Продукты сгорания топлива

Классификация и общий состав топлив. Теплота сгорания топлива. Определение количества воздуха, необходимого для горения топлива. Получение топлива и смазочных масел для двигателей внутреннего сгорания. Рассмотрение установок для удаления шлака и золы.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 18.01.2015
Размер файла 391,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Классификация и общий состав топлив

По определению Д.И. Менделеева, топливом называется горючее вещество, умышленно сжигаемое для получения теплоты. Топливо должно отвечать следующим основным требованиям: при сгорании выделять возможно, большее количество теплоты, сравнительно легко загораться и развивать высокую температуру, быть широко распространенным в природе, доступным для разработки, дешевым при использовании, сохранять свои свойства во время хранения.

Этим требованиям наиболее полно отвечают вещества органического происхождения: нефть, природные газы, ископаемые угли, дрова, горючие сланцы, торф. В таблице 1.1 дана общая классификация топлив.

Таблица 1.1 - Общая классификация топлив

Агрегатное состояние

Происхождение топлива

Естественное

Искусственное

Жидкое

Нефть

Бензин, керосин, дизельное топливо, мазут, спирт, бензол, смолы (каменноугольная, торфяная, сланцевая) и др.

Газо-образное

Природный и нефтепромысловый

Генераторный, водяной, светильный, коксовый, полукоксовый, доменный, нефтеперерабатывающих заводов и др. газы

Твердое

Ископаемые угли, горючие сланцы, торф, дрова

Каменноугольные кокс и полукокс брикетированное и пылевидное топливо, древесный уголь и др.

топливо сгорание шлак смазочный

Очень важно, чтобы в процессе сгорания топлива не выделялись вещества, представляющие опасность для окружающей среды. Топливо состоит из горючей и негорючей частей. Горючая часть топлива представляет собой совокупность различных органических соединений, в которые входят углерод, водород, кислород, азот, сера. Не горючая часть (балласт) состоит из минеральных примесей, включающих золу и влагу.

Углерод С - основная горючая часть топлива. С увеличением его содержания тепловая ценность топлива повышается. Для различных топлив содержание углерода составляет от 50 до 97 процентов.

Водород Н является второй по значимости горючей составляющей топлива. Содержание водорода в топливе достигает 25 процентов. Однако, при сгорании водорода выделяется в четыре раза больше теплоты, чем при сгорании углерода.

Кислород О, входящий в состав топлива, не горит и не выделяет теплоты, поэтому является внутренним балластом топлива. Его содержание в зависимости от вида топлива колеблется в широких пределах (от 0,5 До 43 процентов).

Азот N не горит и так же, как кислород, является внутренним балластом топлива. Содержание его в жидком и твердом видах топлива не велико и составляет 0,5...1,5процентов.

Сера S, при сгорании которой выделяется определенное количество теплоты, является весьма нежелательной составной частью топлива, так как продукты его сгорания - сернистый SO2 и серный СОз- ангидриды вызывают сильную газовую или жидкостную коррозию металлических поверхностей. Содержание серы твердом топливе колеблется от долей процентов до 8 процентов, а в нефти от 0,1 до 4 процентов.

Зола А представляет собой негорючий твердый компонент, количество которого определяют после полного сгорания топлива. Она является нежелательной и даже вредной примесью, так как в ее присутствии усиливаются абразивные износы, усложняется эксплуатация котельных установок и т.д. Топливо с высоким содержанием золы имеет низкую теплоту сгорания и воспламенения.

Влага W является весьма нежелательной примесью топлива, так как, отбирая часть теплоты на испарение, снижает теплоту и температуру сгорания топлива, усложняет эксплуатацию установок (особенно в зимнее время), способствует коррозии и т.д.

Минеральные примеси (золу и влагу) принято подразделять на внешние и внутренние. Первые попадают в топливо из окружающей среды при его добыче, транспортировке или хранений, а вторые входят в его химический состав. Топливо, которое поступает к потребителю в естественном состоянии, и содержит, кроме горючей части, золу и влагу, называется рабочим. Для определения сухой массы топлива его высушивают при температуре 105°С для удаления влаги.

Состав газообразных топлив весьма разнообразен: Горючая часть его включает водород Н, окись углерода СО, метан СН4 и другие газообразные углеводороды (CnHm) с числом углеводородных атомов до 4 включительно. Тепловую ценность газообразного топлива представляют метан и более тяжелые углеводороды. Окись углерода при сгорании выделяет незначительное количество тепла. Балластную часть газообразных топлив составляют негорючие газы, такие, как азот N, углекислый СОз и сернистый SО2, кислород О и пары воды Н2O.

Теплота сгорания топлива

Теплота сгорания топлива является его качественной основной характеристикой. Для характеристики различных видов топлив служит удельная теплота сгорания, которая представляет собой количество теплоты, выделяемое при полном сгорании единицы массы (кДж/кг).

Для газообразных топлив применяется показатель объемной теплоты сгорания, характеризующий количество теплоты, выделяемой при полном сгорании единицы объема (кДж/м3). Газообразное топливо оценивают также по молярной теплоте сгорания, то есть по количеству теплоты, выделяемой при полном сгорании одного моля газа (кДж/моль).

Теплоту сгорания жидкого и твердого топлива вычисляют по формуле Д.И. Менделеева. Высшее удельное количество теплоты сгорания определяют по формуле:

QB=339C+1256H-109(O-S) (1.1.)

Низшее (рабочее) удельное количество теплоты сгорания топлива определяют по выражению:

QH=QB-25(9H+W) (1.2.)

В указанных формулах содержание химических элементов выражается в процентах.

Низшая, или рабочая, теплота сгорания Он - это теплота сгорания, получаемая в практических условиях. Вычитаемое 25(9H+W) представляет собой удельное количество теплоты, которое затрачивается на превращение в пар влаги, выделяющейся при сгорании топлива. Пар уносится с продуктами сгорания в атмосферу (9Н- число массовых частей воды, образующихся при сгорании одной массовой части водорода; Н, W - содержание, в топливе соответственно водорода и воды, процентов). В приведенном выражении принято, что дымовые газы охлаждаются до +20°С, оставаясь в газо- и парообразном состояниях. Значит, 1кг пара при выносе в атмосферу будет забирать 2671-(100-20)-2,0096=2512 кДж/кг(2671 кДж/кг- количество теплоты, затрачиваемой на испарение 1 кг воды, (100-20) - условный перепад температуры паров воды, °С; 2,0096 кДж/кг - теплоемкость паров воды).

Основной характеристикой газообразных топлив является объемная теплота сгорания (кДж/м3), которая определяется делением молярного количества теплоты сгорания на объем 1 киломоля газа. 1 киломоль любого газа при нормальных условиях (0°С и 760 мм.рт.ст) занимает объем 22,4 м3.

Высшее объемное количество теплоты сгорания газообразного топлива в расчете на сухую массу может быть определенно по формуле:

Qсв=128(СО+Н2)+399СН4+639СnНm, (1.3.)

а ее низшее объемное количество:

Qcн=128CO+108H2+356CH4+589CnHm. (1.4.)

Объемное количество теплоты сгорания рабочей массы газообразного топлива, содержащего водяные пары, вычисляют по формулам:

QPB=0,805-Qcв/(0,805+W), (1.5.)

Или

QPH-0,805-Qcн/(0,805+W), (1.6.)

где: 0,805-масса 1м3 водяного пара, кг;

W - содержание влаги в м3 газа, кг.

Теплоту сгорания определяют также опытным путем, сжигая определенное количество топлива в специальных приборах (калориметрах). Теплоту сгорания оценивают по повышению температуры воды в калориметре.

Таблица 1.2 - Теплота сгорания и калорийные эквиваленты различных видов топлива

Вид топлива

Теплота сгорания, кДж/кг

Калорийный эквивалент

Условное топливо (донецкий каменный уголь)

29307

1,00

Антрацит

30230

1,03

Бурый уголь

14235

0,449

Торф

13440

0,46

Дрова

12560

0,43

Нефть

41867

1,42

Мазут

41448

1,40

Для сравнения топлив введено понятие условное топливо. За единицу такого топлива принято топливо, которое при полном сгорании 1 кг или 1м3 выделяет 29307,6 кДж. Чтобы перевести любое топливо в условное и потом сравнить его с другими, нужно теплоту сгорания данного топлива разделить на теплоту сгорания условного топлива. Полученное число представляет собой калорийный эквивалент данного топлива и показывает, во сколько раз реальное топливо выделяет больше или меньше теплоты по сравнению с условным.

Для анализа топлива отбирают среднюю пробу в соответствии с требованиями специальных ГОСТов. У газообразного топлива среднюю пробу отбирают аспираторами.

Пробы жидкого топлива берут специальными пробоотборниками при его приеме, отпуске, хранении из резервуара или бочки, при работе транспорта из топливного бака и т.д. Среднюю пробу приготавливают путем смешивания индивидуальных проб, число которых зависит от объема, формы и числа емкостей. Например, для горизонтального резервуара среднюю пробу определяют из индивидуальных проб, взятых с трех уровней: верхнего- с глубины 200 мм от поверхности нефтепродукта (1 часть), среднего- из середины объема (3 части) и нижнего - на расстоянии 250...300 мм от дна резервуара (1 часть). Затем эти пробы сливают в одну емкость, хорошо перемешивают и отбирают среднюю пробу для исследования. Берут также пробу со дна резервуара для обнаружения воды. Уровень воды можно определить также, опуская в резервуар измерительную рейку, нижняя часть которой покрыта специальной водочувствительной пастой. По высоте растворения пасты судят об уровне воды в емкости.

Определение количества воздуха, необходимого для горения топлива

Горение -- это химический процесс соединения горючего вещества и окислителя. Практически горение представляет собой окисление топлива кислородом воздуха. В результате горения выделяется определенное количество тепловой энергии и резко повышается температура.

Характерной особенностью горения является высокая скорость протекания окислительных реакций, при которых выделяемая теплота не успевает рассеиваться. Горение сложный процесс, при котором химические реакции сопровождаются такими физическими процессами, как перемешивание топлива и воздуха, диффузия, теплообмен. Различают, гомогенные, гетерогенные и взрывное горения. В первом случае топливо и окислитель находятся в газообразном состоянии, во втором вступающие в реакцию вещества находятся в различном агрегатном состоянии (например, в твердом или газообразном).

Процесс горения топлива может протекать как при недостатке, так и при избытке окислителя. Полное сгорание топлива происходит при стехнометрическом соотношении топлива, и окислителя, которые соответствуют химическим реакциям полного окисления горючих элементов.

Количество кислорода, теоретически необходимое для сгорания 1 кг твердого или жидкого топлива, состава С, Н, S и О может быть подсчитано на основании уравнений реакций окисления (горения) элементов горючей массы топлива. Углерод реагирует с кислородом по уравнению С+О2=СО2 (12+32 > 44), то есть для сгорания 1 кг углерода необходимо 32/12=2,67 кг кислорода. Водород реагирует с кислородом в соответствии с уравнением 2Н2+О2=2Н2О (4+32 > 36). Значит, для сгорания 1 кг водорода необходимо 32/4=8кг кислорода.

Сера реагирует с кислородом по уравнению S+C2=SO2 (32+32 > 64), то есть для сгорания 1 кг серы требуется 32/32=1 кг кислорода. Значит, для полного сгорания 1кг топлива рассматриваемого элементного состава (в массовых процентах) потребуется кислорода (кг)

O = (2,67C+8H+S-O)/100 (1.7)

Предполагается, что содержащийся в топливе кислород полностью затрачивается на горении. На практике при сжигании топлива подводится не чистый кислород, а воздух, в котором содержится лишь 23,2 процента кислорода по массе. В этом случае теоретически необходимое для полного сгорания 1кг топлива количество воздуха (кг) может быть определено по выражению:

Lтв = (2,67С+8Н+8-О)/23,2 (1.8)

В случае, когда количество воздуха определяют в объемных единицах, то выражение нужно разделить на плотность воздуха, равную 1,293 при нормальных условиях. Тогда теоретически необходимое количество воздуха (м) выразится так:

Lтв = (2,67C+8H+8-O)/30 (1.9)

Теоретически необходимое количество воздуха (м3) для сжигания газообразного топлива можно определить по известному объемному составу (%)газа при объемном содержании кислорода в воздухе, равном 21%:

Lтв = [0,5(СО+Н2)+(n+m/4)СnНm-O2]/21 (1.10)

где n - число атомов углерода; m - число атомов водорода.

В реальных условиях невозможно добиться полного сгорания топлива при подаче теоретически необходимого количества воздуха. Поэтому в двигателях внутреннего сгорания подают несколько большее по сравнению с теоретической раскладкой количество воздуха. Действительное количество воздуха при сгорании топлива подсчитывают с учетом коэффициента избытка воздуха а

Lдв = Lтв ·a (1.11)

Коэффициентом избытка воздуха а называется отношение количества воздуха Lдв, действительно израсходованного на сгорание топлива, к количеству воздуха LTB, теоретически необходимого для полного сгорания топлива. Значение коэффициента избытка воздуха зависит от вида топлива, условий сжигания и конструкции двигателя и может составлять 0,85...1,5.

Снижение подачи воздуха по сравнению с оптимальной приводит к повышенному расходу топлива за счет неполного его сгорания. При чрезмерном увеличении подачи воздуха процесс сгорания также будет не оптимальным из-за потерь тепла на нагрев избыточного воздуха и снижении температуры горения.

Температурой горения топлива называют температуру, которую приобретают газообразные продукты сгорания в результате действия теплоты, выделяемой в процессе горения. Практический интерес представляет действительная температура горения, которая ниже теоретической в связи с отдачей, газами части тепла поверхности нагрева, а также из-за неполного сгорания самого топлива. Температуру горения измеряют при помощи различных приборов (термопары, пирометры и др.).

Двойная связь в молекулах

Наличие двойных связей в молекулах алкенов и алкадиенов способствует их повышенной химической активности. Они легко окисляются и имеют склонность к реакциям присоединения и уплотнения (полимеризации). Чем больше число двойных связей в молекуле и выше температура, тем интенсивнее протекает процесс окисления. В результате полимеризации образуются высокомолекулярные смолисто- асфальтовые вещества, из-за чего непредельные углеводороды в большинстве случаев нежелательны для моторного топлива и смазочных масел. Малая стабильность непредельных углеводородов является следствием смолообразования в топливе при хранении, особенно в крекинг- бензинах. Органические кислоты - это соединения, содержащие кислород. Основными органическими кислотами, содержащимися в нефти и нефтепродуктах, являются нафтеновые кислоты, относящиеся к карбоновым кислотам. Нафтеновые кислоты не вызывают коррозию черных металлов, но с цветными металлами (особенно с цинком и свинцом) взаимодействует интенсивно, образуя соли. В результате окислительных процессов в нефтепродуктах образуются также оксикислоты, в молекулах которых, кроме карбоксильной, присутствует гидроксильная группа ОН. Смолисто-асфальтовые вещества являются сложными соединениями углерода, водорода, кислорода, иногда серы. Они подразделяются на нефтяные смолы, асфальгены, карбены и карбоиды и кислые нефтяные смолы. Асфальгены представляют собой темно-бурые или черные твердые вещества, также обладающие сильной окрашивающей способностью. Плотность их более 1 г/см3. В асфальгенах по сравнению со смолами несколько больше содержится углерода и меньше водорода. Они растворяются в тяжелых фракциях нефти (масляных) и нефтяных смолах, образуя коллоидные растворы. Асфальгены при нагревании выше 300°С разлагаются. Карбены и карбоиды, образующиеся из асфальгенов, по мере их уплотнения имеют более темный цвет. Они трудно растворимы. Кислые нефтяные смолы (асфальгеновые кислоты и их ангидриды) - это полутвердые или твердые вещества с плотностью более 1 г/см3 нерастворимые в бензине. Они образуются в результате окислительной полимеризации и конденсации продуктов окисления углеводородов (кислот, оксикислот и т.п.). Сернистые соединения образуются на основе серы, содержащейся в нефти и нефтепродуктах, могут быть в свободном или связанном видах. По влиянию на металлы сернистые соединения подразделяются на две группы: активные, непосредственно вступающие в реакцию с металлами (сероводород H2S, сера S, различные меркаптаны), и нейтральные, которые не действуют на металл (сульфиды). Наличие активных сернистых соединений в нефтепродуктах не допускается. Для топлив все сернистые соединения весьма нежелательны, так как в процессе сгорания образуются сернистый и серный газы, при растворении которых в воде образуются кислоты, вызывающие интенсивную коррозию деталей двигателя. Азотистые соединения содержатся в нефти в незначительном количестве (до 0,3процентов) и практически могут быть удалены при очистке нефтепродуктов. Кроме рассмотренных соединений, в нефти содержатся минеральные примеси (обычно в виде различных солей нафтеновых кислот) и вода, которые легко удаляются при отстаивании.

Крекинг-процессы

В состав крекинг - бензинов входит большое количество непредельных углеводородов, а в бензинах прямой перегонки их почти нет. Поэтому крекинг-бензины нестойки при хранении. Для повышения стабильности в них добавляют специальные вещества -антиокислители, называемые стабилизаторами в сотых или тысячных долях процента. Если крекинг-процесс осуществляется при давлении 2. ..5 МПа и температуре 480...500°С, он называется жидкофазным крекингом, а при давлении 0,2...0,6 МПа и температуре 520...550°С и выше - парофазным. При последнем бензины более насыщены непредельными углеводородами, и выход топлива ниже по сравнению с жидкофазным. При каталитическом крекинге часть образующихся непредельных углеводородов превращается в предельные, а часть, в свою очередь переходят в изомерную форму. Вследствие этого качество бензинов каталитического крекинга более высокое. В качестве катализатора используют алюмосиликаты и другие вещества. При каталитическом крекинге выход автомобильных бензинов составляет около 40. ..50 процентов, фракции дизельного топлива -30. ..40 процентов, в то время как при прямой перегонке выход бензинов составляет лишь 9.. .12 процентов редко 20 процентов. К разновидностям крекинг-процесса относятся: риформинг, применяемый для улучшения качества нефтепродуктов путем понижения молекулярной массы углеводородов; деструктивная гидрогенизация - процесс, протекающий в присутствии водорода и катализатора при давлении 20. ..30 МПа, в результате чего происходит насыщение водородом продуктов расщепления; пиролиз, протекающий при температуре около 700°С с образованием ароматических углеводородов; гидроформинг, при котором происходит высокая ароматизация углеводородов (этот процесс протекает при температуре 480...530°С, давлении 2...3 МПа в присутствии водорода и катализатора -оксидов молибдена, ванадия, хрома, нанесенных на оксиды алюминия, магния или другого вещества, при этом получают бензины высокого качества).

Для современных машин требуются масла более высокого качества, чем масла, полученные путем перегонки нефтяного мазута. К ним относятся синтетические масла, содержащие преимущественно парафиновые углеводороды. Наиболее широкое распространение получили полисилокса - новые масла, которые называют также силиконами. Они представляют собой полимерные кремнийорганические соединения. Они обладают устойчивостью к воздействию высоких температур, низкой температурой застывания и хорошими антикоррозионными свойствами, мало изменяют вязкость при колебаниях температуры. Смазывающая способность у них несколько хуже, чем нефтяных масел. Улучшить это качество можно добавлением соответствующих присадок. Другой группой синтетических масел являются полиалкилгликоли, представляющие собой продукты конденсации двухатомных спиртов. Эти масла не образуют отложений на нагретых деталях, обладают хорошей смазывающей способностью и вязкостными свойствами, а также низкой температурой застывания (до -65 С). Из-за высокой стоимости такие масла не получили широкого распространения. Для работы в агрессивных средах, а также в условиях высоких температур изготавливают фторуглеродные и хлоруглеродные масла. Недостаток их - резкое повышение вязкости при понижении температуры. Их используют при изготовлении специальных пластичных смазок и жидкостей для гидросистем.

Определение продуктов сгорания топлива

Характер процесса горения можно определить по составу продуктов сгорания топлив. Наличие в продуктах сгорания окиси углерода СО и водорода Н2 указывает на неполное сгорание топлива. Анализируя состав продуктов сгорания, можно судить о характере процесса горения.

Для анализа продуктов сгорания разработаны различные методы и приборы. Широкое распространение получили химические газоанализаторы, которые позволяют в контролируемой пробе взятых продуктов сгорания топлива определить содержание углекислого газа СО2, кислорода О2 и окиси углерода СО.

Принцип действия газоанализатора заключается в том, что взятая проба исследуемого газа объемом 100 мл последовательно пропускается через поглотители, заполненные соответствующими растворами. После каждого поглощения в том или ином сосуде по градуированной заборной бюретке измеряют объем оставшегося газа, и по соответствующему уменьшению объема определяют процентное содержание каждого отдельного компонента.

Сначала определяют количество углекислого газа СО2 по его поглощению раствором едкого кали КОН, затем кислорода О2 в сосуде, заполненном щелочным раствором пирогаллола С6Н3(РН)3 и, наконец, окиси углерода СО в сосуде с аммиачным раствором однохлористой меди CuCl. Содержание азота в продуктах сгорания топлива определяют аналитически:

N2 = 100-(CO2+O2+CO) (1.12)

Коэффициент избытка воздуха при неполном сгорании топлива определяют по формуле:

а = 1/[l-3,76(O2-0,5CO)/N2] (1.13)

и полного сгорания топлива:

a=1/[l-3,76O2/N2] (1.14)

Очистка масляных фракций

Масляные дистилляты после перегонки мазутов, содержат целый ряд нежелательных веществ, таких, как смолисто - асфальтовые, органические кислоты, легко окисляющиеся и полимеризирующиеся непредельные углеводороды и т.п., резко снижающие качество смазочных масел. Наиболее широко применяются следующие способы очистки масляных дистиллятов: кислотно-щелочная, кислотно-контактная, селективная, а также деасфальтизация и депарафинизация. При кислотно-щелочной очистке смолистые вещества масляного дистиллята, взаимодействуя с серной кислотой, частично растворяются, частично уплотняются с образованием: асфальгенов, которые переходят в кислый гудрон. После отстаивания и отделения кислого гудрона масло обрабатывают водным раствором щелочи NaOH. При этом нейтрализуются органические кислоты и остатки серной кислоты. Затем масло промывают водой для растворения и удаления солей. Далее, масло просушивают горячим воздухом. Кислотно-контактная очистка отбеливающими глинами заключается в том, что после очистки масла серной кислотой оно проходит контактную очистку отбеливающими глинами. При этом из масла адсорбируются нежелательные полярно - активные соединения, в том числе органические и сульфокислоты, остатки серной кислоты, кислого гудрона и т.д. Очистка отбеливающими глинами может быть контактной и перколяционной. В первом случае глину непосредственно перемешивают с очищаемым маслом, во втором -масло пропускают через слой гранулированного адсорбента при температуре 20...100°С (в зависимости от вязкости). В качестве отбеливающих глин применяют природные гумбрин и другие, и искусственные силикагель. Количество адсорбента при очистке составляет 2...5 от массы очищаемого материала. Селективная очистка заключается в обработке масла селективными (избирательными) растворителями, которые растворяют нежелательные элементы и не воздействуют на основные углеводороды. При последующем отстаивании смесь расслаивается на рафинатную часть (очищенное масло) и на экстрактную (смесь растворителя и вредных примесей). Экстрактную часть перегоняют, отогнанный растворитель может быть использован повторно. На качество очистки оказывают большое влияние температура и количество взятого растворителя. Растворителями служат фурфурол (150...400процентов от массы очищаемого масла), фенол (100...200процентов), нитробензол, технический пропан и др., процесс проводят при температуре 50...120°С. Деасфальтизация применяется для дистиллятных масел с высоким содержанием смолисто - асфальтовых веществ. При деасфальтизации используют специальные растворители, в частности жидкий пропан. Под действием растворителя смолисто асфальтовые вещества переходят в осадок, который после отстоя удаляют. Деасфальтизацию проводят при давлении 2,5...4,0 МПа и температуре 60...85°С. Соотношение пропана и очищаемого масла составляет от 5:1 до 10:1 по объему. После деасфальтизации масляный дистиллят поступает на основную очистку. Депарафинизация проводится для масляных дистиллятов, получаемых из парафиновых нефтей. Из масла удаляются углеводороды, склонные к кристаллизации при понижении температуры. Процесс основан на том, что парафины и церезины значительно хуже растворяются в ряде легких растворителей, чем основные углеводороды масла, особенно при низкой температуре. Очищаемое масло смешивают с растворителем (метилэтилкетон, ацетон с бензолом, дихлорэтан с бензином и др.)- Полученную смесь нагревают до температуры на 15...20°С, превышающей температуру полного растворения парафинов и церезинов в смеси. Раствор постепенно охлаждают и на высокооборотных центрифугах или специальных фильтрах разделяют на депарафиновое масло и петролятум (смесь растворителя и твердых углеводородов). Данная операция является завершающей частью процесса очистки масла.

Очистка топливных фракций

Для придания топливу необходимых эксплуатационных свойств его подвергают очистке с целью удаления вредных примесей и повышения стабильности. Существуют химические и физические методы очистки. В первом случае нежелательные соединения топлива вступают в химические реакции с реагентом, во втором - топливо очищают путем растворения нежелательных соединений или их адсорбции на поверхностно-активных веществах. К химическим способам относятся очистка сернокислотная, щелочная, плюмбитами и хлоридами металлов, гидрогенизационная и т.д., к физическим - очистка селективными растворителями и различными адсорбентами. Очистка топлива серной кислотой заключается в растворении различных сернистых соединений. Данный раствор называют кислым гудроном. При этом серная кислота не вступает в реакцию с парафиновыми, ароматическими и нафтеновыми углеводородами. Топливо термического крекинга с большим содержанием непредельных углеводородов очищают плюмбитами и хлоридами металлов, так как при очистке серной кислотой непредельные углеводороды вступают с ней в реакцию. После такой очистки для удаления органических кислот, кислых эфиров, сульфокислот и остатков кислого гудрона очищаемое топливо обрабатывают водным раствором щелочи NaOH. Образующиеся при этом соли находятся в водном растворе щелочи, который отстаивают и сливают. Для полного удаления остатков солей топливо промывают водой и отстаивают. Гидрогенизационная очистка является наиболее эффективным способом очистки от сернистых соединений и других вредных примесей. Очистку проводят в присутствии водорода и катализаторов (смеси оксидов хрома и молибдена, кобальта и молибдена) при давлении 1...4 МПа и температуре 375...415°С. Сернистые соединения в этих условиях под воздействием водорода переходят в газообразные продукты, которые легко удаляются. Например, при очистке дизельного топлива с содержанием сернистых соединений 1...1,3 процентов выход товарного топлива составляет 97...98 с содержанием сернистых соединений 0,02...0,06. Очистка отбеливающими землями (адсорбентами) основан на явлении адсорбции, т.е. избирательном поглощении определенных соединений, находящихся в очищаемом продукте. Адсорбентами служат алюмосиликаты. Их применяют при очистке бензинов термического крекинга от непредельных углеводородов. Пары топлива пропускают через определенный слой отбеливающей земли. Расход адсорбента составляет 1...2 от массы топлива.

Получение топлива и смазочных масел для двигателей внутреннего сгорания

Жидкое топливо производится преимущественно двумя способами: физическим и химическим. Первый протекает без нарушения структуры углеводородов, второй - с изменением ее.

Физический способ или прямая перегонка нефти представляет собой процесс разделения ее на отдельные фракции, отличающиеся температурой кипения. Для этого нефть нагревают в нефтеперегонных установках до температуры 300...380°С, а образовавшиеся пары отбирают и конденсируют по частям в колонках. В результате перегонки получают топливные дистилляты и остаток, называемый мазутом, который может быть использован для химической переработки или получения смазочных масел. Легкокипящие фракции в паровой фазе достигают верха колонны и вместе с испарившимся оросителем отводятся из колонны в конденсатор - газоотделитель. Более тяжелые топливные фракции отводятся из колонны через холодильники и отбирают дистилляты: бензиновый - 40...200°С, керосиновый - 140...300°С, газойлевый - 230...330°С, соляровый - 280...380°С и в остатке мазут.

Из мазута на перегонных установках аналогичным способом получают смазочные масла. Чтобы не произошло расщепление масляных углеводородов, их нагрев и испарение ведут в вакуумных трубчатых печах с применением перегретого пара. Это позволяет снизить температуру кипения углеводородов и избежать их расщепления. При разгонке мазута на ректификационной колонне из более легкокипящих фракций получаются маловязкие смазочные масла - легкие индустриальные, из высококипящих получают средние и тяжелые масла - индустриальные, машинные, моторные, цилиндровые и др. Эти масла называют дистиллятными.

После отгона из мазута масляных дистиллятов в остатке получают гудрон, а при менее глубоком отборе масляных фракций -полугудрон. Применяя глубокую обработку гудронов и полугудронов серной кислотой и очистку отбеливающими глинами, из них получают высоковязкие остаточные масла (главным образом авиационные).

Деструктивный (химический) способ переработки нефти позволяет получать из более тяжелых высокомолекулярных фракций светлые нефтепродукты и тем самым существенно повысить выход светлых топлив (в частности, бензинов). Расщепление углеводородов с высокой молекулярной массой на углеводороды с меньшей молекулярной массой получило название крекинг - процесса. Принципиальная схема его такова:

C2nH4n+2=CnH2n+2+CnH2n (1.15)

Крекинг-процесс, протекающий под действием теплоты, называется термическим крекингом, а под действием теплоты и в присутствии катализатора - каталитическим.

Основными факторами термического крекинга являются температура, давление, время процесса и состав сырья. При нагреве до 400°С для получения 30процентов бензина из мазута необходимо около 12 часов, при нагревании до 500°С время процесса составляет лишь 30 секунд. Лучшим сырьем для крекинг-процесса являются высокомолекулярные Н - парафины. Непредельные углеводороды обладают большей стойкостью к реакциям расщепления. При крекинге нафтеновых углеводородов происходят отщепление и расщепление боковых цепей, крекинг ароматических углеводородов сопровождается разрывом колец.

В состав крекинг - бензинов входит большое количество непредельных углеводородов, а в бензинах прямой перегонки их почти нет. Поэтому крекинг-бензины нестойки при хранении. Для повышения стабильности в них добавляют специальные вещества -антиокислители, называемые стабилизаторами в сотых или тысячных долях процента.

Если крекинг-процесс осуществляется при давлении 2. ..5 МПа и температуре 480...500°С, он называется жидкофазным крекингом, а при давлении 0,2...0,6 МПа и температуре 520...550°С и выше - парофазным. При последнем бензины более насыщены непредельными углеводородами, и выход топлива ниже по сравнению с жидкофазным.

При каталитическом крекинге часть образующихся непредельных углеводородов превращается в предельные, а часть, в свою очередь переходят в изомерную форму. Вследствие этого качество бензинов каталитического крекинга более высокое. В качестве катализатора используют алюмосиликаты и другие вещества.

При каталитическом крекинге выход автомобильных бензинов составляет около 40. ..50%, фракции дизельного топлива -30. ..40%, в то время как при прямой перегонке выход бензинов составляет лишь 9.. .12% редко 20%.

К разновидностям крекинг-процесса относятся: риформинг, применяемый для улучшения качества нефтепродуктов путем понижения молекулярной массы углеводородов; деструктивная гидрогенизация - процесс, протекающий в присутствии водорода и катализатора при давлении 20. ..30 МПа, в результате чего происходит насыщение водородом продуктов расщепления; пиролиз, протекающий при температуре около 700°С с образованием ароматических углеводородов; гидроформинг, при котором происходит высокая ароматизация углеводородов (этот процесс протекает при температуре 480...530°С, давлении 2...3 МПа в присутствии водорода и катализатора -оксидов молибдена, ванадия, хрома, нанесенных на оксиды алюминия, магния или другого вещества, при этом получают бензины высокого качества).

Для современных машин требуются масла более высокого качества, чем масла, полученные путем перегонки нефтяного мазута. К ним относятся синтетические масла, содержащие преимущественно парафиновые углеводороды.

Наиболее широкое распространение получили полисилокса - новые масла, которые называют также силиконами. Они представляют собой полимерные кремнийорганические соединения. Они обладают устойчивостью к воздействию высоких температур, низкой температурой застывания и хорошими антикоррозионными свойствами, мало изменяют вязкость при колебаниях температуры. Смазывающая способность у них несколько хуже, чем нефтяных масел. Улучшить это качество можно добавлением соответствующих присадок.

Другой группой синтетических масел являются полиалкилгликоли, представляющие собой продукты конденсации двухатомных спиртов. Эти масла не образуют отложений на нагретых деталях, обладают хорошей смазывающей способностью и вязкостными свойствами, а также низкой температурой застывания (до -65 С). Из-за высокой стоимости такие масла не получили широкого распространения.

Для работы в агрессивных средах, а также в условиях высоких температур изготавливают фторуглеродные и хлоруглеродные масла. Недостаток их - резкое повышение вязкости при понижении температуры. Их используют при изготовлении специальных пластичных смазок и жидкостей для гидросистем.

Установки для удаления шлака и золы

При сжигании в топочном устройстве теплогенерирующей установки твердого топлива (уголь, дрова, сланец и т.п.) содержащаяся в нем зола остается, в основном, на топочной решетке в виде шлака и затем удаляется и частично в виде летучей золы уносится продуктами сгорания. Соотношения количества золы и шлака, оседающих в газоходах и удаляемых из котла, зависят от способа сжигания топлива и конструкции топочного устройства.

Таким образом, при эксплуатации отопительных котлов возникает проблема удаления золы и шлаков. Ручное шлакозолоудаление применяют только в теплогенерирующих установках небольшой мощности, где используются котлы малой производительности. Это связано с тем, что все операции производятся с использованием физической силы обслуживающего персонала.

рис.1 / 1-- кузов; 2 -- рама; 3 -- накладки для фиксации положения кузова.

Узкоколейные вагонетки с опрокидывающимся кузовом (рис.1). Вагонетки этого типа могут перемещаться по рельсам или иметь на колесах резиновые обода и двигаться по обычному полу иногда с помощью механизмов. Шлак и зола перевозятся сухими.

Система шлакозолоудаления служит для сбора, образовавшегося в топке при сгорании топлива шлака и летучей золы, осажденной в золоуловителях. В зависимости от мощности котельной установки выделают несколько способов удаления золы и шлаков:

1) механический,

2) гидравлический,

3) пневматический.

1) При механизированном способе шлакозолоудаления все операции по удалению шлака из котла и его транспортировке стараются выполнить с помощью различных механизмов и устройств.

Механический способ удаления золы и шлака применяют в котельных с выходом очаговых остатков до 10 тонн в час и при установке в них котлов с механическими или ручными топками для слоевого сжигания.

Наибольшее распространение при механическом способе удаления шлака и золы на теплогенерирующих установках небольшой мощности получили скреперные установки, как наиболее удобные и простые. Шлак и зола (рис. 2) из бункеров котлов 1 через затворы спускается в специальный железобетонный канал 2, по которому перемещается ковш скрепера 3 емкостью до 0,5 м3. Для перемещения ковша служат стальные канаты 4 и лебедка с реверсивным ходом 5, установленная в помещении котельной. Заполненный ковш по эстакаде 6 (имеющей наклон около 30°) перемещается канатом 4 к установленному вне котельной бункеру 7 и, опрокидываясь, опорожняется. Для направления хода каната служат ролики 8; в натянутом состоянии канат поддерживается с помощью натяжного устройства 9. Лебедка имеет электродвигатель мощностью 11 кВт, конечные выключатели и пульт управления. Канал, по которому перемещается скрепер, выполняется шириной 1,25 м и с разной глубиной. В канале предусматриваются приямки или параллельный ему коридор. Шлак и зола, периодически удаляемые из котлов, накапливаются при сухом шлакоудалении за сутки и за 8 ч при мокром в бункере 7, который обычно утепляется. Скорость перемещения скрепера составляет 0,5 м/с, что в зависимости от емкости ковша и длины пути его перемещения позволяет удалить из котельной от 0,0005 до 0,0013 м3/с (от 2 до 5 м3/ч) шлака и золы или от 0,8 до 2,0 кг/с (от 3 до 7 т/ч), если считать по массе.

Вместо ковша скрепера в подобных системах иногда применяют металлический ящик-тележку с отверстиями в дне и стенках для стока воды, перемещающийся на колесах по стальным направляющим в бункер. Схема установки скрепера с тележкой подобна показанной на рис. 2.

рис. 2

2) Гидравлический способ удаления золы и шлака используют в котельных установках при пылевидном сжигании топлива и в тех случаях, когда в котельной имеются сбросные воды, применяемые для гидрозолоудаления. При гидрошлакозолоудалении транспортировка размельченного шлака и золы от котла в золоотвал осуществляется потоком воды. Размельченный шлак и зола из котла и от золоулавливающих устройств подаются в наклонный бетонный шлакосмывной канал, по которому самотеком движется вода, подаваемая насосом из заборного колодца. Движущийся по каналу поток воды захватывает частицы шлака и золы, и эта смесь стекает в колодец. Из колодца эта смесь багерным или песковым насосом перекачивается в золоотвал (золоотстойник). Для того чтобы в колодце не происходило отстаивания шлака и золы из воды, устанавливается мешалка, которая перемешивает смесь в колодце. При необходимости создания смеси определенной концентрации и с определенными размерами частиц шлака перед багерным насосом может быть установлена шлакодробилка.

Принципиальная схема гидравлического золошлакоудаления показана на рис. 3. Из шахт под котлами 1 шлак смывается соплом 10 на решетку и в канал 8. Крупные куски шлака дробятся до размера порядка 100 мм. Канал (рис. 4) выполняется из железобетона и выкладывается плитами из базальтового литья для защиты от износа. Канал имеет уклон от 0,015 до 0,02. По пути движения смеси шлака с водой для предупреждения отложений установлены сопла 10, называемые побудительными. Из канала 8 самотеком пульпа попадает в металлоуловитель 4 и далее поступает в дробилку для шлака 5 для измельчения его до 20 мм и далее в багерный насос 5, которьш она и перекачивается на золоотвал.

рис. 3

Из золоуловителей 2 через золосмывной аппарат зола смывается в канал 9, который в местах возможного выпадения золы также оборудован побудительными соплами 10. Затем через металлоуловитель 4 зола Песковым насосом 7 подается в золопровод, иногда зола собирается в емкости 3. Далее путь золы таков же, что и у шлака. Для смыва и работы сопл устанавливаются центробежные насосы смывной воды 11, забираемой из бака технической воды 12. На некоторых установках вместо багерных и Песковых насосов установлены аппараты Москалькова, состоящие из приемной камеры для пульпы, сопла и диффузора. Струя воды из сопла с давлением

2,5-- 6,5 МПа (25--65 кгс/см2) подхватывает шлакозоловую смесь и гонит ее через диффузор в золопровод, который изготовляется из стальных труб. Насосы 6 консольного типа имеют одно рабочее колесо, выполненное из износоустойчивых сплавов, и броню для корпуса; насосы создают напор в 0,45--0,5 МПа (4,5--5 кгс/см2), частота вращения колеса от 585 до 1480 об/мин.

Рис. 4. Схема смыва шлака и золы для их удаления по каналу.

1 -- базальтовые плиты для защиты канала с формой А, Б, В. Смывные насосы подают к соплам чистую воду и должны иметь напор 1 МПа (10 кгс/см2). Для смыва шлака требуется у сопл давление не ниже 0,5 МПа (5 кгс/см2), а работа побудительных сопл успешна лишь при давлении воды перед соплом около 0,7 МПа (7 кгс/см2). Скорость воды в каналах для шлака должна быть не ниже 1,6 м/с, золы--1,0 м/с. Побудительные сопла устанавливаются по оси канала на высоте 150--250 мм от дна и с наклоном к последнему. Стальные трубы для золошлакопроводов выбираются с толщиной стенки до 12 мм, диаметром 250--400 мм и укладываются над землей на опорах. Скорость движения шлакозоловой смеси с водой принимается в пределах 1,6-- 2,0 м/с, причем до начала и после окончания откачки пульпы золошлакопровод должен быть промыт чистой водой и дренирован.

Для удлинения срока службы золошлакопровод через каждые 1--2 года поворачивают вокруг оси на угол 45--60° и заваривают изношенные участки. Места для отвала шлака и золы выбираются в оврагах, на склонах холмов и на подобных территориях, позволяющих обеспечить работу котельной в течение 25 лет, а при использовании шлака и золы в качестве сырья и раздельном их складировании -- на 3 года.

Применение воды для транспортировки золы и шлака позволяет улучшить санитарно-гигиенические условия на рабочих местах для обслуживающего персонала и исключить ручной труд.

3) Пневматический способ удаления золы и шлака применяют в котельных, оборудованных котлами для слоевого и камерного сжигания топлива при выходе очаговых остатков от 0,3 до 10 тонн в час. Пневматическую систему осуществляют как по нагнетательной, так и по всасывающей схемам.

рис. 5 / 1 шлаковый бункер; 2 шлако-дробилка; 3 насадка для приема шлака; 4 насадка для приема золы; 5 телескопическая насадка; 6 сварное колено; 7 запорный кран; 8 шлакозолопровод; 9 осадительная камера; 16 циклон; 11 бункер; 12 вагон

Пневматический транспорт шлака и золы основан на способности потока газов при достаточной скорости перемещать сыпучие материалы. Пневмошлакозолоудаление может быть осуществлено по нагнетательной и всасывающей схемам. В первом случае система находится под давлением, во втором -- под разрежением. Применяют обычно системы, осуществляемые по всасывающей схеме, при которых в качестве транспортирующего агента используется воздух и вся система находится под разрежением, создаваемым паровыми эжекторами или вакуум-насосами. На рис. 5 показана схема пневматической системы шлакозолоудаления, работающей под разрежением, создаваемым паровыми эжекторами. Шлак после измельчения до размеров меньше 35 мм в валковых дробилках, установленных под каждым шлаковым бункером, и зола из золовых бункеров поступают во всасывающие насадки, подхватываются воздухом, поступающим через насадки в систему, и транспортируются по трубопроводам в циклон, где происходит отделение золы и шлака от воздуха. Из циклона зола и шлак поступают в сборный бункер и далее в железнодорожные вагоны или автомашины, которыми вывозятся на золоотвал или для переработки. Воздух из циклона отсасывается через пылеуловитель паровыми эжекторами и вместе с паром сбрасывается в дымовую трубу. Концентрация золы и шлака, взвешенных в воздухе, не должна превышать 4--7 кг/кг. Диаметр золопроводов обычно выбирают 90--120 мм. Скорость потока при транспорте шлакозоловой смеси должна быть более 25 м/с. При транспорте одной золы скорость принимают не менее 12 м/с. При этом разрежение, создаваемое эжекторами или вакуум-насосами, должно быть 30--40 кПа. Расход пара эжекторами составляет 0,8--1 кг/кг транспортируемой массы шлака и золы. Расход энергии на дробление шлака 0,8 кВт-ч/т. Транспорт шлака и золы может производиться на расстояние до 200 м при подъеме их до 30 м. Достоинствами систем пневмошлакозолоудаления являются простота устройства и обслуживания, возможность непосредственного использования получаемых в сухом виде шлака и золы для различных целей, а также отсутствие загрязненных сточных вод. Недостатками системы являются быстрый износ шлакозолопроводов, а также ограниченный радиус действия, что определяет необходимость дополнительного применения внешнего колесного транспорта. Пневмошлакозолоудаление применяют для котельных установок малой производительности при нецелесообразности устройства гидрозолоудаления, а также в случае необходимости получения сухого шлака и золы по условиям их дальнейшего использования. В котельных установках большой производительности пневматический транспорт золы применяют в сочетании с гидрозолоудалением.

Размещено на Allbest.ru

...

Подобные документы

  • Определение удельного теоретического количества и объема воздуха, необходимого для сгорания паров бензола. Составление стехиометрического уравнения реакции горения бензола в воздухе. Расчет числа киломолей воздуха, необходимого для полного сгорания.

    контрольная работа [246,1 K], добавлен 21.06.2014

  • Классификация газообразных топлив. Очистка газа от примесей. Осушка газа короткоцикловой безнагревной адсорбцией. Разделение газа на фракции на установке ГФУ. Получение и применение продуктов газофракционирования. Состав сухого газообразного топлива.

    курсовая работа [240,8 K], добавлен 05.05.2015

  • Основные виды жидких и твёрдыхе ракетных топлив, их характеристики, состав и свойства. Особенности выбора горючего, влияние вида окислителя. Преимущества однокомпонентных и недостатки двухкомпонентных топлив. Ракетные пороха и смесевые ракетные топлива.

    курсовая работа [68,4 K], добавлен 13.12.2013

  • Горение как мощный процесс окисления. Типы горения: тление и горение с пламенем. Взрыв как частный случай горения. Электрические свойства пламени. Многообразие продуктов горения как следствие неполного сгорания топлива. Фильтрация дыма через воду.

    научная работа [293,6 K], добавлен 29.07.2009

  • Определение объема воздуха, необходимого для полного сгорания единицы массы горючего вещества. Состав продуктов сгорания единицы масс горючего вещества. Пределы распространения пламени газо-, паро-, пылевоздушных смесей. Давление взрывчатого разложения.

    курсовая работа [767,2 K], добавлен 23.12.2013

  • Характеристика моторного топлива для поршневых ДВС. Некоторые показатели, характеризующие его качество. Особенности химического состава нефти, ее первичная и вторичная переработка. Этапы каталитического крекинга. Основные преимущества газового топлива.

    реферат [14,4 K], добавлен 29.01.2012

  • Основные характеристики дизельного топлива. Требования к качеству дизтоплива в Европе и США, России. Понижение содержания серы в дизельном топливе с помощью специальных присадок. Изменение фракционного состава топлива. Описание основных методов очистки.

    курсовая работа [896,4 K], добавлен 26.03.2013

  • Нефть, ее происхождение и состав, значение углеводородной, неуглеводородной части и минеральных примесей. Нефтепродукты и их детонационное свойство, общая схема переработки нефти и получения топлива для нужд хозяйства. Технология крекинг-процесса.

    курсовая работа [2,6 M], добавлен 16.11.2009

  • Разработка альтернативных видов топлива и новых направлений в области переработки природного газа и других источников углерода. Технологии синтеза диметилового эфира из биомассы и синтез-газа. Особенности нетрадиционных процессов получения топлива.

    контрольная работа [227,2 K], добавлен 04.09.2010

  • Назначение процесса гидроочистки. Целевые и побочные продукты процесса. Факторы процесса, их влияние на качество. Механизм и химизм реакций, катализаторы гидроочистки. Технологический расчет реакторного блока установки гидроочистки дизельного топлива.

    курсовая работа [393,6 K], добавлен 18.10.2015

  • Сущность и общая классификация горюче-смазочных материалов. Характеристика топлива, масел. Оценка свойств и сфера применения пластичных смазок. Оптимальные условия хранения различных видов ГСМ. Разработка и применение новых технологий в их производстве.

    реферат [114,8 K], добавлен 25.12.2011

  • Преимущества и недостатки дизельного топлива. Влияние воспламеняемости, вязкости и плотности, фракционного состава, содержания серы и воды на работу дизеля. Сравнение биодизеля с дизтопливом по физико-химическим и эксплуатационным характеристикам.

    реферат [29,7 K], добавлен 23.09.2013

  • Смесь жидких органических веществ. Получение различных сортов моторного топлива. Групповой состав нефтей. Углеводный состав нефти. Алканы, циклоалканы, арены, гетероатомные соединения. Влияние химического состава бензинов на их антидетонационные свойства.

    реферат [38,1 K], добавлен 21.06.2015

  • Определение объема воздуха необходимого для полного сгорания заданного количества пропана. Вычисление изменения энтальпии, энтропии и энергии Гиббса, при помощи следствий из закона Гесса. Определение молярных масс эквивалентов окислителя и восстановителя.

    контрольная работа [23,1 K], добавлен 08.02.2012

  • Вид горения и его основные параметры. Химическое превращение горючего и окислителя в продукты горения. Уравнения материального и теплового баланса реакции горения. Влияние коэффициента избытка воздуха на состав продуктов горения и температуру горения.

    контрольная работа [46,0 K], добавлен 17.01.2013

  • Технологический расчет и эксергетический анализ конверсии метана и процесса горения. Разработка энергохимико-технологической системы путем составления энергетического баланса горения и оценки расхода топлива. Расчет механической мощности турбокомпрессора.

    курсовая работа [540,0 K], добавлен 07.12.2010

  • Современные технологии гидроочистки (гидрокрекинг и др.) дизельного топлива и использование противоизносных, цетаноповышающих, депрессорно-диспергирующих, антидымных, антиокислительных, моющих и других присадок. Химизм и механизм гидроочистки ДТ.

    курсовая работа [362,5 K], добавлен 30.03.2008

  • Определение состава продуктов полного сгорания газа. Расчет адиабатной температуры горения газовой смеси при постоянном объеме и при постоянном давлении. Кинетические константы реакции самовоспламенения природного газа. Предел воспламенения газовой смеси.

    курсовая работа [724,4 K], добавлен 19.02.2014

  • Анализ классов твердого ракетного топлива. Причины образования кислотного тумана при срабатывании ускорителей Спейс-Шаттл. Особенности влияния гуанидинсодержащих солей динитрамида на характеристики горения перхлоратных металлизированных композиций.

    дипломная работа [5,7 M], добавлен 23.02.2016

  • Отбор пробы газа при помощи запирающей жидкости, в сухие газометры, из металлических баллонов, непосредственно в газоаналитическую аппаратуру. Определение плотности газов методом взвешивания и эффузивным методом. Теплота сгорания газа и ее определение.

    курсовая работа [857,4 K], добавлен 04.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.