et al. //Europ. Polymer. J. 1978. V. 14. N 2. P. 169-171.

127. Myagchenkov V.A., Kurenkov V.F., Frenkel S.Ya. //Acta Polym. 1982. Bd. 33. N6. S. 388-394.

128. Kurenkov V.F., Myagchenkov V.A. //Acta Polym. 1986, Bd. 37. N 7. S. 424-435.

129. Rajan C.R., Srinivas Y.S., Ponrathman S. et al. //J. Polymer Sci. Polymer Lett. 1987. V. 25. N 2. P. 73-77.

130. Куренков В.Ф., Кузнецов E.B,, Мягченков B.A. // Тр. Казанского хим.-технол. ин-та. Казань: КХТИ, 1969. № 40. Часть II. С. 38-43.

131. Truong N.D., Calin J.C., Francois J. et al. //Polymer. Y. 1986. V. 27. N3. P. 467-475.

132. Басова Т.Г., Зилъберман E.H., Шварева ГЛ. и др. // ВМС. Сер. Б. 1977. Т. 19. №1. С. 22-25.

133. Кабанов В. А., Топчиев Д. А. Полимеризация ионизующихся мономеров. - М.: Наука, 1975. - 224 с.

134. Barton I, Gutanicova V. //Chem. Papers, 1987. V.41. N1. P. 113-117.

135. Зилъберман E.H., Новолокина P.A., Кубарэта О.П. //ВМС. - 1980. - Т.22. - №9 - С. 2006-2011.

136. Каргин В.А., Платэ H.A.. Патрикеева Т.П. //ВМС. 1964. Т. 6. № 11. С. 2040-2045.

137. Abe Z., Unaka Н., Sumimoto М. //J. Polymer Sci. Polymer Chem. Ed. 1978. V. 16. N1. P.305-308.

138. Танака H. //J. Polym. Sci. Polym. Chem. Ed. 1986. V. 24. N1. P. 29-36.

139. Yukawa J., Kataoka K., Tsuruta T. //Polymer J. 1979. V. 11. N11. P. 895-900.

140. Shyluk W.P. //J. Polymer Sci. A. 1964. V. 2. N 5. P. 2191-2206.

141. Зильбермон E.H., Черненкова Ю.И., Шварева Г.Н. и др. // Физ.-хим. основы синтеза и переработки полимеров. № 3. Горький: изд-во ГТУ, 1978. С. 20-22.

142. Черненкова Ю.П., Зилъберман Е.Н., Шварева Г.Н. // Физ-хим. основы синтеза и переработки полимеров. Горький: иэд-во ГГУ, 1984. С. 27-31.

143. Черненкова Ю.П. Синтез сополимеров на основе диалкиламиноалкилметакрила-тов: Автореф. Дис. ... канд. хим. наук. Казань: Казанский хим.-технол. ин-т, 1984. 32 с.

144. Черненкова Ю.П., Зилъберман Е.Н., Шварева Г.Н. //ВМС. Сер. Б. 1982. Т. 24. № 2.ь С. 119-122.

145. Черненкова Ю.П., Зилъберман Е.Н., Шварева Г.Н. и др. //НЖПХ. 1980. Т. 53. № 2.J С. 378-382.

146.Яминский В.В. и др. Коагуляционные контакты в дисперсных системах. - М.: Химия, 1982.

147. Фридрихсберг Д.А. Курс коллоидной химии. - М.: Химия, 1974.

148. Небера В.П. Флоккуляция минеральных суспензий. - М.: Недра, 1983.

149. Левич В.Г. Физико-химическая гидродинамика. - М: Физмат, 1959.

150. Баран А.А., Соломенцева И.М. Флоккуляция дисперсных систем водорастворимыми полимерами и ее применение в водоочистке. //Химия и технология воды. - 1983. - т.5. - 32.

151. Бектуров Е.А., Бимендина Л.А. Интерполимерные комплексы. - Алма-Ата: Наука, 1977.

152. Вейцер Ю.И. и др. Использование катионных полиэлектролитов для очистки воды от вирусов. //Гигиена и санитария. - 1976. - С. 3.

153. Эпштейн С.И., Пантелят Г.С. К вопросу разрушения хлопьев взвешенных веществ в турбулентном потоке. - В кн.: Вопросы технологии обработки воды промышленного и питьевого водоснабжения. - Киев: Будивельник, 1969.

154. Полиакриламид / Под ред. В.Ф.Куренкова. - М.: Химия, 1992. 192 с.

155. Небера В.П. Флоккуляция минеральных суспензий. - М.: Недра, 1983. 288 с.

156. Вейцер Ю.И., Минц Д.М. Высокомолекулярные флоккулянты в процессах очистки природных и сточных вод. - М.: Стройиздат, 1984. с. 202.

157. Баран А.А. Полимерсодержащие дисперсные системы. - Киев: Наук. думка, 1986. с. 204.

158. Николаев А.Ф., Охрименко Г.И. Водорастворимые полимеры. - Л.: Химия, 1979. с. 61.

159. Halverson F., Panzer H.P. // Kirk-Othmer Encyclopedia of Chemical Technology. 3rd ed. - N.Y.: Wiley, 1980. - Vol. 10. - P. 489.

160. Полиакриламид / Под ред. В.Ф. Куренкова. - М.: Химия, 1992. 192 с.

161. Kurenkov V.F., Myagchenkov V.A. // Polymeric Materials Encyclopedia. Boca Raton (Fla): CRC Press Inc., 1996. Vol. 1.

162. Alfrey T., Overberger C.G., Pinner S.H. // J. Am. Chem. Soc. 1953, V.75. - p.4321.

163. Сивов Н.А., Мартыненко А.И., Кабанова Е.Ю., Попова Н.И., Хаширова С.Ю., Эсмурзиев А.М. // Нефтехимия. - 2004. - №1. - C. 47-51.

164. Хаширова С.Ю., Сивов Н.А., Попова Н.И., Кабанова Е.Ю., Мартыненко А.И., Малкандуев Ю.А., Топчиев Д.А. Синтез новых мономеров на основе диаллилгуанидина и их способность к радикальной полимеризации. // Известия вузов. Сев.-Кавк. Регион. Сер. Естеств. Науки. 2002. № 3. С. 82-85.

165. Малкандуев Ю.А., Хаширова С.Ю., Сивов Н.А., Попова Н.И., Кабанова Е.Ю., Мартыненко А.И., Топчиев Д.А. Некоторые особенности сополимеризации N,N-диаллилгуанидинацетата и N,N-диаллил- N,N-диметиламмонийхлорида. // Известия вузов. Сев.-Кавк. Регион. Сер. Естеств. Науки. 2003. №1. С. 19-22.

166. П.А.Гембицкий, И.И.Воинцева. Полимерный биоцидный препарат. - Запорожье: Полиграф, 1998. - 42 с.

167. Хаширова С.Ю., Эсмурзиев А.М., Мартыненко А.И., Кабанова Е.Ю., Попова Н.И., Сивов Н.А., Малкандуев Ю.А. Радикальная гомо(со)полимеризация акрилат- и метакрилатгуанидинов в водных средах //Известия вузов. Сев.-Кавк. Регион. Сер. Естеств. науки. 2004. №1. С. 82-85.

168. Бьерклунд Ю.А., Рейтерхэлл А.Р. Патент № 417569, Швеция, 1981.

169. Химическая энциклопедия / под ред. И.Л.Кнунянца. 1988, M., Т. 2 С. 138.

170. Платэ Н.А., Васильев А.Е. Физиологически активные полимеры. - М.:Химия, 1986, - c. 296.

171. Платэ Н.А., Васильев А.Е. // Высокомолек. соед. А, 1982, Т.24, №4, с.675.

172. Ryser H.J. // Science. 1965, V.150, p.501.

173. Ryser H.J. // Biomembranes. 1971, V.2, p.197.

174. Ярославов А.А., Кабанов В.А. // Материалы Всероссийского Каргинского симпозиума. 2000. Тез. докл. ч.1, с.17.

175. Фельдштейн М.М. // Синтетические полимеры медицинского назначения. Материалы 6 Всесоюзного симпозиума. Алма-Ата, 1983, с.142.

176. Сивов Н.А., Мартыненко А.И., Кабанова Е.Ю., Попова Н.И., Хаширова С.Ю., Эсмурзиев А.М. // Нефтехимия, №1, 2004, с. 47-51.

177. Хаширова С.Ю., Сивов Н.А., Попова Н.И., Кабанова Е.Ю., Мартыненко А.И., Малкандуев Ю.А., Топчиев Д.А. Синтез новых мономеров на основе диаллилгуанидина и их способность к радикальной полимеризации. // Известия вузов. Сев.-Кавк. Регион. Сер. Естеств. Науки. 2002. № 3. С. 82-85.

178. Малкандуев Ю.А., Хаширова С.Ю., Сивов Н.А., Попова Н.И., Кабанова Е.Ю., Мартыненко А.И., Топчиев Д.А. Некоторые особенности сополимеризации N,N-диаллилгуанидинацетата и N,N-диаллил- N,N-диметиламмонийхлорида. // Известия вузов. Сев.-Кавк. Регион. Сер. Естеств. Науки. 2003. №1. С. 19-22.

179. П.А.Гембицкий, И.И.Воинцева. Полимерный биоцидный препарат. - Запорожье: Полиграф, 1998. - с. 42 .

180. Хаширова С.Ю., Эсмурзиев А.М., Мартыненко А.И., Кабанова Е.Ю., Попова Н.И., Сивов Н.А., Малкандуев Ю.А. Радикальная гомо(со)полимеризация акрилат- и метакрилатгуанидинов в водных средах //Известия вузов. Сев.-Кавк. Регион. Сер. Естеств. науки. 2004. №1. С. 82-85.

181. Бьерклунд Ю.А., Рейтерхэлл А.Р. Патент № 417569, Швеция, 1981.

Химическая энциклопедия / под ред. И.Л.Кнунянца. 1988, M., Т. 2 С. 138.

182. Сополимеризация / под ред. Д.Хэма, 1971, М., Химия, с. 12.

183. Alfrey T. Goldfinger G. // J. Chem.Phys. 1944. V.12, N 6. р.205

184. Езриелев А.И., Брохина Э.Л., Роскин Б.С. // Высокомол. соединения 1969, А, Т.11, №8. с.1670.

185. Fineman M., Ross S.D. // J. Pol. Sci. 1950. V.5. р.251

186. Khokhlov A.R., Khalatur P.G. // Physica A. 1998, V.249, p.253.

187. Khokhlov A.R., Khalatur P.G. // Phys. Rev. Lett. 1999, V.82, p.3456.

188. Лозинский В.И., Сименел И.А., Курская Е.А., Кулакова В.К., Гринберг В.Я., Дубовик А.С., Галаев И.Ю., Маттиассон Б., Хохлов А.Р. // ДАН, 2000, т.375, №5, с. 637.

189. Г.Е.Афиногенов, Е.Ф.Панарин // Антимикробные полимеры. - СПб: Гиппократ, 1993, с. 261.

196. Брагинский Л.П. Методологические аспекты токсикологического биотестирования на Daphnia magna Str. и других ветвистоусых ракообразных (критический обзор) // Гидробиол. журн. - 2000. - Т. 36, № 5. - С.50-70.

197.Смирнов Н.Н. Биология ветвистоусых ракообразных / Зоология беспозвоночных - 3. - М., 1974. - 115 с. (Итоги науки и техники, ВИНИТИ АН СССР).

198.Метелев В.В., Канаев А.И., Дзасохова Н.Г. Водная токсикология. - М.: Колос, 1971. - 246с.

199. Вейцер Ю.И., Минц Д.М. Высокомолекулярные флоккулянты в процессах очистки природных и сточных вод. - М.: Стройиздат. 1984. 202с.

200. Баран А.А., Соломенцева И.М. Флоккуляция дисперсных систем водорастворимыми полимерами и ее применение в водоочистке. //Химия и технология воды. - 1983. - т.5. - C. 32.

201. Булидорова Г.В., Мягченков В.А. Кинетические особенности седиментации каолина в присутствии анионного и катионного полиакриламидного флоккулянтов // Коллоид, журн. - 1995. - Т.57, N6. -С. 778-782.

202. Булидорова Г.В., Мягченков В.А. Кинетика седиментации каолина при совместном введении флоккулянта (катионного полиакриламида) и коагулянта // Коллоид, журн. - 1996. - Т.58, N1. - С.29-34.

203. Gregory J. Turbidity fluctuations in flowing suspentions // J. Colloid and Interface Sci. - 1985. - V.105, N2 - p. 357.

204. Барань Ш. (Баран A.A.), Грегори Д. Флоккуляция суспензии каолина катионными полиэлектролитами // Коллоид. журн. - 1996. -Т.58, N1.-С. 13-18.

205. Куренков В.Ф., Чуриков Ф.И., Снегирев СВ. Седиментация суспензии каолина в присутствии частично гидролизованного полиакриламида и А12(804)з. // ЖПХ, 1999 - т. 72, № 5. - С. 828-833.

206. Куренков В.Ф., Шарапова З.Ф., Хайрулин М.Р и др. Влияние молекулярных характеристик натриевой соли 2-акриламидо-2-метилпропан сульфокислоты с N-винилпирролидоном на флоккулирующие свойства. // ЖПХ. - 1999. - т . 72, № 8. - с. 1374-1379.

207. Куренков В.Ф., Снегирев СВ., Древоедова Е.А, Чуриков Ф.И. Исследование флоккулирующих свойств полиакриламидных флоккулянтов марки Praestol. // ЖПХ. - 1999. - Т. 72. - № 11. - С. 1892-1899.

208. Мягченков В.А, Баран А.А, Бектуров Е.А. и др. Полиакриламидные флоккулянты. - Казань.: Казан, гос. тех. ун-т.-1998,-288 с.

209. Burcket H. Die Bestimung von Spuren Polyacrylamid in Wasser, Gas und Wasserflach, 1970, III, 5.

... читать дальше >>>

Поcмотреть текст работы Поcмотреть полный текст
Скачать работу можно здесь Скачать работу "Радикальная сополимеризация акрилат- и метакрилатгуанидинов с виниловыми мономерами" можно здесь
Сколько стоит?

Рекомендуем!

база знанийглобальная сеть рефератов