Предмет и задачи коллоидной химии

Характеристика представлений о коллоидном состоянии вещества. Молекулярно-кинетические и оптические свойства коллоидных систем. Оптические свойства дисперсных систем. Теории двойного электрического слоя. Устойчивость и коагуляция коллоидных систем.

Рубрика Химия
Вид курс лекций
Язык русский
Дата добавления 15.09.2017
Размер файла 1,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

9

Лекция № 1

ВВЕДЕНИЕ В КОЛЛОИДНУЮ ХИМИЮ

Изучаемые вопросы: Предмет и задачи коллоидной химии. Представление о коллоидном состоянии вещества. Этапы развития коллоидной химии. Классификация дисперсных систем.

Ранее коллоидная химия считалась разделом физической химии, а теперь является самостоятельной дисциплиной.

Предметом изучения коллоидной химии являются гетерогенные смеси веществ (дисперсные системы), их свойства, процессы, протекающие в этих системах.

Задачи коллоидной химии - прогнозирование направления и изучение осо-бенностей протекания физико-химических процессов в дисперсных системах.

Коллоидная химия использует особые методы исследования, как электронная микроскопия, ультрамикроскопия, ультрацентрифугирование, электрофорез, нефелометрия и др.

Для более отчётливого представления роли коллоидной химии кратко остановимся на истории развития этой науки.

Коллоидные системы начали изучать в середине 19 века. В 1845 г. итальянский ученый Франческо Сельми установил, что некоторые нерастворимые в воде вещества (например, AgCl, S, берлинская лазурь), в определенных условиях растворяются, образуют однородные растворы, выпадение осадка не сопровож-дается изменением температуры, т.е. аномальное поведение вещества. Он назвал их псевдорастворами. Позднее они по предложению К.Негели получили название «золь». В 1857 году М.Фарадей открыл отличительный признак псевдорастворов - рассеяние света.

Основоположником коллоидной химии считается английский ученый Томас Грэм. Он изучил растворы Сельми и установил (1861 год), что они отличаются от хорошо растворимых в воде соединений. Эти соединения в растворе образуют не кристаллические, а рыхлые аморфные осадки, диффундируют медленно, не проходят через полупроницаемые мембраны с отверстиями молекулярного раз-мера. Это указывало на большой размер частиц таких соединений. Растворы и вещества, которые их образуют, Грэм назвал коллоидами (от гр. kolla - клей + eidos вид), т.к. он проводил эксперименты желатиной, растворы которой используют в качестве столярного клея и считал, что клей является одним из представителей этих соединений. Основные отличительные положения «Коллоидной химии» Т.Грэма заключаются в следующем:

1) свойства коллоидных систем в сильной степени зависят от размеров частиц дисперсной фазы;

2) все коллоидные системы способны интенсивно рассеивать свет;

3) диффузия дисперсных частиц в коллоидных системах выражена в минимальной степени;

4) коллоидные системы способны к диализу;

5) коллоидные системы являются термодинамически неустойчивыми.

Одним из недостатков высказанных концепций Т.Грэма было разделение им всех веществ на два мира. Грэм считал, что коллоиды по своей природе отличаются от обычных веществ и все вещества разделил на две группы - кристаллоиды (обычные вещества, кристаллизующиеся при насыщении раствора) и коллоиды (клееподобные вещества).

Позже русский ботаник И.Г.Борщов (1869 год) установил зависимость ско-рости диффузии коллоидных частиц от их размера и пришел к выводу, что коллоиды имеют кристаллическое строение.

В начале 20 века П.П.Веймарн (1907-1912 г.г.) изучил около 200 веществ и по-казал, что одно и то же вещество может в одних условиях обладать свойствами кристаллоида, а в других - коллоида. Так, канифоль в спирте образует истинный раствор, а в воде - коллоидный раствор, или при растворении NaCl в воде обра-зуется истинный раствор, а в бензоле - коллоидный. Таким образом, установле-но, что правильнее говорить не о коллоидном веществе, а о коллоидном состоянии вещества.

В 1903 году чешский ученый Р.Зигмонди и немецкий ученый Г.Зидентопф сконструировали ультрамикроскоп, с помощью которого можно проводить прямые наблюдения за частицами коллоидного раствора.

Позднее (1907 год) Ф.Ф.Рэлей, М.Смолуховский, А.Эйнштейн установили, что вещество коллоидных растворов находится не в виде отдельных молекул или ионов, а в виде скоплений - агрегатов молекул, названных мицеллами (от лат. micella крошка, крупинка). А.Эйнштейн и М.Смолуховский развили молекулярно-статистическую теорию броуновского движения коллоидных частиц и теорию флуктуаций. Ж.Б.Перрен, Т.Сведберг провели проверку данной теории, определив независимыми путями число Авогадро. В.Оствальдом в начале 20 века достаточно полно было изучено влияние агрегативного состояния и дисперсности на свойства коллоидных объектов.

В 1920 году Н.П.Песковым были введены 2 понятия (вида) устойчивости дисперсных систем: агрегативная и седиментационная устойчивости. Теория строения двойного электрического слоя была развита в работах Х.Гельмгольца и Ж.Перрена (80-ые годы ХХ века) , Г.Гуи и Д.Чапмена (1910 и 1913 г.г.), О.Штерна (1924 г.) и позднее в середине ХХ века в работах А.Н.Фрумкина.

П.П.Веймарн детально изучал конденсационные методы образования лиозолей. Теорией образования аморфных и кристаллических частиц при синтезе коллоидных систем занимался В.А.Каргин. Ф.Ф.Рэлей, а позднее Л.И.Мандельштам, П.Дебай разработали основы теории светорассеяния на неоднородностях среды и успешно применяли эти концепции для анализа коллоидных систем. В 1908 г. Г.Фрейндлих сформулировал основные положения адсорбционной теории коагуляции. Б.В.Дерягин, А.Д.Ландау, Е.Фервей, Т.Овербек разрабатывали (1939-1943 г.г.) и развивали физическую теорию коагуляции. Г.Кройтом предложена теория коагуляции ВМС.

В настоящее время коллоидными считаются такие дисперсные системы, в которых размер частиц составляет 1-100 нм (или 1.10-7-1.10-9 м). Эти границы условны, т.к. имеются системы с более или менее крупными частицами, обла-дающими свойствами коллоидных растворов и те, имея такие же размеры, не проявляют свойств коллоидных растворов. Поэтому можно отметить, что коллоидная система представляет собой дисперсию одного тела в другом, а коллоидная химия изучает физические закономерности поверхностных явлений и обусловленными ими свойства коллоидных растворов. Отсюда вытекает, что коллоидная химия - это наука о свойствах гетерогенных высокодисперсных систем и о протекающих в них процессах.

Следует отметить, что имеются вещества с очень большими молекулами - высокомолекулярные соединения (белки, целлюлоза, каучук и др. полимеры). Молекулы таких соединений могут превышать размеры коллоидных частиц, их растворы могут обладать многими свойствами коллоидных растворов, но не являются скоплениями молекул. Их нельзя отнести к типичным коллоидным системам. Чтобы различить, их называют растворами ВМС. Растворы ВМС также являются объектами изучения коллоидной химии.

Коллоидные системы и растворы ВМС широко распространены в природе. Белки, кровь, лимфа, углеводы, пектины находятся в коллоидном состоянии. Многие отрасли производства (пищевая, текстильная, резиновая, кожевенная, лакокрасочная, керамическая промышленности, технология искусственного волокна, пластмасс, смазочных материалов) связаны с коллоидными системами. Производство строительных материалов (цемент, бетон, вяжущие растворы) основано на знании свойств коллоидов. Угольная, торфяная, горнорудная и нефтяная промышленность имеют дело с дисперсными материалами (пылью, суспензиями, пенами). Особое значение коллоидная химия приобретает в про-цессах обогащения полезных ископаемых, дробления, флотации и мокрого обо-гащения руд. Фото- и кинематографические процессы также связаны с приме-нением коллоидно-дисперсных систем.

К объектам коллоидной химии следует отнести все многообразие форм рас-тительного и животного мира, в частности, типичными коллоидными образова-ниями являются мышечные и нервные клетки, клеточные мембраны, волокна, гены, вирусы, протоплазма, кровь. Поэтому ученый-коллоидник И.И.Жуков констатировал, что «человек по существу - ходячий коллоид». В свете этого, технологию лекарственных средств (мазей, эмульсий, суспензий, аэрозолей, порошков), действие различных лекарств на организм невозможно представить без знаний коллоидной химии.

Дисперсная система. Мера дисперсности.

Дисперсными системами называются неоднородные (гетерогенные) смеси веществ, в которых одно тонкоизмельченное вещество равномерно распределено в однородной среде (массе) другого вещества.

Дисперсные системы состоят из дисперсной фазы и дисперсионной среды. Дисперсная фаза (ДФ) - совокупность мелких частиц вещества, распределенных (диспергированных) в однородной среде другого вещества.

Дисперсионная среда - это однородная среда в виде молекул или ионов, в которой равномерно распределяются мелкие частицы другого вещества.

Дисперсная система, в отличие от гомогенных (истинных) растворов, характеризуется гетерогенностью и дисперсностью.

Гетерогенность - это многофазность системы, т.е наличие границ раздела фаз, что обусловлено нерастворимостью вещества одной фазы в другой. Так как только между такими веществами могут существовать физические поверхности раздела.

Дисперсность - это мера раздробленности одного вещества дисперсной сис-темы. По мнению А.В. Думанского (1913 г.) мерой раздробленности дисперсной системы может служить поперечный размер частиц (R) или степень дисперс-ности (D): D = 1/R (м-1). Чем меньше размер частиц, тем больше степень дисперсности. Системы с разными размерами частиц называются полидис-персными, а с частицами одинакового размера - монодисперсными. Так как размеры частиц в реальных системах различны, то степень дисперсности не очень точно характеризует систему. Поэтому в 1909 г. за меру раздробленности В.Оствальд предложил использовать удельную поверхность (Sуд.): , где Sд.ф. и Vд.ф. - площадь поверхности и объем дисперсной фазы. Удельную поверхность можно вычислить, если известны размер и форма частиц: в случае частиц кубической формы , а в случае сферических частиц: . Где l - длина ребра куба, r и d - радиус и диаметр сферы. Все показатели взаимосвязаны между собой уравнением Sуд. = k.D = k/R. Как видно из уравнения, удельная поверхность связана с дисперсностью. С увеличением дисперсности удельная поверхность резко возрастает, например, если R = 0,1 см, то Sуд.= 30 см1, а при R = 107 cм, то Sуд. составит 30 см+7 см1, т.е. 1 см3 этих частиц имеют поверхность раздела фаз, равная 3000 м2. Повышение удельной поверхности обуславливает специфические свойства дисперсных систем, связанных с поверхностными явлениями.

Классификация дисперсных систем.

Дисперсные системы классифицируют по размерам частиц, по агрегатному состоянию веществ, по интенсивности взаимодействия фаз системы. Они разли-чаются также по скорости диффузии частиц, по способности проходить через мембраны и фильтры, по рассеиванию света.

По размеру частиц различают молекулярно-дисперсные (r < 1.10-9 м), коллоидно-дисперсные (1.10-7-1.10-9 м), микрогетерогенные (1.10-4-1.10-7 м) и грубодисперсные системы (r >1.10-4м).

Молекулярно-дисперные системы или истинные растворы. В этих системах молекулы или ионы не обладают поверхностью в обычном понимании и поэтому их не рассматривают дисперсной системой. Их выделяют только для сравнения свойств коллоидных растворов и микрогетерогенных систем. Размер частиц меньше 1 нм или 1.10-9 м. Вещество раздроблено до предела и поэтому такие системы совершенно однородны. Эти системы термодинамически устойчивы: частицы из-за малой величины имеют большую скорость диффузии, они прохо-дят через полупроницаемые мембраны, фильтры, их не видно в оптическом мик-роскопе. Истинные растворы прозрачны, не рассеивают свет. Примерами истин-ных растворов являются водные растворы хорошо растворимых солей, органи-ческих соединений, жиров в органических растворителях, смеси газов и др.

Коллоидно-дисперсные системы. Размеры частиц дисперсной фазы в таких системах колеблется в пределах 1-100 нм (или 1.10-7-1.10-9 м). Эти частицы хотя и не слишком велики, но имеют поверхность раздела, поэтому коллоидные системы иногда называют ультрамикрогетерогенными. Коллоидные системы термодинамически малоустойчивы; коллоидные частицы способны к диффузии, проходят через бумажные фильтры, но не проходят через полупроницаемые мембраны, задерживаются на ультрафильтрах, не видимы в оптический микро-скоп, но наблюдаются в ультрамикроскопах, имеют электрический заряд (двойной электрический слой), движутся в электрическом поле. Коллоидные растворы прозрачны, но рассеивают свет (проявляют эффект Фарадея-Тиндаля). Примерами коллоид-ных систем служат дым, туман, жидкие коллоидные растворы трудно растворимых в воде соединений.

Микрогетерогенные системы (взвеси, порошки, эмульсии, пены). Размер частиц 1.10-4-1.10-7 м. Эти системы термодинамически неустойчивы: довольно быстро разрушаются вследствие оседания частиц. Частицы не способны к диф-фузии, не проходят даже через бумажные фильтры, видны в оптический микро-скоп. Растворы мутны вследствие поглощения света, отражения и преломления его частицами. Примеры: взвеси глины, ила, песка в воде, облака пыли, порошки и др.

Классификация по агрегатному состоянию дисперсной фазы и дисперсионной среды (по В.Оствальду)

Учитывая, что вещество может находиться в трех агрегатных состояниях, возможны 8 комбинаций дисперсионной среды и ДФ:

ДС

ДФ

Условное обозначение системы

Тип системы

Примеры

Газ

Газ

Жидкость

Твердое тело

Г-Г

Г-Ж

Г-Т

Аэрозоли

Нет (гомогенные системы).

Туман, облака, аэрозоли жидких лекарств.

Дым, пыль, порошки, аэрозоли твердых лекарств.

Жидкость

Газ

Жидкость

Твердое тело

Ж-Г

Ж-Ж

Ж-Т

Лиозоли

Пены, крем, газированная вода

Эмульсии, нефть, молоко, сливки.

Суспензии, зубные пасты, тушь, глины.

Твердое тело

Газ

Жидкость

Твердое тело

Т-Г

Т-Ж

Т-Т

Солидозоли

Твердые пены (пемза, хлеб, резина, лава, пенобетон, пенопласт)

Жемчуг, некоторые минеральные гели, опал, желе, желатин, агар-агар

Сплавы, стекла, минералы (рубин)

Для отличия коллоидных растворов от других дисперсных систем, их называют золями (от лат. solutio раствор). Поэтому системы, в которых дисперсионной средой является газ называют аэрозолями, в случае жидкости - лиозолями, в случае твердой дисперсионной среды - солидозолями. В зависимости от природы жидкой дисперсионной среды лиозоли делят на гидрозоли, алказоли, бензозоли, этерозоли (органозоли).

Классификация по взаимодействию дисперсионной среды и дисперсной фазы (по Г.Фрейндлиху)

Такая классификация пригодна только для систем с жидкой дисперсионной средой.

Если поверхность частиц и молекула растворителя имеют одинаковую по-лярность (т.е. сродство), то они будут взаимодействовать друг с другом. Поэто-му вокруг коллоидных частиц образуются толстые многослойные сольватные оболочки. Фрейндлих таких систем назвал лиофильными (от гр. lyo жидкость + phileo люблю). Примерами таких систем являются растворы белка, крахмала, агар-агара, гуммиарабика, высококонцентрированные эмульсии, эмульсолы. В случае, когда частицы и молекулы растворителя разнополярны, то между коллоидными частицами и дисперсионной средой отсутствует взаимодействие, значит отсутствуют и сольватные оболочки, либо образуются тонкие сольватные оболочки. Такие системы были названы лиофобными коллоидными растворами (от гр.lyo жидкость + phobos боязнь). В случае, когда дисперсионной средой является вода, эти системы называются соответственно, гидрофильными и гидрофобными.

К лиофобным системам относятся типичные коллоидные системы, образо-ванные трудно растворимыми в дисперсионной среде веществами (слабые осно-вания, некоторые соли, металлы, аэрозоли, пены).

Лиофильные системы не обладают всеми типичными коллигативными свойствами, они растворяются самопроизвольно, термодинамически устойчивы, образуют гомогенные растворы. Поэтому лиофильных систем в настоящее время выделяют как особые группы дисперсных систем - растворы высокомо-лекулярных веществ (белков, полисахаридов, нуклеиновых кислот) и мицелярные растворы ПАВ.

Классификация по взаимодействию между частицами дисперсной фазы

(по подвижности дисперсной фазы)

Р.Зигмонди дисперсные системы разделил на свободнодисперные и связнодисперсные. В свободнодисперсных системах (золях, эмульсиях) частицы не связаны друг с другом, свободно перемещаются в дисперсионной среде под действием броуновского движения или силы тяжести. Лиозоли обладают текучестью.

В связнодисперсных системах частицы взаимодействуют друг с другом, под действием физических сил образуют пространственные сетки, структуры, поэтому не могут перемещаться. Такая система не может течь. Их называют гелями и студнями. К ним относятся пасты, концентрированные эмульсии, суспензии, пены, порошки, кремы.

Лекция 2

МОЛЕКУЛЯРНО-КИНЕТИЧЕСКИЕ и ОПТИЧЕСКИЕ СВОЙСТВА КОЛЛОИДНЫХ СИСТЕМ

Молекулярно-кинетические свойства коллоидных систем, как и истинных растворов обнаруживаются в таких явлениях, как броуновское движение, диф-фузия, осмотическое давление и они связаны движением дисперсных частиц. Поскольку коллоидные частицы участвуют в тепловом движении и подчиняются молекулярно-кинетическим законам обычных растворов, экспериментально можно определить размер, массу и концентрацию частиц дисперсной фазы.

Диффузия. Диффузия - это самопроизвольный необратимый процесс вырав-нивания концентрации частиц по всему объёму раствора или газа под влиянием теплового движения. Процесс диффузии идёт самопроизвольно, поскольку он сопровождается увеличением энтропии системы, так как по второму закону тер-модинамики, равномерное распределение вещества в системе отвечает наиболее вероятному её состоянию. Для описания диффузии в коллоидных системах более справедливо применение I закона Фика:

,

где масса вещества, диффундированного за единицу времени; пло-щадь диффузии, градиент концентрации (знак «» означает, что диффузия идёт в сторону уменьшения концентрации); - коэффициент диффузии; это масса вещества, продиффундированного за единицу времени через единицу площади при градиенте концентрации, равном единице , т.е. масса вещества диффундирущего за единицу времени через поперечное сечение в 1 м2 при = 1 (физический смысл коэффициента диффузии).

Эйнштейн показал, что коэффициент диффузии связан с размерами частиц, вязкости дисперсионной среды, температуры: , м2/с. Как видно из формулы, чем меньше размер частиц, тем больше коэффициент диффузии. Для коллоидных систем D ~ 1013 м2/с.

Так как в коллоидных системах размер частиц дисперсной фазы значительно больше размера молекул или ионов, скорость диффузии в коллоидных системах в целом небольшая, т.е. меньше скорости диффузии в истинных растворах.

Используя уравнение Эйнштейна можно определить размер частиц золей и молекулярную массу полимера. Для этого требуется экспериментально опреде-лить D. С этой целью, сначала оптическими методами, измеряя показатель пре-ломления или оптическую плотность раствора, измеряют скорость изменения концентрации в слое, а затем рассчитывают значение D.

В тех случаях, когда затруднено определение D через концентрацию, D и r частиц рассчитывают через смещение частиц.

После определения размера частиц можно рассчитать мицеллярную массу частиц или молекулярную массу полимера (что и было сделано впервые для белков). Для этого пользуются уравнением Перрена:

,(а.е.м)

где - объем одной частицы; d - плотность вещества.

Броуновское движение

Историческая справка: Броуновское движение наблюдал Р.Браун под микроско-пом водной суспензии цветочной пыльцы в 1828 г. Оно количественно было исследовано в 1906 году французским ученым Ж.Перреном. На основе опытов он вычислил число Авогадро, за что получил Нобелевскую премию.

Броуновское движение проявляется в хаотическом и непрерывном движении частиц ДФ под действием ударов молекул дисперсионной среды, находящихся в состоянии интенсивного молекулярно-теплового движения. В зависимости от размера частиц их движение может иметь различные формы. Частицы коллоид-ных размеров под действием ударов молекул ДС с разных сторон, могут переме-щаться поступательно в разных направлениях. Траектория движения таких час-тиц представляет собой ломаную линию неопределенной конфигурации (рис.1).

Рис.1 Схема броуновского движения одной частицы

Количественной мерой (интен-сивности броуновского движе-ния) принимают величину сред-него смешения (сдвига) частицы за определенный промежуток времени.

Смещением частицы называют расстояние между проекциями начальной и конечной точек траектории на ось смещений. А.Эйнштейн и М.Смолуховский показали, что смещение части-цы не зависит от природы кол-лоидной системы, а определя-ется лишь размером частицы (r) и растет со временем ().

На него оказывают влияние температура (t) и вязкость среды ():

,

где R - универсальная газовая постоянная, NA - число Авогадро,

- коэффициент диффузии.

Как видно из уравнения, смещение частицы обратно пропорционально радиусу частицы. Это означает, что чем крупнее частица, тем меньше величина её смеще-ния. С увеличением размера частицы броуновское движение ослабевает и при каких-то размерах прекращается. Для частиц размером более 50 нм броуновское движение вообще не характерно. Броуновское движение наблюдают под микро-скопом или кинематографической микросъёмкой и используя уравнение рассчи-тывают размер коллоидных частиц.

Осмотическое давление коллоидных растворов. Осмос - сампроизвольный односторонний переход молекул дисперсионной среды через полупроницаемую мембрану из раствора с меньшей концентрацией в раствор с большей концентра-цией, т.е. односторонняя диффузия через полупроницаемую мембрану. За счет диффузии молекул дисперсионной среды через мембрану наблюдается увеличе-ние объёма раствора с большей концентрацией. Работа системы против внешнего давления (изменение объема раствора) описывается осмотическим давлением. Равновесное осмотическое давление растворов неэлектролитов рассчитывают по уравнению Вант-Гоффа: . Осмотическое давление - это свойство, определяемое числом частиц в растворе. Поэтому в случае коллоидных систем определяют по уравнению: , где численная (или частичная) концентрация. Численная концентрация представляет собой число частиц в 1 л дисперсной системы и её можно вычислить по соотношению . Тогда = , а .

Как видно из уравнения, осмотическое давление пропорционально числу час-тиц в единице объема системы и не зависит от природы и массы частиц. Коллоидные растворы разных веществ с одинаковой численной концентрацией молекул или частиц оказывают одинаковое осмотическое давление. Например, при 273К при = 1 моль/л Росм. = 2,27.106 Па.

Осмотическое давление дисперсных систем отличается от осмотического давления истинных растворов:

осмотическое давление коллоидных систем меньше осмотического давления истинных растворов, т.к. из-за низкой агрегативной устойчивости и больших размеров частиц, численная концентрация их обычно на 5 7 порядков меньше, чем в истинных растворах при одинаковой молярной концентрации. Из-за малой величины осмотическое давление коллоидных растворов трудно измерить.

в связи с термодинамической неустойчивостью в коллоидных растворах непрерывно протекают процессы агрегации и дезагрегации, что приводит к непостоянству осмотического давления во времени.

Все перечисленные особенности коллоидных растворов являются препятствием для применения осмотического давления при определении размеров частиц.

В отличие от лиофобных коллоидов, растворы ВМС (лиофильные коллоиды) при сравнительно небольших концентрациях показывают измеримые величины осмотического давления. Это позволяет использовать явление осмоса для определения молекулярной массы белков, полисахаридов и др. полимеров.

Лекция 2

ОПТИЧЕСКИЕ СВОЙСТВА ДИСПЕРСНЫХ СИСТЕМ

Рассеивание света. При прохождении через молекулярную дисперсную систему (через истинные растворы) свет может только преломляться и погло-щаться. При прохождении через дисперсную систему возможно преломление, поглощение, отражение и рассеивание света, что обусловлено их дисперсностью, влиянием структуры, размера и формы частиц дисперсной фазы. Преобладание какого-либо из этих явлений зависит от соотношения длины волны падающего света и размера частиц ДФ. В микрогетерогенных системах размер частиц намного больше длины волны видимой части спектра. Поэтому свет отражается от поверхности частиц. В коллоидных растворах величина частиц 2 раза меньше длины волны видимого света: r ~ 0,5. Поэтому в этом случае наблюдается рассеивание света. Сущность рассеивания света в дисперсной системе состоит в том, что луч света, встречая на своем пути частицу, как бы огибает её и несколько меняет свое направление. Это происходит по тому, что лучи длиннее размеров частиц и частицы удалены друг от друга на расстояния, больше длин волн. В коллоидных растворах рассеивание света проявляется в виде опалесценции - изменения окраски золя при рассматривании его в проходящем и отраженном свете. При рассмотрении золя в отраженном свете (при боковом освещении) на темном фоне всего проявляется матовое (чаще всего голубоватое) свечение. Если золь рассматривать в прямом проходящем свете, он может иметь красновато-желтую окраску.

Эффект Фарадея-Тиндаля: С опалесценцией, т.е. дифракцией света в микронеоднородной среде связана специфичная для коллоидных растворах явление - конус или эффект Фарадея-Тиндаля (1896 г.). Световая волна взаимо-

Рис.1. Конус Фарадея-Тиндаля: 1- источник света; 2 - линза; 3 - сосуд с коллоидным раствором.

действует не только с освещаемой, но и с «затемненной» стороны. Каждая частица частично переизлучает свет, вследствие чего при рассматривании с боку, наблюдается конусовидное рассеяние света. При тех же условиях молекулярно-дисперсные и микрогетерогенные системы не дают такого эффекта. Таким путем можно распознать коллоидные растворы.

Интенсивность светорассеяния. Закон Рэлея: Интенсивность светорассеяния зависит от величины частиц, их концентрации, длины волны освещающего света, показателей преломления дисперсной фазы и дисперсионной среды. Такая зависимость для сферических частиц определяется уравнением Рэлея, называемым законом светорассеяния:

,

где

I - интенсивность рассеивания света; Io - интенсивность падающего (освещающего) света; - коэффициент, зависящий от показателей преломления дисперсионной среды и дисперсной фазы; v - численная концентрация (1/м3); Vч - средний объем частицы (м3); - длина световой волны.

Как видно из уравнения, чем меньше длина световой волны, тем интенсивнее рассеивается свет в коллоидных растворах. Максимальное светорассеяние наблюдается в коллоидных растворах. С уменьшением или увеличением размера частиц, по сравнению с коллоидными частицами, интенсивность светорассеяния ослабевает пропорционально квадрату объема частиц. При размерах частиц более 0,1 свет отражается, в в растворах проявляется мутность, а опалесценция исчезает.

Спектр видимого света

фиолетовая

синяя

зеленая

желтая

оранжевая

красная

380?

490?

560?

580?

620?

760?

Если сравнивать спектр видимого света и уравнение Рэлея, видно, что максимальное светорассеяние будет наблюдаться в случае лучей фиолетового и синего света и минимальное - при красном свете. Этим объясняется цвет неба, морской воды, разведенного водой молока, гидрозолей канифоли, серы. Голубой цвет неба днем обусловлен рассеиванием коротких волн атмосферой Земли (наблюдение сбоку). Оранжевый или красный цвет неба при восходе и закате объясняется прохождением красного света через атмосферу. На этом основано и применение синего света для светомаскировки, красного - для сигнализации (красный свет мало рассеивается, он виден в тумане и издалека).

Явление светорассеяния используется для количественных оптических методов исследования, в частности для определения объема и размера частиц при известной концентрации или концентрации вещества. Для этих целей применяют специальные приборы: нефелометры, тиндалиметры, ультрамикроскопы.

Нефелометрия:оптический метод анализа, который заключается в измерении интенсивности света, рассеянного дисперсной системой. На практике при относительных измерениях сравнивают опалесценцию исследуемого раствора с опалесценцией стандартного раствора, размер частиц которого известен. При одинаковой объемной концентрации дисперсной фазы в обоих растворах интенсивности светорассеяний будут пропорциональны объемам или кубов диаметров частиц: . Для проведения измерений применяют визуальные нефелометры, калориметры. Нефелометр (рис.2) состоит из 2-х одинаковых цилиндрических кювет, налитых исследуемым и стандартным растворами, источника света, регистрирующего прибора (окуляра). Освещенность растворов (высоту освещенного столба жидкости) можно регулировать поднятием или опусканием специальных экранов. Свет, попадая на жидкости, рассеивается.

Рис.2. Схема нефелометра:1- кюветы(пробирки) с растворами; 2 -источник освещения; 3 - окуляр; 4 - подвижные экраны; 5 - оптическая часть прибора.

При работе с нефелометром добиваются одинаковой освещенности полукругов окуляра. Так как интенсивность света, рассеянного каждой кюветой пропорциональна высоте её освещенной части, справедливо соотношение: . Отсюда, . Нефелометрия используется для установления формы и размера частиц, степени их дисперсности, молекулярной массы ВМС (белков, нуклеиновых кислот и др.), строения и конфигурации макромолекул.

Ультрамикроскопия (разработана в 1903 году Зигмонди и Зидентопф). Принцип метода состоит в том, что используя обычный оптический микроскоп, изменяют способ освещения объекта. Вместо проходящего света применяют боковое освещение мощным пучком света. При таких условиях частицы ДФ кажутся светящимися точками на темном фоне. Их видны, даже, если размер частиц меньше разрешающей способности микроскопа, т.к. каждая частица

Рис.3. Схема ультрамикроскопа:1- кювета с исследуемым золем

Рис.4. Схема ультрамикроскопа: 1 - источник света; 2 - коллоидный раствор; 3 - тубус микроскопа.

испускает рассеянный свет. Ультрамикроскопией можно подсчитать число частиц диаметром более 2-3 нм. Для этого в окуляре микроскопа имеется сетка, разделенная на квадраты. Подсчет частиц ведут поочередно в одном из центральных квадратов, где наблюдается наиболее интенсивное освещение. Форму частиц устанавливают по характеру их свечения. Если рассеянный свет испускается ровно, без мигания, то частицы - сферические. Частицы пластинчатой или палочкообразной формы под действием броуновского движения меняют свое положение. Поэтому в таких системах наблюдается мерцание (исчезновение и появление свечения). С помощью ультрамикроскопии можно вычислить число частиц в пробе и их размер, условно приняв для частиц сферическую или кубическую форму. Для этого необходимо знать общую массу частиц в пробе и их плотность. Предварительно рассчитав весовую и частичную концентрации или зная объем золя и подсчитав число частиц в нем, можно вычислить размер частиц:

.

В настоящее время применяются и электронные микроскопы ( в них вместо световых лучей используется пучок электронов). У них разрешающая способность может достичь 0,15 - 0,2 нм, тогда как для светового микроскопа - 225 нм. Электронный микроскоп позволяет увидеть отдельные коллоидные частицы, крупные макромолекулы белков и вирусов, их структуру. Однако, электронный микроскоп не позволяет наблюдать систему в динамических условиях, т.к. объект рассматривается в виде реплик (отпечатков).

Лекция № 3

ЭЛЕКТРОКИНЕТИЧЕСКИЕ ЯВЛЕНИЯ

К электрокинетическим явлениям относят процессы, связанные с относитель-ным движением фаз под действием электрического поля и возникновением разности потенциалов при смещении фаз. Они обусловлены взаимосвязью между электрическими и кинетическими свойствами дисперсных систем, т.е. наличием двойного электрического слоя на границе твердой и жидкой фаз.

Электрокинетические явления, которые возникают под действием внешнего электрического поля называют прямыми или явлениями I рода. К ним относят электрофорез и электроосмос. Эти явления были открыты в 1808 г. Ф.Ф.Рейсом.

Он погрузил две стеклянные трубки во влажную глину, поместил в них электроды и заполнил водой. При пропускании электри-ческого тока обнаружил движение частиц глины к положительному электроду. Это явление было названо электрофорезом. При пропускании электрического тока наблю-далось поднятие уровня воды в одном, и снижение в другом колене. После выключе-ния тока уровни выровнялись. Это явление перемещения дисперсионной среды относи-тельно неподвижной дисперсной фазы в постоянном электрическом поле было названо электроосмосом.

Позже было обнаружено возникновение разности потенциалов при пропуска-нии через пористую диафрагму жидкости под давлением. Это явление Квинке назвал потенциалом протекания.

Дорн обнаружил, что при оседании частиц под действием силы тяжести возникает разность потенциалов между уровнями разной высоты в сосуде. Это явление было названо потенциалом седиментации (или оседания).

Потенциалы протекания и оседания относят к явлениям

II рода или обратным явлениям. Потенциал протекания обратен электрофорезу, а потенциал седиментации - электроосмосу.

Электрофорез. Из всех электрокинетических явлений широкое применение нашло электрофорез. При электрофорезе происходит направленное перемещение частиц дисперсной фазы и противоионов диффузного слоя к противоположным электродам вследствие разрыва двойного электрического слоя. Скорость движения частиц (гранулы) зависит от величины дзета-потенциала. Эту зависимость выра-жают через уравнение Гельмгольца-Смолуховского: ,

где - вязкость среды; 0= 8,85.1012 ф/м - абсолютная диэлектрическая прони-цаемость вакуума; - относительная диэлектрическая проницаемость среды (для воды - 81); - линейная скорость движения частиц, м2/с; Е - напряженность поля (градиент потенциалов), В.

Однако линейная скорость зависит от напряженности поля и поэтому для характеристики частиц вво-дится понятие «электрофорети-ческая подвижность». Она равна скорости движения частиц при градиенте потенциалов, равном одной единице (Е = 1 В): , м2/В.с.

Где l - расстояние между электродами, м; s - перемещение границы золя, м; V - прилагаемое напряжение, в; - время, с.

Тогда дзета-потенциал определяется по формуле: . Для коллоидных систем, в среднем, он составляет 1,5 - 75 мВ.

Электрофорез является одним из методов изучения фракционного состава при-родных белков, характеристики биологических объектов (экзим, вирусов, формен-ных элементов крови и др.), диагностики патологий биологических жидкостей. С помощью электрофореза можно выделять из суспензий дисперсную фазу, покры-вать твердые частицы другими веществами. В фармакопеи предусмотрено уста-новление степени чистоты по электрофоретической однородности некоторых антибиотиков, витаминов. Электрофорез на бумаге, агаровом или крахмальном геле применяется как аналитический и препаративный метод разделения и выделе-ния лекарственных веществ и биологически активных соединений. В медицине электрофорез используется как метод лечения (ионофорез - метод введения лечебных препаратов в организм человека).

Электроосмос. При электроосмосе наблюдается направленное движение жид-кости через неподвижную пористую диафрагму под действием электрического поля.

Материалом мембраны может быть силикагель, глинозем, стеклянные капил-ляры, толченое стекло, кварцевый песок, нерастворимые порошки. Для наблюде-ния электроосмоса U-образный прибор заполняют водой и пропускают электри-ческий ток.

Под действием электрического тока уровни жидкости в коленах прибора меняются. Направление переноса жидкости указывает на знак -потен-циала. По скорости переноса жидкости можно определить величину дзета-потен-циала: , где - удельная электропроводность среды, I - сила тока, А; - объемная скорость течения жидкости. Соотношение / I характеризует природу мембраны. Оно выражает объем жидкости, перенесенный в единицу времени на единицу количества электричества.

При пропускании электрического тока противоионы диффузного слоя перемещаются к противопо-ложно заряженным электродам. Так как ионы всегда сольватиро-ваны (гидратированы), то при движении иона с ним увлекается определенный объем дисперсион-ной среды. Чем больше толщина

диффузного слоя и меньше площадь поперечного сечения капилляра (поры мембраны), тем сильнее проявляется электроосмотический перенос жидкости.

Электроосмос применяется для обезвоживания и сушки пористых материалов, концентрирования коллоидных систем. Для этой цели используют электрофильтр-прессы. Они представляют собой две горизонтально расположенные пластины, между которыми помещают вещество, подлежащее обезвоживанию. Удаление

воды достигается наложением электрического тока между пластинами: при этом нижняя перфорированная пластина заряжается про-тивоположно заряду жидкой фазы, а верхняя - со знаком заряда водной фазы. Вследствие этого жидкость устремляется к нижнему электроду и удаляется через отверстия.

Лекция № 4

МЕТОДЫ ПОЛУЧЕНИЯ КОЛЛОИДНЫХ СИСТЕМ

Основные условия образования лиофобных коллоидных систем

Как известно, золи по размеру частиц ДФ занимают промежуточное положение между истинными растворами и суспензиями. Поэтому они могут быть получены либо соединением (укрупнением) отдельных молекул в агрегаты, либо дисперги-рованием веществ.

В соответствии с этим, Сведберг делит методы получения на диспергационные (диспергирование) и конденсационные (конденсирование).

Основными условиями получения коллоидных систем являются:

размеры частиц вещества должны быть доведены до размеров коллоидных частиц (т.е. до 104 109 м);

нерастворимость или малая растворимость дисперсной фазы в дисперсионной среде;

наличие веществ, способных стабилизировать коллоидные частицы и замедлять их рост. Эти вещества могут быть введены в систему или образовываться в результате взаимодействия ДФ и дисперсионной среды.

Диспергационные методы получения коллоидных систем

Диспергированием называют измельчение твердых или жидких тел в инертной среде, при котором резко повышается дисперсность и образуется дисперсная сис-тема, обладающая значительной удельной межфазной поверхностью. Диспергиро-вание - не самопроизвольный процесс. Оно требует затраты энергии на преодо-ление межмолекулярных сил при дроблении вещества. Диспергирование делится на физические и химические виды.

Различают 3 способа физического диспергирования.

Размалывание в коллоидных мельницах. При простом механическом дробле-нии или растирании образуются порошки с сравнительно большими размерами зёрен (т.е. грубодисперсные системы). Для получения коллоидных систем диспергирование проводят в коллоидных мельницах (первая коллоидная мельница сконструирована Плауссоном в 1920 г.).

Лабораторные коллоидные (шаровые) мельницы (рис.1 А) представляют собой вращающий барабан, заполненный шарами из материалов с определенной твердостью (из стали, чугуна или фарфора). При враще-нии барабана шары перекатываются и своими много-кратными ударами, раскалыванием и растиранием измельчают вещество на все более мелкие частицы. Принцип действия промышленных коллоидных мель-ниц (рис.1 Б) основан на развитии достаточно больших разрывающих (истирающих) усилий в веществе под действием центробежной силы в узком зазоре между вращающим ротором и неподвижным статором. Дроб-ление осуществляют в присутствии жидкой диспер-сионной среды и стабилизатора.

Рис.1. Схемы шаровой и

коллоидной мельниц

Коллоидные мельницы применяются для диспергирования минеральных красок, смазочных материалов (графит), пищевых веществ, фармацевтических препаратов (сера), сорбентов для хроматографии.

Дробление ультразвуком. Под действием звука большой частоты (15000-20000 Гц/с) происходит попеременное (быстро чередующееся) расширение и сжа-тие вещества, приводящее к разрушению частиц. Этот метод применим для веществ, у которых сравнительно небольшое взаимодействие между молекулами, например, для диспергирования жидкостей. Этим методом получают органозоли, коллоидные растворы серы, графит, гипс, крахмал, желатин, каучук и др. По этому способу получаются эмульсии, используемые при парэнтеральном питании больных (ожогами пищевода, раком желудка).

Распыление электрической дугой. Для полу-чения золей металлов (серебра, золота, платины) электроды из соответствующего металла поме-щают в растворитель и пропускают ток большой силы. При этом в электрической дуге металл испаряется и его атомы, попав в окружающий чужеродный холодный растворитель, вытесняют-ся из окружения растворителя, конденсируются (объединяются) в более крупные частицы. Этот метод можно рассматривать и как конденсационный метод.

Рис.2. Схема прибора для получения золей металлов электрическим способом

Химическое диспергирование (пептизация)

Перевод осадка, образовавшегося при коагуляции, в коллоидный раствор назы-вают химическим диспергированием. Термин был введён Т.Грэмом на основании чисто внешнего сходства процесса пептизации с растворением (перевариванием) белков под действием фермента желудочного сока пепсина.

Пептизация может происходить в результате промывания осадка растворите-лем или под действием специальных веществ - пептизаторов, которые представ-ляют собой сильные электролиты, образующиеся в результате химической реак-ции либо вводимые в раствор. При этом ионы пептизатора адсорбируются на по-верхности частиц рыхлого свежо образованного осадка, придают им определен-ный заряд. Благодаря этого частицы взаимно отталкиваются и наблюдается распад более крупных частиц осадка на мелкие. Таким образом происходит «химическое» раздробление вещества (см. рис. 3).

Рис.3. Механизм пептизации

Различают адсорбционную, химическую пептизации, промывание осадка растворителем. В случае адсорбционной пептизации осадок обрабатывают электролитом, содержащим ионы, способные к избирательной адсорбции на поверхности осадка (например, при обработке осадка Fe(OH)3 раствором FeCl3). В случае химической пептизации осадок вступает в химическое взаимодействие с небольшим количеством электролита (кислотой или щелочью), в результате которого образуется стабилизирующий электролит. Например, при частичной обработке осадка гидроксида железа (III) раствором соляной кислоты, протекает реакция Fe(OH)3 + HCl = FeOCl + 2H2O и образуется электролит, который диссоциирует на ионы: FeOCl FeO+ + Cl.

На поверхности осадка Fe(OH)3, в соответствии с правилом Панета-Фаянса (в результате химичес-кого сродства), адсорбируются ионы FeO+ и при-дают ей положительный заряд. В результате элек-тростатического отталкивания одноименно заря-женных частей поверхности, наблюдается посте-пенное увеличение трещин (см. рис.4), что приво-дит к распаду агрегата осадка на более мелкие час-тицы. Процесс протекает до распада частиц на частицы коллоидных размеров.

Рис.4 Схема расклинивающего действия адсорбированного слоя ионов пептизатора

Промывание осадка растворителем осуществляют тогда, когда коллоидная система получена в присутствии значительного избытка одного из реагентов. Устойчивость системы достигается за счёт удаления некоторого избыточного количества электролита.

Конденсационные методы получения коллоидных систем

Образование коллоидных систем в результате конденсации рассматривают как процесс кристаллизации, а коллоидные частицы - как мельчайшие кристаллики. Образование кристалликов протекает в несколько стадий:

возникновение зародышей (центров кристаллизации) по всему объему раствора. Центры кристаллизации могут возникнуть только в пересыщенных растворах;

рост зародышей до крупных кристаллов. Причем, скорость образования зародышей должна быть больше скорости роста кристаллов, так как при этом образуется множество кристалликов с размерами коллоидных частиц. Этого можно добиться, если использовать сильноразбавленные растворы. Если скорость роста кристаллов будет больше скорости образования центров кристаллизации, то образуются крупные кристаллы и выпадение их в осадок;

стабилизация частиц ДФ. Происходит за счёт образования ионов или их введения.

Конденсационные методы делятся на химические и физические.

Физические методы конденсирования связаны с изменением химической при-роды среды (замены растворителя) или условий (температуры, давления) существования раствора и созданием таких условий, при которых один из компонентов системы становится нерастворимым в другом.

Физическая конденсация осуществляется двумя способами: заменой растворителя и конденсацией паров.

Метод замены растворителя основан на выделении растворенного вещества из раствора в виде высокодисперсной нерастворимой фазы в результате замены летучего растворителя. При замене дисперсионной среды, из-за плохой растворимости в новой дисперсионной среде, частицы начинают конденсироваться в более крупные частицы. Например, при постепенном добавлении воды к спиртовому раствору канифоли, молекулы канифоли оказываются в чужеродном окружении молекул воды и они вытесняются из их окружения (молекулы воды сильнее притягиваются между собой, чем с молекулами канифоли) и объединяются в более крупные частицы. И таким образом образуются устойчивые коллоидные системы, например, гидрозоли серы, фосфора, канифоли, некоторых лекарств (карвалола, валерьяны и др).

Метод конденсации паров осуществляется при охлаждении системы. В природе по этому методу образуются туманы, облака, а в промышленности - органозоли. В лабораторных условиях для получения золей для медицины и биологии исполь-зуется метод Рогинского-Шальникова, основанный на одновременной конденса-ции паров диспергируемого вещества и растворителя на холодной поверхности.

Химическая конденсация

При химической конденсации должны соблюдаться следующие условия:

ничтожно малая растворимость вещества, образующего ДФ, что достигается пересыщением раствора;

достижение такой степени дисперсности, которая обеспечила бы системе устойчивость;

стабилизация частиц, что достигается избыточным количеством одного из реагентов химической реакции.

Химическая конденсация осуществляется путём пересыщения раствора трудно растворимым веществом, образующимся в ходе различных химических реакций. Чаще всего используются реакции окисления, восстановления, ионного обмена, гидролиза и др. Впервые этот метод был применен М.Фарадеем для получения коллоидного золота (1857 г.).

Реакцией восстановления пользуются главным образом для получения золей золота, серебра и др. металлов, оксидов некоторых элементов (например, MnO2). Для этого к разбавленным растворам соли металла добавляют восстановитель: образовавшиеся в результате восстановления атомы металла соединяются в коллоидные частицы. Например: Au3+ + Fe2+ = Auo + Fe3+.

В фармацевтической промышленности некоторые препараты получают восста-новлением металлов в присутствии защитных веществ, например препараты кол-лоидного серебра, защищенного солями лизальбиновой и протальбиновой кислот (колларгол) или коллоидной окиси серебра, защищенной альбумином (протаргол).

Реакцией окисления получают золи серы и селена:

2H2S + O2 = 2S + 2H2O или 2H2S + SO2 = 3S + 2H2O

Реакция гидролиза используется для получения гидрозолей оснований и кислот, гидроксидов металлов, например:

FeCl3 + 3H2O = Fe(OH)3 + 3HCl

Na2SiO3 + H2O = H2SiO3 + NaOH

SiCl4 + 2H2O = SiO2 + 4HCl

Реакцией ионного обмена получают гидрозоли нерастворимых в воде сульфидов, галогенидов и др. солей, например:

As2O3 + 3H2S = As2S3 + 3H2O

AgNO3 + NaCl = AgCl + NaNO3

FeCl3 + K4[Fe(CN)6] = KFe[Fe(CN)6] + 3KCl

Методы очистки коллоидных систем

Часто в полученных дисперсных системах, кроме мицелл, стабилизатора и растворителя содержатся низкомолекулярные вещества (примеси). Они снижают устойчивость ДС (могут нейтрализовать заряд коллоидных частиц, что ведет к коагуляции и разрушению коллоидных систем). Для очистки коллоидных систем от низкомолекулярных примесей используют диализ, электродиализ и ультрафильтрацию.

Диализ (предложен и назван Т.Грэмом) основан на пропускании коллоидного раствора через полупроницаемую мембрану. Простейший диализатор (рис.5) представляет собой мешочек из полупроницаемого материала, в который заливается коллоидный раствор, а мешочек опускается в сосуд с водой (растворителем). За счет малых размеров отверстий полупроницаемые мембраны задерживают коллоидные частицы, а низкомолекулярные проходят через мембрану в растворитель. В результате происходит удаление низкомолекулярных веществ из коллоидного раствора. Раньше в качестве полупроницаемой мембраны использовали стенки мочевого или желчного пузыря, кишечник, пергамент. В настоящее время - мембраны из коллодия (раствора нитрата целлюлозы) - целлофан. Они очень удобны, т.к. можно изготовить мембраны с любым размером отверстий.

Рис. 5. Диализаторы Т. Грэма

Следует отметить, что длительный диализ, кроме удаления примесей из рас-твора может привести к коагуляции системы в результате удаления стабилизатора.

Электродиализ. Поскольку низкомолекулярные примеси в золях являются элек-тролитами, диализ можно ускорить путём наложения электрического тока. Для этого коллоидный раствор помещают между двумя мембранами, снаружи которых

находятся растворитель, в которые опущены электроды. При пропускании электрического то-ка ионы притягиваются к электродам и диффун-дируют через мембрану. При этом скорость диффузии ионов будет больше чем при обычном диализе. Поэтому электродиализ быстрее, чем диализ. Он эффективен после предварительного диализа (т.к. за счет малого градиента концен-трации ионов между водой и коллоидным раствором, последний не нагревается).

Рис.6. Схема электродиализатора

Диализ применяется в биотехнологии и фармацевтике для очистки белков, ВМС от примесей солей, при получении ценных лекарственных препаратов - глобулина, флокулянтов и др. Диализ используется в клинике как метод лечения («гемодиализ») больных с заболеваниями печени, почек, синдромом длительного давления, при острых отравлениях. При этом кровь больного пропускают через аппарат «искусственная почка». Он представляет собой систему с мембраной, одна сторона которой промывается солевым (физиологическим) раствором, имеющим такой же состав, как и плазма крови, а другая - кровью больного. В ходе гемодиализа низкомолекулярные продукты обмена веществ покидают кровь через мембрану, а белки остаются в крови (из-за большого размера). Необходимые организму соли также сохраняются, т.к. отсутствует градиент их концентрации между кровью и физиологическим раствором.

Ультрафильтрация - это диализ, проводимый под дав-лением или вакуумом. По существу является не методом очистки, а методом концентрирования ДФ, т.е. отделения ДФ от дисперсионной среды. Для этого коллоидный рас-твор пропускают через ультрафильтры - механически прочные и толстые фильтры с очень малыми отверстиями. В качестве ультрафильтров применяют пластины с отверс-тиями из асбеста, фарфора и др. керамических материалов, сверху покрытых целлофаном, фильтровальной бумагой, пропитанной коллоидом. Для ускорения фильтрации отка-чивают воздух из сосуда под фильтром или нагнетают воздух над фильтром.

При ультрафильтрации вместе с низкомолекулярными примесями через фильтры проходят и молекулы раствори-теля (дисперсионной среды). Поэтому, при необходимос-ти, после ультрафильтрации приходится разбавлять кол-лоидный раствор до требуемой (исходной) концентрации.

...

Подобные документы

  • Понятие дисперсной системы, фазы и среды. Оптические свойства дисперсных систем и эффект Тиндаля. Молекулярно-кинетические свойства дисперсных систем. Теория броуновского движения и виды диффузии. Процесс осмоса и уравнение осмотического давления.

    реферат [145,0 K], добавлен 22.01.2009

  • Классификация дисперсных систем. Основные факторы устойчивости коллоидных растворов. Методы их получения (диспергирование, конденсация) и очистки (диализ, ультрафильтрация). Мицеллярная теория строения коллоидных частиц. Коагуляция смесями электролитов.

    презентация [2,8 M], добавлен 28.11.2013

  • Способы получения коллоидных систем; факторы, влияющие на скорость отдельных стадий процесса, правила коагуляциии. Астабилизирующее действие низкомолекулярных примесей в коллоидных растворах, методы их удаления: диализ, электродиализ и ультрафильтрация.

    презентация [1,1 M], добавлен 17.09.2013

  • Первые практические сведения о коллоидах. Свойства гетерогенных смесей. Соотношение между поверхностью коллоидной частицы и объемом коллоидной частицы. Своеобразие дисперсных систем. Особенности коллоидных растворов. Классификация дисперсных систем.

    презентация [150,3 K], добавлен 17.08.2015

  • Сущность и определяющие признаки коллоидных систем. Основные свойства и строение растворов такого типа. Характеристика эффекта Тиндаля. Различия гидрозолей и органозолей. Способы образования коллоидных систем, специфические свойства, сфера применения.

    презентация [2,2 M], добавлен 22.05.2014

  • Основные признаки дисперсных систем, их классификация, свойства и методы получения, диализ (очистка) золей. Определение заряда коллоидной частицы, закономерности электролитной коагуляции, понятие адсорбции на границе раствор-газ, суть теории Ленгмюра.

    методичка [316,8 K], добавлен 14.12.2010

  • Механизмы образования двойного электрического слоя. Потенциал течения и седиментации. Релаксационный эффект и электрофоретическое торможение. Современная теория строения двойного электрического слоя. Практическое использование электрокинетических явлений.

    курсовая работа [1,1 M], добавлен 07.11.2015

  • Коллоидная химия как наука, изучающая физико-химические свойства гетерогенных, высоко-дисперсных систем и высоко-молекулярных соединений. Производство и методы очищения коллоидных растворов. Применение гелей в пищевой промышленности, косметике и медицине.

    презентация [6,3 M], добавлен 26.01.2015

  • Классификация дисперсных систем по размеру частиц дисперсной фазы и по агрегатным состояниям фаз. Условия для получения устойчивых эмульсий. Молекулярно-кинетические свойства золей, сравнение их с истинными растворами. Внешние признаки коагуляции.

    контрольная работа [719,2 K], добавлен 21.07.2011

  • Получение лиофобных коллоидных систем, ее оптические свойства. Определение поверхностного натяжения растворов ПАВ и межфазного натяжения на границе двух несмешивающихся жидкостей сталагмометрическим методом. Коллоидная защита золей растворами ВМС.

    реферат [148,3 K], добавлен 15.02.2016

  • Сущность и классификация дисперсных систем. Газы, жидкости и твердые вещества. Грубодисперсные системы (эмульсии, суспензии, аэрозоли), их применение в практической деятельности человека. Характеристика основных видов коллоидных систем: золей и гелей.

    презентация [13,3 M], добавлен 04.12.2010

  • Молекулярно–кинетические свойства коллоидов. Связь между средним сдвигом и коэффициентом диффузии. Гипсометрический закон Лапласа. Кинетическая или седиментационная устойчивость коллоидно-дисперсных систем. Ньютоновские и структурированные жидкости.

    реферат [325,2 K], добавлен 04.01.2011

  • Проблема строения вещества. Обобщение процессов, происходящих в химических системах. Понятие растворения и растворимости. Способы выражения концентрации растворов. Электролитическая диссоциация. Устойчивость коллоидных систем. Гальванические элементы.

    курс лекций [3,1 M], добавлен 06.12.2010

  • Особенности получения коллоидных систем. Теоретический анализ процессов формирования кварцевых стекол золь-гель методом. Получение золь-коллоидных систем по "гибридному" методу. Характеристика свойств квантовых стекол, активированных ионами европия.

    курсовая работа [1,1 M], добавлен 14.02.2010

  • Коллоидные растворы (золи), как высокодисперсные коллоидные системы жидкой или газообразной дисперсионной средой. Гели или студни. Строение и свойства коллоидных мицелл. Эффект Тиндаля. Процесс коагуляции. Параметры устойчивости коллоидных растворов.

    презентация [1,6 M], добавлен 15.09.2013

  • Виды устойчивости дисперсных систем. Лиофобные и лиофильные золи. Правила коагуляции электролитами. Виды коагуляции: концентрационная, нейтрализационная. Количественные характеристики коагуляции. Седиментация, диффузия и равновесное распределение частиц.

    учебное пособие [408,3 K], добавлен 22.01.2009

  • Понятие о дисперсных системах. Разновидность дисперсных систем. Грубодисперсные системы с твердой дисперсной фазой. Значение коллоидной системы для биологии. Мицеллы как частицы дисперсной фазы золей. Последовательность в составлении формулы мицеллы.

    реферат [16,2 K], добавлен 15.11.2009

  • Виды устойчивости дисперсных систем и способность дисперсных систем образовывать агрегаты. Лиофобные и лиофильные золи. Сущность понятия седиментация и диффузия. Гипсометрический закон. Седиментационно-диффузионное равновесие и скорость седиментации.

    учебное пособие [124,8 K], добавлен 22.01.2009

  • Взаимодействие двойных электрических слоев и коллоидных систем. Уравнение Пуассона-Болъцмана. Контактная теорема и осмотическое давления. Добавление соли и "приближение слабого перекрывания". Ван дер Ваальсовы взаимодействия и константа Гамакера.

    контрольная работа [2,3 M], добавлен 06.09.2009

  • Понятие коллоидной системы. Коллоидная химия. Развитие представлений о коллоидных системах, их типы и свойства. Лиофобные золи. Лиофильные коллоиды и области приминения коллоидов. Коллоидно-химическая физиология человека, клеток и тканей организма.

    реферат [266,7 K], добавлен 28.06.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.