Химическая реакция

Определение терминов "химическая реакция" и "субстрат", классификация реагентов. Типы органических реакций и их механизмы. Общие положения протолитической теории кислот и оснований Бренстеда-Лоури и теории Льюиса. Классификация органических реакций.

Рубрика Химия
Вид лекция
Язык русский
Дата добавления 29.11.2015
Размер файла 255,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Лекция

На тему: «Химическая реакция»

План

1. Основные понятия, классификация реагентов

2. Типы органических реакций и их механизмы

2.1 Классификация органических реакций

3. Кислоты и основания. Общие положения протолитической теории кислот и оснований Бренстеда-Лоури и теории Льюиса

3.1 Протолитическая теория Бренстеда-Лоури

3.2 Электронная теория Льюиса

1. Основные понятия, классификация реагентов

Химическая реакция - взаимодействие молекул, при котором в рассматриваемой системе происходит перераспределение атомов и атомных групп между молекулами, т. е. pазрыв старых и образование новых связей.

Реакционным центром называют атом или группу атомов, участвующих в разрыве или образовании связей. Способность вещества вступать в ту или иную химическую реакцию и реагировать с большей или меньшей скоростью характеризует его реакционную способность, которая всегда рассматривается по отношению к конкретному партнеру реакции.

Исходные соединения в органических реакциях называют реагентами, а образующиеся вещества - продуктами. Для удобства принято одно из реагирующих веществ называть атакующим реагентом, а другое - субстратом.

Субстрат - одно из реагирующих веществ, имеющее, как правило, более сложное строение, которое рассматривается в качестве объекта превращения и содержит реакционный центр, чаще всего атом углерода. Как правило, субстратом обозначают ту молекулу, которая поставляет атом углерода для новой связи.

Таблица 9. Классификация реагентов

Радикалы R- частицы со свободными электронами:

Электрофилы Е- частицы с вакантной орбиталью:

Нуклеофилы Nu? - частицы со свободными электронными парами:

1. Атомы: F , Cl , Br , I , H .

2. Группы атомов (частицы) с неспаренным электроном:

NO2 , CH3, OOR, OH, R др.

1. Катионы: Cl , Br , NO2 и др.

2. Нейтральные электрофилы:

AlCl3,BF3, SnCl4,SO3 и др.

1. Анионы: и др.

2. Нейтральные нуклеофилы:

3. Доноры -электронов:

Реагент - частица (радикал, ион, молекула), атакующая реакционный центр субстрата. Понятия «субстрат» и «реагент» условны и во многих случаях их можно поменять местами.

Классификация реагентов представлена в табл. 9.

В реакциях, сопровождающихся гетеролитическим разрывом связи, реагент обычно или отдает электронную пару субстрату, или принимает ее. Реагенты, которые отдают электронную пару называют нуклеофилами, а их реакции - нуклеофильными. Электрофильные реагенты (электрофилы) - реагенты, которые принимают электронную пару для образования связи с субстратом. Их реакции называют электрофильными.

При расщеплении молекулы субстрата часть ее, не содержащую атома углерода, называют уходящей группой. Уходящую с электронной парой группу называют нуклеофугом, а группу, уходящую без электронной пары, - электрофугом.

При гомолитическом разрыве связи реагент предоставляет субстрату неспаренный электрон для образования связи, т. е. является радикалом или атомом.

химический органический реакция реагент

2. Типы органических реакций и их механизмы

2.1 Классификация органических реакций

проводится по различным признакам: по характеру разрыва связей; по типу превращения субстрата; по типу активирования; по числу частиц, принимающих участие в стадии, определяющей скорость .

По характеру разрыва связей реакции подразделяют на радикальные, ионные и согласованные.

Гомолитическая (радикальная) реакция - реакция, протекающая с участием радикалов, которые образуются при гомолитическом разрыве связей. Свободный радикал (радикал) - частица, имеющая неспаренный валентный электрон.

Гомолитические реакции характерны для неполярных реагентов, их протеканию способствует высокая температура, УФ облучение, присутствие перекисных соединений как инициаторов радикальных процессов.

Ионные реакции протекают при гетеролитическом разрыве связей. При этом образуются электрофильные и нуклеофильные частицы:

Ионнные реакции характерны для полярных соединений, их протеканию способствуют полярные апротонные и протонные растворители и катализаторы, в качестве которых зачастую выступают кислоты или основания.

Согласованные (синхронные) реакции - реакции, в которых разрыв старых и образование новых связей происходит одновременно без участия радикальных или ионных частиц. Такие реакции протекают через циклическое переходное состояние.

Эти реакции называют перициклическими.

В зависимости от строения реагентов, участвующих в создании циклического переходного состояния, протеканию этих реакций способствуют или нагревание, или УФ облучение.

По типу превращения субстрата реакции делят на следующие типы: реакции замещения (символ S от англ. substitution) - реакции, в которых атом либо группа атомов в субстрате замещается на другой атом либо группу атомов. Замещение в зависимости от атакующего реагента может быть радикальное, электрофильное или нуклеофильное и обозначается, соответственно, символами SR, SE и SN.

Реакции присоединения (символ A от англ. addition) - реакции, в которых реагент присоединяется по месту разрыва кратной связи субстрата. Эти реакции также могут происходить по радикальному или ионному механизмам и обозначаются как AR, AE или AN.

Реакции отщепления или элиминирования (символ Е от англ. elimination) - реакции, в которых от субстрата отщепляется молекула или частица. По направлению обратны реакциям присоединения:

Эти реакции могут происходить либо по гетеролитическому, либо по согласованному механизму, а вот свободнорадикальное элиминирование наблюдается крайне редко. При гетеролитическом отщеплении группы Х и Y могут уходить как последовательно, так и одновременно, при этом возможно их объединение.

Перициклические реакции - реакции, в которых образование новых связей происходит согласованно с перераспределением р-связей внутри циклического переходного состояния:

Окислительно-восстановительные реакции - это реакции, в ходе которых меняется степень окисления у реакционного центра. Окисление органического соединения сопровождается переходом электронов от него к реагенту, а восстановление, наоборот, переходом электронов к органическому субстрату.

Окисление органических соединений - это процесс удаления водорода с образованием кратной связи или связи с более электроотрицательным атомом. При восстановлении протекают обратные процессы. Окислительно-восстановительный переход от метана к диоксиду углерода отражает последовательность окисления атома углерода в органических соединениях:

По типу активирования реакции разделяют на каталитические и некаталитические.

Некаталитические реакции протекают без катализатора. Эти реакции ускоряются при нагревании и их называют термическими.

Каталитические реакции требуют присутствия катализатора. Катализ - явление, состоящее в том, что присутствие в системе какого-либо вещества (катализатора) вызывает или ускоряет протекание химической реакции. Катализатор - вещество, которое участвует в химической реакции и увеличивает ее скорость, но при этом общее количество этого вещества не изменяется, т. е. катализатор остается в неизменном виде и количестве. Гетерогенный катализ - процесс, в котором реакция протекает на поверхности раздела фаз, образуемой катализатором и реагентом. Гомогенный катализ - процесс, в котором катализатор находится в молекулярно-дисперсном состоянии и равномерно распределен во всем объеме жидкой или газовой фазы. Если в качестве катализатора выступает кислота, говорят о кислотном катализе, а если основание - об основном катализе.

Фотохимические реакции - реакции, инициируемые облучением светом. Для обозначения фотохимической активации реакции применяют обозначение hv.

По числу частиц, принимающих участие в стадии, определяющей скорость, органические реакции подразделяют на мономолекулярные, бимолекулярные и тримолекулярные. Молекулярность реакции характеризует число частиц, участвующих в элементарном акте или необходимых для образования переходного состояния.

3. Кислоты и основания. Общие положения протолитической теории кислот и оснований Бренстеда-Лоури и теории Льюиса

В органической химии существует несколько концепций кислот и оснований. Общепринятыми являются протолитическая теория Бренстеда-Лоури (1923) и электронная теория Льюиса.

3.1 Протолитическая теория Бренстеда-Лоури

В ней кислотность и основность связывают с переносом протона Н+. Кислота Бренстеда (протонная кислота) - ион или нейтральная молекула, способная отдавать протон (донор протона) в химической реакции. Основание Бренстеда - ион или нейтральная молекула, способная присоединять протон (акцептор протона).

Кислотно-основное взаимодействие состоит в переносе протона от кислоты к основанию. Когда кислота отдает протон, оставшаяся частица сохраняет электронную пару и может снова захватить протон, поэтому она является основанием. Его называют сопряженным основанием кислоты. Всем кислотам соответствуют сопряженные основания, а основаниям - сопряженные кислоты.

В общем виде кислотно-основное взаимодействие описывается уравнением:

Кислота и основание образуют сопряженную кислотно-основную пару. Кислотные свойства проявляются в присутствии основания, основные - в присутствии кислоты. Кислота всегда имеет заряд, превышающий заряд сопряженного основания на +1.

Соединения, одновременно обладающие свойствами и основания, и кислоты, называются амфотерными.

По существу, большинство органических соединений можно рассматривать как потенциальные кислоты, потому что в них содержатся атомы водорода, связанные с другими более электроотрицательными атомами ? O, S, N, C. Эти атомы, связанные с атомом водорода, называют кислотным центром. Органические кислоты классифицируют по кислотному центру как OH-, SH-, NH- и СН-кислоты. Кислотами могут быть не только нейтральные молекулы, но и положительно заряженные ионы.

Органические основания как акцепторы протона должны иметь неподеленную электронную пару на гетероатоме или быть анионами. Основания, имеющие неподеленную пару электронов на гетероатоме, называют n-основаниями. Основания, у которых акцептором протона являются р-электроны локализованной или делокализованной связи, называются р-основаниями.

Кислотность и основность веществ по Бренстеду-Лоури характеризуется количественно. Кислотные свойства кислоты А?Н можно выразить через константу равновесия Кр:

Константа равновесия Kр ионизации кислоты имеет постоянное значение только для конкретной системы и поэтому по отношению к определенному основанию существует своя шкала. Наиболее важной является ионизация кислот в водных растворах, где в качестве основания выступает вода.

Так как вода присутствует в большом избытке, то ее концентрация остается практически постоянной (55,5 моль/л). Это значение включают в константу равновесия и получают характеристику, называемую константой кислотности Kа .

Чем больше значение Kа , тем сильнее кислота.

Значительно удобнее пользоваться значениями рKа = ?lgKа, при этом чем меньше значение рKа, тем сильнее кислота.

Данные по кислотности некоторых представителей различных классов представлены в табл. 10. Кислоты с рKа > 7 не изменяют цвет нейтральной индикаторной бумаги, а с рKа > 10 не имеют кислого вкуса.

Таблица 10. Значения рKа некоторых кислот Бренстеда по отношению к воде

Кислота

Формула

рKа

ОН-кислоты

Щавелевая

Муравьиная

Бензойная

Уксусная

Пропионовая

Фенол

Этанол

(COOH)2

HCOOH

C6H5COOH

CH3COOH

C2H5COOH

C6H5OH

C2H5OH

1,23

3,75

4,19

4,76

4,87

10,0

16,0

NH-кислоты

Ацетамид

Аммиак

CH3CONH2

NH3

15,1

33

СH-кислоты

Нитрометан

Ацетон

Ацетилен

Бензол

Метан

CH3NO2

CH3COCH3

C2H2

C6H6

CH4

10,6

20

25

43

48

Неорганические кислоты

Хлорная кислота

Серная кислота

Соляная кислота

Фосфорная кислота

Угольная кислота

Вода

НClО4

Н24

HCl

Н3РО4

Н2СО3

Н2О

-10

-9

-7

2,1

6,4

15,7

Сила кислоты зависит от стабильности сопряженного основания (аниона), образующегося из этой кислоты. Чем стабильнее анион, тем сильнее кислота. Кислотность зависит от нескольких факторов, способствующих стабилизации аниона:

· электроотрицательности и поляризуемости атома, связанного с протоном: СН-кислота < NH-кислота < ОH-кислота;

· степени делокализации (-)-заряда в анионе;

· способности аниона к сольватации (взаимодействию с растворителем). Чем меньше размер иона и чем больше локализован в нем заряд, тем лучше он сольватирован.

Электроноакцепторные заместители способствуют делокализации отрицательного заряда, стабилизируют анион и тем самым увеличивают кислотность. Электронодонорные заместители, наоборот, понижают ее.

Основность соединений в водном растворе характеризуют константой рKb, которая связана с рKа через ионное произведение воды:

рKb = 14 ? рKа.

Например:

рKb = 14 ? 4,75 = 9,25.

Однако для характеристики основности чаще используют величину рKа сопряженной основанию (:В) кислоты ВН+, обозначаемую рKВН+. Это позволяет применять одну и ту же шкалу для характеристики ионизации как кислот, так и оснований. Чем больше величина рKВН+ , тем сильнее основание (табл. 11).

Таблица 11. Значения рKВН + некоторых оснований различных классов

Название

Основание

Сопряженная кислота

рKВН+

N-основания

Аммиак

Метиламин

Диметиламин

Триметиламин

Анилин

NH3

CH3NH2

(CH3)2NH

(CH3)3N

C6H5NH2

NH4+

CH3NH3+

(CH3)2NH2+

(CH3)3NH+

C6H5NH3+

9,25

10,6

10,7

9,8

4,6

О-основания

Вода

Метанол

Фенол

Уксусная кислота

Н2О

CH3OH

C6H5OH

CH3C(O)OH

Н3О+

CH3OH2+

C6H5OH2+

CH3C(OН) +OH

?1,7

?2

?6

?6

Среди оснований Бренстеда анионы по сравнению с нейтральными молекулами обычно обладают более выраженными основными свойствами: NH2Ї > NH3; HOЇ > H2O; ROЇ > ROH. Все эти анионы являются очень сильными основаниями. Основность убывает в ряду:

анионы > n-основания > р-основания.

При присоединении протона к нейтральному основанию образуются солеобразные ониевые соединения (аммониевые, оксониевые, сульфониевые):

Сила основания определяется доступностью электронов гетероатома и стабильностью образующегося катиона. Чем стабильнее катион, тем сильнее основание.

Сила n-оснований с одинаковыми заместителями при гетероатоме уменьшается в порядке:

Электронодонорные заместители в радикале (R) повышают основность, а электроноакцепторные - наоборот.

3.2 Электронная теория Льюиса

Почти одновременно с Брендстедом Г. Льюис предложил более широкую теорию кислот и оснований, согласно которой кислотно-основные свойства соединений определяются их способностью принимать или отдавать пару электронов с образованием новой связи.

Кислоты Льюиса - акцепторы электронной пары, основания Льюиса - доноры электронной пары.

В обеих этих теориях понятия основания как донора электронной пары тождественны. Понятие же кислоты в теории Льюиса имеет более широкий смысл. Кислотой считается любая частица с вакантной орбиталью, способная дополнить свою оболочку парой электронов. Кислотами в теории Льюиса являются протон Н+, галогениды элементов второй и третьей групп периодической системы, имеющих вакантную орбиталь на внешней оболочке (BF3, AlCl3, FeCl3, FeBr3, ZnCl2), соединения олова и серы (SnCl4, SO3), способные принимать электронную пару.

К кислотам Льюиса относятся также катионы, например, Ag+, Сu+, Hg2+, карбокатионы R3C+, катионы NO2+, Br+ и др. В гетероциклических реакциях кислоты Льюиса выступают в качестве электрофильных реагентов.

Для кислот Льюиса сделано меньше количественных измерений относительной силы кислот и отсутствуют общие таблицы в отличие кислот Бренстеда. Предложена качественная оценка приблизительной кислотности кислот Льюиса типа МХn (X- галоген):

BX3 > AlX3 > FeX3 > GaX3 > SbX5 > SnX4

Размещено на Allbest.ru

...

Подобные документы

  • Электронная теория кислот и оснований Льюиса. Теория электролитической диссоциации Аррениуса. Протонная теория, или теория кислот и оснований Бренстеда. Основность и амфотерность органических соединений. Классификация реагентов органических реакций.

    презентация [375,0 K], добавлен 10.12.2012

  • Химическая реакция как превращение вещества, сопровождающееся изменением его состава и (или) строения. Признаки химических реакций и условия их протекания. Классификация химических реакций по различным признакам и формы их записи в виде уравнений.

    реферат [68,7 K], добавлен 25.07.2010

  • Человек как система, где происходят различные химические превращения. Экзотермическая реакция окисления органических веществ при высокой температуре (горение дров) – первая использованная человеком химическая реакция. Основные понятия и законы химии.

    лекция [30,9 K], добавлен 09.03.2009

  • Химическая кинетика и ее значение в управлении химическими процессами. Классификация реакций по средам протекания, их отличительные черты. Скорость химических реакций, зависимость ее от температуры среды и наличия света. Принцип действия катализаторов.

    реферат [152,7 K], добавлен 29.05.2009

  • Общее понятие о химической реакции, ее сущность, признаки и условия проведения. Структура химических уравнений, их особенности и отличия от математических уравнений. Классификация и виды химических реакций: соединения, разложения, обмена, замещения.

    реферат [773,3 K], добавлен 25.07.2010

  • Рассмотрение реакций, основанных на образовании комплексных соединений металлов и без их участия. Понятие о функционально-аналитической и аналитико-активной группах. Использование органических соединений как индикаторов титриметрических методов.

    курсовая работа [1,5 M], добавлен 01.04.2010

  • Определение содержания химической кинетики и понятие скорости реакции. Доказательство закона действующих масс и анализ факторов, влияющих на скорость химических реакций. Измерение общей энергии активации гомогенных и гетерогенных реакций, их обратимость.

    презентация [100,2 K], добавлен 11.08.2013

  • Качественные и количественные теоретические оценки влияния растворителей на скорость органических реакций между нейтральными аполярными и биполярными молекулами, а также между простыми неорганическими ионами. Роль водородной связи в химической кинетике.

    курсовая работа [1,0 M], добавлен 09.03.2012

  • Химическая связь в органических молекулах. Классификация химических реакций. Кислотные и основные свойства органических соединений. Гетерофункциональные производные бензольного ряда. Углеводы, нуклеиновые кислоты, липиды. Гетероциклические соединения.

    учебное пособие [1,9 M], добавлен 29.11.2011

  • Понятие о химической кинетике. Взаимодействие кислорода с водородом. Механизмы химических реакций. Влияние температуры на скорость реакций. Понятие об активном комплексе. Влияние природы реагирующих веществ на скорость реакций. Закон действия масс.

    реферат [237,9 K], добавлен 27.04.2016

  • Определение скорости химической реакции. История открытия, понятие и типы каталитических реакций. Мнения видных деятелей химии о явлении катализа, физические и химические его аспекты. Механизм гетерогенного катализа. Ферментативный катализ в биохимии.

    реферат [19,5 K], добавлен 14.11.2010

  • Основные понятия и законы химической кинетики. Кинетическая классификация простых гомогенных химических реакций. Способы определения порядка реакции. Влияние температуры на скорость химических реакций. Сущность процесса катализа, сферы его использования.

    реферат [48,6 K], добавлен 16.11.2009

  • Этапы изучения процессов горения и взрывов. Основные виды взрывов, их классификация по типу химических реакций и плотности вещества. Реакции разложения, окислительно-восстановительные, полимеризации, изомеризации и конденсации, смесей в основе взрывов.

    реферат [99,8 K], добавлен 06.06.2011

  • Понятие и условия прохождения химических реакций. Характеристика реакций соединения, разложения, замещения, обмена и их применение в промышленности. Окислительно-восстановительные реакции в основе металлургии, суть валентности, виды переэтерификации.

    реферат [146,6 K], добавлен 27.01.2012

  • Общие представления о реакции, типы реакции в бензольном кольце, примеры реакций замещения, протекающих по радикальному механизму. Реакционная способность ароматических субстратов и атакующего радикала, влияние растворителя на реакционную способность.

    курсовая работа [190,9 K], добавлен 14.07.2010

  • Простейшая молекулярная модель жидкостей. Особенности и закономерности протекания реакций в растворах. Классификация органических реакций жидкостей по конечному результату, а также механизму разрыва связей, их разновидности и главные этапы реализации.

    курсовая работа [446,0 K], добавлен 20.11.2013

  • Понятие и виды сложных реакций. Обратимые реакции различных порядков. Простейший случай двух параллельных необратимых реакций первого порядка. Механизм и стадии последовательных реакций. Особенности и скорость протекания цепных и сопряженных реакций.

    лекция [143,1 K], добавлен 28.02.2009

  • Стадии взаимодействия газообразных реагентов на поверхности твердого катализатора. Соотношение скоростей химической реакции и диффузии на примере необратимой реакции. Расчет адиабатических реакторов для реакций, протекающих в кинетической области.

    презентация [428,6 K], добавлен 17.03.2014

  • Факторы, влияющие на скорость реакции: концентрация реагирующих веществ или давление, природа реагирующих веществ, температура процесса и наличие катализатора. Пример гомогенных и гетерогенных реакций. Принцип Ле Шателье. Распределение молекул по энергии.

    лекция [144,0 K], добавлен 22.04.2013

  • Структурные формулы углеводородов, типы гибридного состояния углеродных атомов в молекулах. Уравнения последовательно протекающих реакций, названия продуктов этих реакций. Реакция электрофильного замещения в ароматическом кольце ароматических соединений.

    контрольная работа [402,0 K], добавлен 14.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.