История развития химии

Анализ основных этапов развития химии. Алхимия как феномен средневековой культуры, предпосылки ее формирования в Александрии, арабских и европейских странах. Период становления химии как науки, методы получения сплавов, открытие атомов и молекул.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 20.12.2015
Размер файла 34,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Основные этапы развития химии

1.1 Предалхимический период

1.2 Алхимия как феномен средневековой культуры

1.2.1 Александрийская алхимия

1.2.2 Арабская алхимия

1.2.3 Европейская алхимия

1.2.4 Техническая химия и ятрохимия

1.3 Период становления (объединения): XVII--XVIII вв.

1.4. Химическая революция

2. Химия, как самостоятельная наука

2.1 Период количественных законов: конец XVIII -- середина XIX в.

2.2 Химия во второй половине XIX в.

2.3 Физическая химия

Заключение

Библиографический список

Введение

С незапамятных времён человек, сталкиваясь с различными явлениями природы, накапливая сведения о них и об окружающих его предметах, всё чаще использовал их себе на благо. Человек заметил, что под действием огня одни вещества (и сам жизнь) исчезают, а другие изменяют свои свойства.

Например, обожжёная сырая глина приобретает прочность. Человек применил это в своей практике, и родилось гончарное дело. Из руд научились выплавлять металлы, а сплавляя металлы-получать различные сплавы; так появилась металлургия.

Используя свои наблюдения и знания, человек научился создавать, и, создавая, познавал. Науки рождались и развивались параллельно с ремёслами и производствами.

Превращения веществ под действием огня были первыми химическими реакциями, осуществлёнными человеком.

1. Основные этапы развития химии

При изучении истории развития химии возможны два взаимно дополняющих подхода: хронологический и содержательный.

При хронологическом подходе историю химии принято подразделять на несколько периодов. Следует учитывать, что периодизация истории химии, будучи достаточно условной и относительной, имеет скорее дидактический смысл.

При этом на поздних этапах развития науки в связи с её дифференциацией неизбежны отступления от хронологического порядка изложения, поскольку приходится отдельно рассматривать развитие каждого из основных разделов науки.

Как правило, большинство историков химии выделяют следующие основные этапы её развития:

1. Предалхимический период: до III в. н.э.

В предалхимическом периоде теоретический и практический аспекты знаний о веществе развиваются относительно независимо друг от друга. Происхождение свойств вещества рассматривает античная натурфилософия, практические операции с веществом являются прерогативой ремесленной химии.

2. Алхимический период: III - XVI вв.

Алхимический период, в свою очередь, разделяется на три подпериода:

александрийскую,

арабскую

европейскую алхимию.

Алхимический период - это время поисков философского камня, считавшегося необходимым для осуществления трансмутации металлов.

В этом периоде происходит зарождение экспериментальной химии и накопление запаса знаний о веществе; алхимическая теория, основанная на античных философских представлениях об элементах, тесно связана с астрологией и мистикой. Наряду с химико-техническим "златоделием" алхимический период примечателен также и созданием уникальной системы мистической философии.

3. Период становления (объединения): XVII - XVIII вв.

В период становления химии как науки происходит её полная рационализация. Химия освобождается от натурфилософских и алхимических взглядов на элементы как на носители определённых качеств. Наряду с расширением практических знаний о веществе начинает вырабатываться единый взгляд на химические процессы и в полной мере использоваться экспериментальный метод. Завершающая этот период химическая революция окончательно придаёт химии вид самостоятельной науки, занимающейся экспериментальным изучением состава тел.

4. Период количественных законов (атомно-молекулярной теории): 1789 - 1860 гг.

Период количественных законов, ознаменовавшийся открытием главных количественных закономерностей химии - стехиометрических законов, и формированием атомно-молекулярной теории, окончательно завершает превращение химии в точную науку, основанную не только на наблюдении, но и на измерении.

5. Период классической химии: 1860 г. - конец XIX в.

Период классической химии характеризуется стремительным развитием науки: создаётся периодическая система элементов, теория валентности и химического строения молекул, стереохимия, химическая термодинамика и химическая кинетика; блестящих успехов достигают прикладная неорганическая химия и органический синтез. В связи с ростом объёма знаний о веществе и его свойствах начинается дифференциация химии - выделение её отдельных ветвей, приобретающих черты самостоятельных наук.

1.1 Предалхимический период

В предалхимическом периоде теоретический и практический аспекты знаний о веществе развивались относительно независимо друг от друга.

Практические операции с веществом являлись прерогативой ремесленной химии. Начало её зарождения следует в первую очередь связывать, видимо, с появлением и развитием металлургии. В античную эпоху были известны в чистом виде семь металлов: медь, свинец, олово, железо, золото, серебро и ртуть, а в видесплавов -- ещё и мышьяк, цинк и висмут. Помимо металлургии, накопление практических знаний происходило и в других областях, таких как производство керамики и стекла, крашение тканей и дубление кож, изготовление лекарственных средств и косметики. Именно на основе успехов и достижений практической химии древности происходило развитие химических знаний в последующие эпохи.

Попытки теоретического осмысления проблемы происхождения свойств вещества привели к формированию в античной греческой натурфилософии учения об элементах-стихиях. Наибольшее влияние на дальнейшее развитие науки оказали учения Эмпедокла, Платона и Аристотеля. Согласно этим концепциям все вещества образованы сочетанием четырёх первоначал: земли, воды, воздуха и огня. Сами элементы при этом способны к взаимопревращениям, поскольку каждый из них, согласно Аристотелю, представляет собой одно из состояний единой первоматерии -- определённое сочетание качеств. Положение о возможности превращения одного элемента в другой стало позднее основой алхимической идеи о возможности взаимных превращений металлов (трансмутации). Практически одновременно с учением об элементах-стихиях в Греции возник и атомизм, основателями которого стали Левкипп и Демокрит.

1.2 Алхимия как феномен средневековой культуры

Алхимия складывалась в эпоху эллинизма на основе слияния прикладной химии египтян с греческой натурфилософией, мистикой и астрологией (золото соотносили с Солнцем, серебро - с Луной, медь - с Венерой, и т.д.) (II-VI вв.) в александрийской культурной традиции, представляя собой форму ритуально-магического искусства. Алхимия - это самозабвенная попытка найти способ получения благородных металлов. Алхимики считали, что ртуть и сера разной чистоты, соединяясь в различных пропорциях, дают начало металлам, в том числе и благородным. В реализации алхимического рецепта предполагалось участие священных или мистических сил, а средством обращения к этим силам было слово - необходимая сторона ритуала. Поэтому алхимический рецепт выступал одновременно и как действие, и как священнодействие.

Первая - это мистифицированная алхимия, ориентированная на химические превращения (в частности, ртути в золото) и, в конечном счете, на доказательство возможности человеческими усилиями осуществлять космические превращения. В русле этой тенденции арабские алхимики сформулировали идею «философского камня» - гипотетического вещества, ускорявшего «созревание» золота в недрах земли; это вещество заодно трактовалось и как эликсир жизни, исцеляющий болезни и дающий бессмертие. Вторая тенденция была больше ориентирована на конкретную практическую технохимию. В этой области достижения алхимии несомненны. К ним следует отнести: открытие способов получения серной, соляной, азотной кислот, селитры, сплавов ртути с металлами, многих лекарственных веществ, создание химической посуды и др.

1.2.1 Александрийская алхимия

В Александрии произошло соединение теории (натурфилософии Платона и Аристотеля) и практических знаний о веществах, их свойствах и превращениях; из этого соединения и родилась новая наука -- химия. Само слово «химия» (и арабское al-kоmiya?) обычно считается происходящим от древнего названия Египта -- Кеме или Хем; изначально слово, по-видимому, должно было означать нечто вроде «египетского искусства». Иногда термин производят от греческого чхмпт -- сок или чхменуйж -- литьё. Основными объектами изучения александрийской химии являлись металлы. В александрийский период сформировалась традиционная металлопланетная символика алхимии, в которой каждому из семи известных тогда металлов сопоставлялась соответствующая планета: серебру -- Луна, ртути -- Меркурий, меди -- Венера, золоту -- Солнце, железу -- Марс, олову -- Юпитер, свинцу -- Сатурн. Небесным покровителем химии в Александрии стал египетский бог Тот или его греческий аналог Гермес.

Среди значительных представителей греко-египетской алхимии, имя которых дошло до наших дней, можно отметить Болоса Демокритоса, Зосима Панополита, Олимпиодора. Написанная Болосом книга «Физика и мистика» (ок. 200 до н. э.) состоит из четырёх частей, посвящённых золоту, серебру, драгоценным камням и пурпуру. Болос впервые высказал идею трансмутации металлов -- превращения одного металла в другой (прежде всего неблагородных металлов в золото), ставшую основной задачей всего алхимического периода. Зосим в своей энциклопедии (III в.) определил khemeia как искусство делания золота и серебра, описал «тетрасомату» -- стадии процесса приготовления искусственного золота; особо он указывал на запрет разглашения тайн этого искусства.

От александрийского периода осталось также и множество герметических текстов, представлявших собой попытку философско-мистического объяснения превращений веществ, среди которых знаменитая «Изумрудная скрижаль» Гермеса Трисмегиста.

К числу несомненных практических достижений греко-египетских алхимиков следует отнести открытие явления амальгамирования металлов. Амальгама золота стала применяться для позолоты. Александрийскими учёными был усовершенствован способ извлечения золота и серебра из руд, для чего широко применялась ртуть, получаемая из киновари или каломели. Помимо практического значения, уникальная способность ртути образовывать амальгаму способствовала появлению представления о ртути, как об особом, «первичном» металле. Алхимиками был разработан также способ очистки золота купелированием -- нагреванием руды со свинцом и селитрой.

1.2.2 Арабская алхимия

Теоретической основой арабской алхимии по-прежнему являлось учение Аристотеля. Однако развитие алхимической практики потребовало создания новой теории, основанной на химических свойствах веществ. Джабир ибн Хайян (Гебер) в конце VIII века разработал ртутно-серную теорию происхождения металлов, согласно которой металлы образованы двумя принципами: Ртутью (принцип металличности) и Серой (принцип горючести). Для образования золота -- совершенного металла, помимо Ртути и Серы необходимо наличие некоторой субстанции, которую Джабир называл эликсиром (al-iksir, от греческого оесйпн, то есть «сухой»). Проблема трансмутации, таким образом, в рамках ртутно-серной теории свелась к задаче выделения эликсира, иначе называемого философским камнем (Lapis Philosophorum). Эликсир, как считалось, должен был обладать ещё многими магическими свойствами -- исцелять все болезни, и, возможно, давать бессмертие.

Ртутно-серная теория составила теоретическую основу алхимии на несколько последующих столетий. В начале X века другой выдающийся алхимик -- Ар-Рази (Разес), -- усовершенствовал теорию, добавив к Ртути и Сере принцип твёрдости (хрупкости), или философскую Соль.

Арабская алхимия, в отличие от александрийской, была вполне рациональна; мистические элементы в ней представляли собой скорее дань традиции. Помимо формирования основной теории алхимии, во время арабского этапа был разработан понятийный аппарат, лабораторная техника и методика эксперимента. Арабские алхимики добились несомненных практических успехов -- ими выделены сурьма, мышьяк и, по-видимому, фосфор, получены уксусная кислота и разбавленные растворы минеральных кислот. Важной заслугой арабских алхимиков стало создание рациональной фармации, развившей традиции античной медицины.

1.2.3 Европейская алхимия

Аллегорическое изображение из европейского алхимического трактата (Василий Валентин, 1599).

Научные воззрения арабов проникли в средневековую Европу в XIII веке. Работы арабских алхимиков были переведены на латынь, а затем и на другие европейские языки.

Среди крупнейших алхимиков европейского этапа можно отметить Альберта Великого, Роджера Бэкона, Арнальдо де Вилланову, Раймунда Луллия, Василия Валентина. Р. Бэкон определил алхимию следующим образом: «Алхимия есть наука о том, как приготовить некий состав, или эликсир, который, если его прибавить к металлам неблагородным, превратит их в совершенные металлы».

В Европе в мифологию и символику алхимии были внедрены элементы христианской мифологии (Петрус Бонус, Николай Фламель); в целом для европейской алхимии мистические элементы оказались значительно более характерны, нежели для арабской. Мистицизм и закрытость европейской алхимии породили значительное число мошенников от алхимии; уже Данте Алигьери в «Божественной комедии» поместил в восьмой круг Ада тех, кто «алхимией подделывал металлы». Характерной чертой европейской алхимии стало её двусмысленное положение в обществе. Как церковные, так и светские власти неоднократно запрещали занятия алхимией; в то же время алхимия процветала и в монастырях, и при королевских дворах.

К началу XIV века европейская алхимия добилась первых значительных успехов, сумев превзойти арабов в постижении свойств вещества. В 1270 году итальянский алхимик Бонавентура, в одной попытке получения универсального растворителя получил раствор нашатыря в азотной кислоте (aqua fortis), который оказался способным растворять золото, царя металлов (отсюда и название -- aqua Regis, то есть царская водка). Псевдо-Гебер -- один из самых значительных средневековых европейских алхимиков, работавший в Испании в XIV веке и подписывавший свои сочинения именем Гебера, -- подробно описал концентрированные минеральные кислоты (серную и азотную). Использование этих кислот в алхимической практике привело к существенному росту знаний алхимиков о веществе.

В середине XIII века в Европе началась выделка пороха; первым его (не позже 1249 года) описал, по-видимому, Р. Бэкон (часто упоминаемого монаха Б. Шварца можно считать основоположником порохового дела вГермании). Появление огнестрельного оружия стало сильнейшим стимулом для развития алхимии и её тесного переплетения с ремесленной химией.

1.2.4 Техническая химия и ятрохимия

Начиная с эпохи Возрождения, в связи c развитием производства всё большее значение в алхимии стало приобретать производственное и вообще практическое направление: металлургия, изготовление керамики, стекла и красок. В первой половине XVI века в алхимии выделились рациональные течения: техническая химия, начало которой положили работы В. Бирингуччо, Г. Агриколы и Б. Палисси, и ятрохимия, основателем которой стал Парацельс.

Бирингуччо и Агрикола видели задачу алхимии в поисках способов совершенствования химической технологии; в своих трудах они стремились к максимально ясному, полному и достоверному описанию опытных данных и технологических процессов.

Парацельс утверждал, что задача алхимии -- изготовление лекарств, при этом медицина Парацельса основывалась на ртутно-серной теории. Он считал, что в здоровом организме три принципа -- Ртуть, Сера и Соль, -- находятся в равновесии; болезнь представляет нарушение равновесия между принципами. Для его восстановления Парацельс ввёл в практику лекарственные препараты минерального происхождения -- соединения мышьяка, сурьмы, свинца, ртути и т. п., -- в дополнение к традиционным растительным препаратам.

К представителям ятрохимии (спагирикам, как называли себя последователи Парацельса) можно отнести многих известных алхимиков XVI--XVII веков: А. Либавия, Р. Глаубера,Я. Б. Ван Гельмонта, О. Тахения.

Главным результатом алхимического периода в целом, помимо накопления значительного запаса знаний о веществе, явилось зарождение эмпирического подхода к изучению свойств вещества. Алхимический период стал совершенно необходимым переходным этапом между натурфилософией и экспериментальным естествознанием.

1.3 Период становления (объединения): XVII--XVIII вв.

Вторая половина XVII века ознаменовалась первой научной революцией, результатом которой стало новое естествознание, целиком основанное на экспериментальных данных. Создание гелиоцентрической системы мира (Н. Коперник, И. Кеплер), новой механики (Г. Галилей), открытие вакуума и атмосферного давления (Э. Торричелли, Б. Паскаль и О. фон Герике) привели к глубокому кризису аристотелевской физической картины мира. Ф. Бэкон выдвинул тезис о том, что решающим доводом в научной дискуссии должен являться эксперимент; в философии возродились атомистические представления (Р. Декарт, П. Гассенди).

Одним из следствий этой научной революции явилось создание новой химии, основоположником которой традиционно считается Р. Бойль. Бойль, доказав несостоятельность алхимических представлений об элементах как носителях неких качеств, поставил перед химией задачу поиска реальных химических элементов. Элементы, по Бойлю, -- практически неразложимые тела, состоящие из сходных однородных корпускул, из которых составлены все сложные тела и на которые они могут быть разложены. Главной задачей химии Бойль считал изучение состава веществ и зависимости свойств вещества от его состава.

1.4 Химическая революция

Процесс превращения химии в науку завершился открытиями А. Л. Лавуазье. С создания им кислородной теории горения (1777 год) начался переломный этап в развитии химии, названный «химической революцией». Отказ от теории флогистона потребовал пересмотра всех основных принципов и понятий химии, изменения терминологии и номенклатуры веществ. В 1789 году Лавуазье издал свой знаменитый учебник «Элементарный курс химии», целиком основанный на кислородной теории горения и новойхимической номенклатуре. Он привёл первый в истории новой химии список химических элементов (таблицу простых тел). Критерием определения элемента он избрал опыт, и только опыт, категорически отвергая любые неэмпирические рассуждения об атомах и молекулах, само существование которых невозможно подтвердить опытным путём. Лавуазье сформулировал закон сохранения массы, создал рациональную классификацию химических соединений, основанную, во-первых, на различии в элементном составе соединений и, во-вторых, на характере их свойств.

Химическая революция окончательно придала химии вид самостоятельной науки, занимающейся экспериментальным изучением состава тел; она завершила период становления химии, ознаменовала собой полную рационализацию химии, окончательный отказ от алхимических представлений о природе вещества и его свойств.

2. Химия, как самостоятельная наука

2.1 Период количественных законов: конец XVIII -- середина XIX в.

Главным итогом развития химии в период количественных законов стало её превращение в точную науку, основанную не только на наблюдении, но и на измерении. За открытым Лавуазье законом сохранения массы последовал целый ряд новых количественных закономерностей -- стехиометрические законы:

* Закон эквивалентов (И. В. Рихтер, 1791--1798)

* Закон постоянства состава (Ж. Л. Пруст, 1799--1806)

* Закон кратных отношений (Дж. Дальтон, 1803; см. также законы Дальтона)

* Закон объёмных отношений, или закон соединения газов (Ж. Л. Гей-Люссак, 1808)

* Закон Авогадро (А. Авогадро, 1811)

* Закон удельных теплоёмкостей (П. Л. Дюлонг и А. Т. Пти, 1819)

* Закон изоморфизма (Э. Мичерлих, 1819)

* Законы электролиза (М. Фарадей, 1830-е гг.)

* Закон постоянства количества теплоты (Г. Гесс, 1840)

* Закон атомов (С. Канниццаро, 1858)

Огромный вклад в развитие химической атомистики внёс шведский химик Й. Я. Берцелиус, определивший атомные массы многих элементов. Он же в 1811--1818 разработал электрохимическую теорию сродства, объяснявшую соединение атомов на основе представления о полярности атомов и электроотрицательности. В 1814 году Берцелиус ввел систему символов химических элементов, где каждый элемент обозначался одной или двумя буквами латинского алфавита, многие обозначения Берцелиуса совпадают с современными международными.

Свою молекулярную теорию, органично дополняющую атомистику Дальтона, разработал А. Авогадро, однако его взгляды долгое время не находили признания.

Наряду с атомными весами, долгое время в химии существовала система «эквивалентных весов», которую развивали У. Волластон и Л. Гмелин. Многим химикам эквивалентные веса казались более удобными и точными, чем атомные, поскольку они рассчитывались без принятых Дальтоном допущений. Однако для органической химии система эквивалентов оказалась малопригодной, и в 1840-х гг. Ж. Б. Дюма, Ш. Жерар и О. Лоран возродили идеи Авогадро.

Окончательную ясность в атомно-молекулярную теорию внёс С. Канниццаро. Реформа Канниццаро, получившая всеобщее признание на Международном конгрессе химиков в Карлсруэ (1860 год), завершила период, основным содержанием которого стало установление количественных законов. Определения атомных масс химических элементов, которые выполнил в первой половине 1860-х годов бельгийский химикЖ. С. Стас (англ.)русск. (окончательно утвердивший относительную атомную массу для кислорода 16 (а.е.м.)), до конца XIX века считались наиболее точными и открыли дорогу для систематизации элементов.

2.2 Химия во второй половине XIX в.

Для данного периода характерно стремительное развитие науки: были созданы периодическая система элементов, теория химического строения молекул, стереохимия, химическая термодинамика и химическая кинетика; блестящих успехов достигли прикладная неорганическая химия и органический синтез. В связи с ростом объёма знаний о веществе и его свойствах началась дифференциация химии -- выделение её отдельных ветвей, приобретающих черты самостоятельных наук. Одной из важнейших задач химии второй половины XIX века стала систематизация химических элементов. После открытия явления изомерии (Ю. Либих и Ф. Вёлер, 1824), чрезвычайно распространённого в органической химии, стало очевидным, что свойства вещества определяются не только его составом, но и порядком соединения атомов и их пространственным расположением.

Теория типов Жерара-Лорана привела к созданию представлений о единицах сродства атомов и радикалов, в результате развития которых появилась теория валентности(Ф. А. Кекуле фон Штрадониц, 1857 год), ставшая основой для создания А. М. Бутлеровым его теории химического строения молекул. Простые и наглядные представления Кекуле и Бутлерова позволили дать объяснение многим экспериментальным фактам, касающимся изомерии органических соединений и их реакционной способности. Большое значение для развития системы структурных формул имело установление циклического строения молекулы бензола (Кекуле, 1865 год)[39].

Важным этапом развития структурной химии стало создание стереохимии, описывающей пространственное строение молекул. В 1874 году голландский химик Я. Г. Вант-Гоффпредложил теорию асимметричного атома углерода, которая удачно объясняла явление оптической изомерии, открытое в 1832 году Берцелиусом, и существование энантиомеров, обнаруженных в 1848 году Л. Пастером. На протяжении почти всего XIX века структурные представления оказались востребованы, прежде всего, в органической химии. Лишь в 1893 году А. Вернер создал теорию строения комплексных соединений, которая распространила эти представления на неорганические соединения, существенно расширив понятие о валентности элементов.

2.3 Физическая химия

Предметом изучения физической химии стали химические процессы -- скорость, направление, сопровождающие их тепловые явления и зависимость этих характеристик от внешних условий.

Изучение тепловых эффектов реакций начал А. Л. Лавуазье, сформулировавший совместно с П. С. Лапласом первый закон термохимии. В 1840 году Г. И. Гесс открыл основной закон термохимии («закон Гесса»). М. Бертло и Ю. Томсен в 1860-е годы сформулировали «принцип максимальной работы» (принцип Бертло -- Томсена), позволивший предвидеть принципиальную осуществимость химического взаимодействия.

Важнейшую роль в создании представлений о химическом сродстве и химическом процессе сыграли термодинамические исследования середины XIX века. Объектом изученияхимической термодинамики стало, прежде всего, состояние химического равновесия, впервые описанное А. У. Уильямсоном в 1850 году и изученное Г. Розе, Р. В. Бунзеном,А. Э. Сент-Клер Девилем, М. Бертло и другими исследователями.

В 1867 году К. М. Гульдберг и П. Вааге открыли закон действующих масс. Представляя равновесие обратимой реакции как равенство двух сил сродства, действующих в противоположных направлениях, они показали, что направление реакции определяется не массами веществ (как предполагал в начале века К. Л. Бертолле), а произведением действующих масс (концентраций) реагирующих веществ. Теоретическое рассмотрение химического равновесия выполнили Дж. У. Гиббс (1874--1878), Д. П. Коновалов (1881--1884)[46] и Я. Г. Вант-Гофф (1884). Вант-Гофф сформулировал также принцип подвижного равновесия, который обобщили позже А. Л. Ле Шателье и К. Ф. Браун. Создание учения о химическом равновесии стало одним из главных достижений физической химии XIX века, имевшим значение не только для химии, но и для всего естествознания.

В 1850-е годы с работ Л. Ф. Вильгельми начались систематические исследования скорости химических реакций, которые привели к созданию в 1880-е годы основ формальной кинетики (Я. Г. Вант-Гофф, В. Оствальд, С. А. Аррениус). В 1890-х годах Оствальд опубликовал также серию ставших классическими работ по исследованию каталитических процессов.

Важным достижением физической химии в XIX веке стало создание учения о растворах. Альтернативные физическая и химическая теории растворов развились из представлений Берцелиуса, считавшего растворы механическими смесями, при образовании которых не действуют силы химического сродства, и Бертолле, рассматривавшего растворы как нестехиометрические соединения. Физическая теория достигла существенных успехов в количественном описании некоторых свойств растворов (1-й и 2-й законы Ф. М. Рауля, осмотический закон Я. Г. Вант-Гоффа, теория электролитической диссоциации С. А. Аррениуса).

Открытие электрона Э. Вихертом и Дж. Дж. Томсоном (1897 год) и радиоактивности А. Беккерелем (1896 год) стали доказательством делимости атома, возможность которой стала обсуждаться после выдвижения У. Праутом гипотезы о протиле (1815 год). Уже в начале XX века появились первые модели строения атома: «кексовая» (У. Томсон,1902 год и Дж. Дж. Томсон, 1904), планетарная (Ж. Б. Перрен, 1901 год и Х. Нагаока, 1903 год), «динамидическая» (Ф. Ленард, 1904). В 1911 Э. Резерфорд, основываясь на опытах по рассеиванию б-частиц, предложил ядерную модель, ставшую основой для создания классической модели строения атома (Н. Бор, 1913 год и А. Зоммерфельд,1916). Основываясь на ней, Н. Бор в 1921 заложил основы формальной теории периодической системы, объяснившей периодичность свойств элементов периодическим повторением строения внешнего электронного уровня атома. После того, как В. Паули сформулировал принцип запрета (1925), а Ф. Хунд предложил эмпирические правила заполнения электронных оболочек (1925--1927), была в целом установлена электронная структура всех известных к тому времени элементов.

После открытия делимости атома и установления природы электрона как его составной части возникли реальные предпосылки для разработки теорий химической связи. Первой стала концепция электровалентности Р. Абегга (1904), основанная на идее о сродстве атомов к электрону. Модель Бора -- Зоммерфельда, представления о валентных электронах (И. Штарк, 1915)[63] и идея об особой стабильности двух- и восьмиэлектронных оболочек атомов инертных газов легли в основу классических теорий химической связи. В. Коссель (В конце 20-х -- начале 30-х годов XX века сформировались принципиально новые -- квантово-механические -- представления о строении атома и природе химической связи.

Исходя из идеи французского физика Л. де Бройля о наличии у материальных частиц волновых свойств, австрийский физик Э. Шрёдингер в 1926 году вывел основное уравнение т. н. волновой механики, содержащее волновую функцию и позволяющее определить возможные состояния квантовой системы и их изменение во времени[70]. Несколько ранее немецкий физик В. Гейзенберг разработал свой вариант квантовой теории атома в виде матричной механики.

Квантово-механический подход к строению атома привёл к созданию новых теорий, объясняющих образование связи между атомами. Уже в 1927 году В. Г. Гейтлер и Ф. Лондон начали разрабатывать квантовомеханическую теорию химической связи и выполнили приближённый расчет молекулы водорода. Распространение метода Гейтлера-Лондона на многоатомные молекулы привело к созданию метода валентных связей, который создают в 1928--1931 гг. Л. Полинг и Дж. К. Слэтер. Основная идея этого метода заключается в предположении, что атомные орбитали сохраняют при образовании молекулы известную индивидуальность. В 1928 году Полинг предложил теорию резонанса и идею гибридизации атомных орбиталей, в 1932 году -- новое количественное понятие электроотрицательности.

В 1929 году Ф. Хунд, Р. С. Малликен и Дж. Э. Леннард-Джонс заложили фундамент метода молекулярных орбиталей, основанного на представлении о полной потере индивидуальности атомов, соединившихся в молекулу. Хунд создал также современную классификацию химических связей; в 1931 году он пришёл к выводу о существовании двух основных типов химических связей -- простой, или у-связи, и р-связи. Э. Хюккель распространил метод МО на органические соединения, сформулировав в 1931 году правило ароматической стабильности, устанавливающее принадлежность вещества к ароматическому ряду.

Благодаря квантовой механике к 30-м годам XX века в основном был выяснен способ образования связи между атомами; кроме того, в рамках квантово-механического подхода получило корректную физическую интерпретацию менделеевское учение о периодичности. Создание надёжного теоретического фундамента привело к значительному росту возможностей прогнозирования свойств вещества. Особенностью химии в XX веке стало широкое использования физико-математического аппарата и разнообразных расчётных методов.

Подлинным переворотом в химии стало появление в XX веке большого числа новых аналитических методов. Отличительной чертой современной химии стало её тесное взаимодействие с другими естественными науками, в результате которого на стыке наук появились биохимия,геохимия и др. разделы. Одновременно с этим процессом интеграции интенсивно протекал и процесс дифференциации самой химии. Хотя границы между разделами химии достаточно условны, коллоидная и координационная химия, кристаллохимия и электрохимия, химия высокомолекулярных соединений и некоторые другие разделы приобрели черты самостоятельных наук.

Заключение

алхимия сплав атом молекула

Будучи составной частью в истории формирования общей естественнонаучной картины мира, история познания химических свойств вещества, история практического овладения им, тесно переплеталась с историей развития отношения человека с окружающим миром, с историей познания материальной и духовной стороны этих отношений. История химии убедительно свидетельствует о том, что многие крупные представители этой науки отличались высокой философской, гносеологической культурой и в той или иной мере всегда проявляли интерес мировоззренческой, методологической и социальной стороне развития химии, а характер и уровень их философской позиции всегда отражался в направлениях, методах и результатах их исследований.

Подводя итог проделанной работе, можно сделать краткие выводы. Становление и развитие химической картины мира происходила последовательно в несколько этапов.

Период алхимии характеризуется поисками философского камня, эликсира долголетия, алкагеста (универсального растворителя). Кроме того, в алхимический период почти во всех культурах практиковалось «превращение» неблагородных металлов в золото или серебро, но все эти «превращения» у каждого народа осуществлялись самыми разными способами.

Период зарождения научной химии, который продолжался в течение XVI - XVIII веков. На этом этапе были созданы теории Парацельса, теории газов Бойля, Кавендиша и др., теория флогистона Г. Шталя и, наконец, теория химических элементов Лавуазье. В течение этого периода совершенствовалась прикладная химия, связанная с развитием металлургии, производства стекла и фарфора, искусства перегонки жидкостей и т.д. К концу XVIII века произошло упрочение химии как науки, независимой от других естественных наук.

Период открытия основных законов химии охватывает первые шестьдесят лет XIX века и характеризуется возникновением и развитием атомной теории Дальтона, атомно-молекулярной теории Авогадро, установлением Берцелиусом атомных весов элементов и формированием основных понятий химии: атом, молекула и др.

Современный период длится с 60-х годов XIX века до наших дней. Это наиболее плодотворный период развития химии, так как в течение немногим более 100 лет были разработаны периодическая классификация элементов, теория валентности, теория ароматических соединений и стереохимия, теория электролитической диссоциации Аррениуса, электронная теория материи и т.д.

Библиографический список

1. Билл Стеймен. «Полный справочник вредных, полезных и нейтральных веществ, которые содержатся в пище, косметике, лекарствах», «Эксмо - пресс», 2003.

2. Бобырев В.Г., Кузьмин Н.М. Физические и химические методы исследования. _ Волгоград: ВСШ МВД, 1979.

3. Габриэлян О.С. Химия. 8 класс: учебник. - М.: Дрофа, 2011. Габриелян О.С., Лысова Г.Г. Учебное пособие для выпускных классов общеобразовательных учебных заведений. - Москва, 2000.

4. Глинка Н.Л. Общая химия: Учебное пособие для ВУЗов / Под ред. В.А. Рабиновича. _ Л.: Химия, 1983.

5. Дорохова Е.Н., Прохорова Г.В. Аналитическая химия. Физико-химические методы анализа: Учебное пособие. _ М.: Высшая школа, 1991.

6. Зайцев А.Н. О безопасных пищевых добавках и «зловещих» символах «Е» журнал «Экология и жизнь», № 4, 1999.

7. Кукушкин Н.Н. Химия вокруг нас - М.: Высшая школа, 1992. Машковский, М.Д. Лекарственные средства: в 2 т. / М.Д. Машковский - 14-е изд., перераб. и доп. - М.: Новая волна, 2004. - Т. 1. Научно-методический журнал «Химия» в школе, «Центр Химпрес» (за 2001-2003 гг.).

8. Пичугина Г.В. «Повторяем химию на примерах из повседневной жизни» - Москва: «Аркти», 2000.

9. Третьяков Ю.Д. и др. Химия и современность: Пособие для учителя. - М.: Просвещение, 1985.

10. Чернобельская Г.М. «Методика обучения химии в средней школе», Москва «Владос», 2000.

11. Юдин А.М., В.Н. Сучков. «Химия для Вас». - М.: Химия, 2001

12. Шульгин Г.Б. «Химия для всех», Москва, «Знание», 1987. Энциклопедия для детей. Химия. - М.: Аванта +, 2005.

Размещено на Allbest.ru

...

Подобные документы

  • Основные этапы развития химии. Алхимия как феномен средневековой культуры. Возникновение и развитие научной химии. Истоки химии. Лавуазье: революция в химии. Победа атомно-молекулярного учения. Зарождение современной химии и ее проблемы в XXI веке.

    реферат [24,8 K], добавлен 20.11.2006

  • Происхождение термина "химия". Основные периоды развития химической науки. Типы наивысшего развития алхимии. Период зарождения научной химии. Открытие основных законов химии. Системный подход в химии. Современный период развития химической науки.

    реферат [30,3 K], добавлен 11.03.2009

  • Понятие и история развития алхимии, ее распространенность в обществе, основополагающие идеи. Достижение и направления формирования науки в период средневековья. Техническая химия и ятрохимия как переходный этап от классической алхимии к научной химии.

    реферат [27,2 K], добавлен 06.11.2014

  • Краткая история возникновения химии как важнейшей отрасли естествознания и науки, изучающей вещества и их превращения. Алхимия и первые сведения о химических превращениях. Описание вещества, атомная, математическая химия и родоначальники российской химии.

    курсовая работа [25,5 K], добавлен 25.04.2011

  • Сущность понятий "химия" и "алхимия". Основные периоды наивысшего развития алхимии: александрийский (греко-египетский), арабский, европейский. Особенности трансмутации металлов. Открытие сильных минеральных кислот. Вклад И.Р. Глаубера в развитие химии.

    реферат [36,0 K], добавлен 06.01.2015

  • История возникновения и развития древней и средневековой химии. Задачи алхимии, превращение (трансмутация) неблагородных металлов в благородные, поиск "философского камня". История важнейших открытий в химии. Выдающиеся ученые эпохи Средневековья.

    презентация [415,6 K], добавлен 22.09.2011

  • От алхимии - к научной химии: путь действительной науки о превращениях вещества. Революция в химии и атомно-молекулярное учение как концептуальное основание современной химии.Экологические проблемы химической компоненты современной цивилизации.

    реферат [56,6 K], добавлен 05.06.2008

  • Теоретическая основа аналитической химии. Спектральные методы анализа. Взаимосвязь аналитической химии с науками и отраслями промышленности. Значение аналитической химии. Применение точных методов химического анализа. Комплексные соединения металлов.

    реферат [14,9 K], добавлен 24.07.2008

  • Зарождение химии в Древнем Египте. Учение Аристотеля об атомах как идейная основа эпохи алхимии. Развитие химии на Руси. Вклад Ломоносова, Бутлерова и Менделеева в развитие этой науки. Периодический закон химических элементов как стройная научная теория.

    презентация [1,8 M], добавлен 04.10.2013

  • Химия как одна их важнейших наук для человечества. Основные периоды развития науки. Символика алхимии. Становление технической химии и ятрохимии. Таблица атомных масс Дальтона. Открытие электрона и радиоактивности. Структурная и физическая химия.

    презентация [2,5 M], добавлен 01.11.2014

  • Общие тенденции развития современной химии. Основные направления развития химии в ХХI. Компьютерное моделирование молекул (молекулярный дизайн) и химических реакций. Спиновая химия. Нанохимия. Фемтохимия. Синтез фуллеренов и нанотрубок.

    курсовая работа [37,4 K], добавлен 05.06.2005

  • Процесс зарождения и формирования химии как науки. Химические элементы древности. Главные тайны "трансмутации". От алхимии к научной химии. Теория горения Лавуазье. Развитие корпускулярной теории. Революция в химии. Победа атомно-молекулярного учения.

    реферат [36,8 K], добавлен 20.05.2014

  • Этапы развития химии, эволюция теоретического и практического аспектов знаний о веществе. Основные черты натурфилософии, решение вопроса о делимости материи. Тенденции в средневековой алхимии. Период количественных законов (атомно-молекулярной теории).

    реферат [30,6 K], добавлен 26.01.2015

  • Ознакомление с своеобразием материальной культуры Византийской империи. История развития химии в пределах алхимии в IV—VII вв. Описание в византийских источниках формул получения царской водки, мышьяка, серы, азотной кислоты. Рецепт изготовления соли.

    презентация [1,5 M], добавлен 24.11.2011

  • История химии как науки. Родоночальники российской химии. М.В.Ломоносов. Математическая химия. Атомная теория - основа химической науки. Атомная теория просто и естественно объясняла любое химическое превращение.

    реферат [28,2 K], добавлен 02.12.2002

  • Краткая биография Д.И. Менделеева, история его жизни и деятельности, основные труды в области химии. Открытие Менделеевым периодического закона и составление Периодической таблицы. Принципиальная новизна закона и его значение для химии и естествознания.

    реферат [291,3 K], добавлен 11.07.2011

  • Вклад Ломоносова в развитие химии как науки: обоснование закона сохранения массы вещества, исследование природы газового состояния, изучение явления кристаллизации. Основные направления развития физической химии во второй половине XVIII-XX веках.

    реферат [28,1 K], добавлен 26.08.2014

  • Основные функции химии. Свойства моющих и чистящих средств. Использование химии в здравоохранении и образовании. Обеспечение роста производства, продление сроков сохранности сельхозпродукции и повышение эффективности животноводства при помощи химии.

    презентация [14,3 M], добавлен 20.12.2009

  • Графическое представление молекул и их свойств - теория графов в химии. Методы расчета топологических индексов. Кодирование химической информации. Оценка реакционной способности молекул. Анализ связи между топологией молекулы и свойствами соединения.

    реферат [313,2 K], добавлен 09.12.2013

  • Управление химическими процессами, особенности анализа и идентификации структуры сложных молекул. Образование земных и внеземных веществ, получение новых химических элементов. Современные синтетические материалы. Важнейшие открытия в химии XXI века.

    контрольная работа [57,8 K], добавлен 06.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.