Исследование физико-химических свойств промотированных катализаторов на основе Co-Al2O3/SiO2

Физико-химические свойства кобальтовых катализаторов для синтеза Фишера-Тропша, приготовленных методом пропитки силикатного носителя. Влияние оксидных промоторов на удельную поверхность, объем и размеры пор, степень восстановления металлического кобальта.

Рубрика Химия
Вид статья
Язык русский
Дата добавления 27.02.2018
Размер файла 59,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Южно-Российский государственный политехнический университет имени М.И. Платова Новочеркасск

Исследование физико-химических свойств промотированных катализаторов на основе Co-Al2O3/SiO2

А.А. Кутовой, А.Л. Шмановская, С.И. Сулима, В.Г. Бакун

Аннотация

кобальтовый катализатор силикатный промотор

Проведены исследования физико-химических свойств кобальтовых катализаторов для синтеза Фишера-Тропша, приготовленных методом пропитки силикатного носителя. Изучено влияние оксидных промоторов на удельную поверхность, объем и размеры пор, степень восстановления металлического кобальта на поверхности катализатора Co-Al2O3/SiO2.

Ключевые слова: синтез Фишера-Тропша, синтетические углеводороды, катализатор, кобальт, промотор, носитель, удельная поверхность, пористая структура, каталитическая активность, степень восстановления.

Одним из методов получения углеводородов является синтез Фишера-Тропша - каталитический процесс превращения синтез-газа в синтетическое топливо. Процесс превращения синтез-газа в жидкие углеводороды описывается совокупностью химических уравнений:

nCO + (2n+1)H2 = CnH2n+2 + nH2O

nCO + 2nH2 = CnH2n + nH2O

Эти реакции протекают с участием катализаторов, в зависимости от типа и свойств которых меняется состав продуктов синтеза [1]. Для получения синтетических углеводородов применяются железные либо кобальтовые катализаторы. Последние считаются наиболее перспективными, так как характеризуются высокой селективностью и позволяют получать в основном линейные парафины при почти полном отсутствии оксигенатов. Кроме того, эти системы стабильны и обладают низкой активностью в реакции водяного газа.

Промотирование Со-катализаторов является перспективным способом повышения их активности и селективности. Оно заключается в улучшении каталитических свойств катализаторов с помощью металлов и их оксидов, путем добавления их в структуру последнего. По своему целевому назначению промоторы могут либо способствовать протеканию целевой реакции, т. е. увеличивать активность катализатора, либо могут подавлять нежелательные процессы, т. е. увеличивать селективность катализатора [2].

В научной литературе имеются сведения о промотирующих свойствах переходных и щелочноземельных металлов, используемых в качестве добавок к катализаторам. Добавки влияют на восстанавливаемость кобальта, степень превращения СО и селективность по C5+ [3-4], на число активных центров [4], на степень восстановления и дисперсность катализаторов [5], на каталитическую активность и скорость дезактивации [6] и т.д.

Целью работы является изучение влияния промоторов на физико-химические свойства кобальтовых катализаторов. В качестве базового образца для исследования был выбран катализатор Co-Al2O3/SiO2, который был разработан в НИИ «Нанотехнологии и новые материалы».

Катализаторы были приготовлены методом пропитки по влагоемкости. Силикагель марки КСКГ измельчали до частиц размером 1-2 мм и пропитывали раствором нитратов кобальта, алюминия и металла-добавки. Конечное соотношение компонентов в катализаторе Co:Al2O3:MxOy=100:5:5, где М - Ni, Cr, Mg. После пропитки образцы высушивали в печи 1,5 часа при температуре 100°С, затем прокаливали при 350°С в течение 4 часов [7].

Концентрацию кобальта в полученных образцах определяли методом элементного анализа на энергодисперсионном флуоресцентном спектрометре Thermo Scientific ARL QUANT'X EDXRF Spectrometer. Определение параметров пористой структуры методом БЭТ проводили с использованием анализатора ChemiSorb 2750 по методике [8], по тепловой десорбции аргона. Термо-программированное восстановление (ТПВ) позволяет установить температуру, скорость и степень восстановления металлов -- активных компонентов катализаторов. ТПВ проводили на том же приборе, что и БЭТ в потоке (20 мл·мин-1) газовой смеси состава 10%Н2 + 90%N2. Линейный подъем температуры осуществляли от 25 до 800°С.

Результаты исследований состава и структуры катализаторов представлены в таблице 1.

Таблица 1. Характеристики состава и пористой структуры катализатора

Промотирующая добавка

-

NiO

Cr2O3

MgO

Концентрация Со, % масс

17,95

16

16,81

16,96

Удельная поверхность, м2

301,8

276,2

200,9

212,2

Средний объем пор, м3

1,21

1,08

0,85

0,74

Добавка промоторов приводит к снижению концентрации кобальта в катализаторе. Наибольшее снижение дает оксид никеля - почти на 2%, наименьшее - оксид магния - на 1%. Кроме того, происходит уменьшение площади поверхности и среднего объема пор промотированных катализаторов, скорее всего, из-за блокировки части мелких пор. Наибольшее уменьшение удельной поверхности дает добавка оксида хрома, а среднего объема пор - оксида магния.

Методом ТПВ были получены спектры катализаторов, которые представлены на рисунке 1.

Пики на спектрах обозначают температурный интервал начала и конца восстановления составляющих элементов катализатора. Восстановление Со3О4 в оксид кобальта (II) для всех исследуемых образцов происходит в интервале от 250 до 400°С. СоО в свою очередь восстанавливается в металлический кобальт при 400-600°С. В высокотемпературной области (600-800°С) происходит восстановление трудновосстановимых соединений активного компонента катализатора с носителем (CoAl2O4, Co2SiO4 и др.) в металлический кобальт. Первый пик у многих катализаторов соответствует температуре восстановления нитратов металлов, входящих в состав катализатора, не разложившихся в процессе приготовления [9].

Рис.1. Спектры ТПВ для исследуемых катализаторов: 1 - Co-Al2O3/SiO2, 2 - Co-Al2O3-NiO/SiO2, 3 - Co-Al2O3-Cr2O3/SiO2, 4 - Co-Al2O3 - MgO/SiO2

Количественные характеристики спектров ТПВ представлены в таблице 2.

Таблица 2. Результаты термопрограмированного восстановления катализаторов

Катализатор

Объем поглощенного водорода, мл/г

(V3+V4)/V2

V1

V2

V3

V4

Co-Al2O3/SiO2

-

24,04

70,76

4,55

3,13

Co-Al2O3-NiO/SiO2

-

17,12

58,74

5,32

3,74

Co-Al2O3-Cr2O3/SiO2

0,75

19,21

48,34

3,07

2,68

Co-Al2O3-MgO/SiO2

-

19,8

-

52,85

2,67

По литературным данным [10] степень восстановления катализатора определяется отношением объемов поглощения водорода, соответствующих разным стадиям восстановления кобальта (V3+V4)/V2, в соответствии со стехиометрией химических реакций такое соотношение должно быть равно 3:1. С учетом данных, приведенных в табл. 2, образцы без добавок и с добавкой оксида никеля восстановились полностью, а катализаторы с добавками оксидов хрома и магния - недовосстановились на 10-15%.

Промотирование катализатора оксидом никеля улучшает восстанавливаемость кобальта, добавка хрома в катализатор способствует образованию трудновосстановимых соединений кобальта с носителем, что приводит к увеличению температурных интервалов на 10-30°С. Оксид магния в качестве промотора приводит к объединению третьего и четвертого пиков, со смещением в высокотемпературную область, что снижает степень восстановления катализатора.

Таким образом, можно сделать вывод, что наиболее благоприятное влияние на физико-химические свойства катализатора Co-Al2O3/SiO2 оказывает добавка оксида никеля, поскольку она способствует улучшению восстанавливающей способности катализатора, а также, в сравнении с другими промоторами, незначительно уменьшает удельную поверхность и средний объем пор катализатора.

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 14-23-00078) с использованием оборудования ЦКП «Нанотехнологии» ЮРГПУ (НПИ).

Литература

1. И.Н. Зубков, А.Н. Салиев, В.Н. Соромотин, Э.С. Якуба, Р.Е. Яковенко. // Инженерный вестник Дона, 2016, №4. URL: ivdon.ru/ru/magazine/archive/n4y2016/3944.

2. И.П. Мухленов. Технология катализаторов. Л.: Химия, 1989. - 272 с.

3. О. Л. Елисеев, М. В. Цапкина, П. Е. Давыдов, А. Л. Лапидус. // Химия твердого топлива, 2015, № 3, - с. 19-21.

4. T. Matsuda, H. Takahashi, T. Yokomatsu, E. Kikuchi. // Sekiyu Gakkaishi, 1995, 38, (5), рр. 326-332.

5. A. Tavasoli, M. Trйpanier, R. M. Malek Abbaslou, A. K. Dalai, N. Abatzoglou. // F. Proc. Tech., 2009, 90, рр. 1486-1494.

6. E. Rytter, T. H. Skagseth, S. Eri, A O. Sjеstad. Ind. Eng. Chem. Res., 2010, 49 (9), pp. 4140-4148.

7. В.А. Таранушич, А.П. Савостьянов, С.И. Сулима, Н.Д. Земляков, В.Г. Бакун, Г.Б. Нарочный, В.Б. Ильин, В.В. Пономарев. Технология катализаторов. Новочеркасск: ЮРГТУ (НПИ), 2012. 100 с.

8. ChemiSorb 2750. // Operatorґs Manual. April 2009. 119 p.

9. H. Xiong, Y. Zhang, S. Wang, J. Li. // Catalysis Communications 2005, vol.6. No 8. pp. 512-516.

10. Г.Б. Нарочный, Р.Е. Яковенко, А.П. Савостьянов. // Инженерный вестник Дона, 2015, №4. URL: ivdon.ru/ru/magazine/archive/n4y2015/3308.

References

1. I.N. Zubkov, A.N. Saliyev, V.N. Soromotin, E.S. Yakuba, R.E. Yakovenko. Inћenernyj vestnik Dona (Rus), 2016, №4. URL:ivdon.ru/ru/magazine/archive/n4y2016/3944.

2. I.P. Mukhlenov. Tekhnologiya katalizatorov [Catalyst technology]. L. Khimiya, 1989. 272 p.

3. O.L. Yeliseyev, M.V. Tsapkina, A.L. Lapidus. Himija tverdogo topliva, 2015, № 3, рр. 19-21.

4. T. Matsuda, H. Takahashi, T. Yokomatsu, E. Kikuchi. Sekiyu Gakkaishi,1995, 38, (5), рр. 326-332.

5. A. Tavasoli, M. Trйpanier, R. M. Malek Abbaslou, A. K. Dalai, N. Abatzoglou. F. Proc. Tech., 2009, 90, рр. 1486-1494.

6. E. Rytter, T. H. Skagseth, S. Eri, A O. Sjеstad. Ind. Eng. Chem. Res., 2010, 49 (9), pp. 4140-4148.

7. V.A. Taranushich, A.P. Savost'yanov, S.I. Sulima, N.D. Zemlyakov, V.G. Bakun, G.B. Narochnyy, V.B. Il'in, V.V. Ponomarev. Tekhnologiya katalizatorov [Catal. technology]. Novocherkassk: YURGTU (NPI), 2012. 100 p.

8. ChemiSorb 2750. Operatorґs Manual. April 2009. 119 p.

9. H. Xiong, Y. Zhang, S. Wang, J. Li. Catalysis Communications 2005, vol.6. No 8. pp. 512-516.

10. G.B. Narochnyj, R.E. Yakovenko, A.P. Savost'yanov. Inћenernyj vestnik Dona (Rus), 2015, №4. URL: ivdon.ru/ru/magazine/archive/n4y2015/3308.

Размещено на Allbest.ru

...

Подобные документы

  • Значение и области применения катализаторов. Физико-химические и каталитические свойства и реакционная способность наноструктур. Методы синтеза наноструктурированных каталитических систем на основе полимеров. Кобальтовые катализаторы гидрирования.

    курсовая работа [2,2 M], добавлен 29.05.2014

  • Условия и способы перевода ценных компонентов из катализаторов на основе оксида алюминия в раствор. Процессы сорбции и десорбции молибдена и кобальта. Технологическая схема извлечения элементов из катализатора, основанная на выщелачивании серной кислотой.

    дипломная работа [698,8 K], добавлен 09.01.2014

  • В основе классификации катализаторов лежит определенная совокупность свойств или характеристик. Классификация по типу веществ, степени дискретности и коллективности действия, по специфике электронного строения. Использование в химических реакциях.

    реферат [24,0 K], добавлен 26.01.2009

  • Магнитные наночастицы металлов. Физико-химические свойства мицелярных растворов. Кондуктометрическое исследование, синтез наночастиц кобальта в прямых мицеллах. Получение пленки Ленгмюра-Блоджетт, растровая электронная и атомно-силовая микроскопия.

    дипломная работа [4,6 M], добавлен 21.09.2012

  • Изучение основных функций, свойств и принципа действия катализаторов. Значение катализаторов в переработке нефти и газа. Основные этапы нефтепереработки, особенности применения катализаторов. Основы приготовления твердых катализаторов переработки нефти.

    реферат [1,0 M], добавлен 10.05.2010

  • Хемосорбционное модифицирование минералов. Свойства глинистых пород. Методика модификации бентонитовой глины месторождения "Герпегеж". Физико-химические способы исследования синтезированных соединений. Определение сорбционных характеристик бентонина.

    курсовая работа [9,2 M], добавлен 27.10.2010

  • Молибден, кобальт и никель: свойства, области применения. Регенерация катализаторов, утилизация после использования. Способы выделения ценных компонентов из растворов. Выщелачивание молибдена и кобальта. Десорбция молибдена раствором гидроксида натрия.

    дипломная работа [653,7 K], добавлен 27.11.2013

  • Физико–химические свойства серы. Механизм реакций процесса получения серы методом Клауса. Внедрение катализаторов отечественного производства на предприятии. Влияние температуры, давления, время контакта на процесс. Термическая и каталитическая ступень.

    курсовая работа [545,9 K], добавлен 17.02.2016

  • Общая характеристика кобальта как химического элемента. Определение и исследование физических и химических свойств кобальта. Изучение комплексных соединений кобальта и оценка их практического применения. Проведение химического синтеза соли кобальта.

    контрольная работа [544,0 K], добавлен 13.06.2012

  • Роль многокомпонентных оксидов в химических процессах как катализаторов. Получение смешанных алюмооксидных носителей. Активация алюминия йодом и сулемой. Механизм гидролиза алкоголята алюминия. Анализ фазового состава модифицированных оксидов алюминия.

    курсовая работа [259,2 K], добавлен 02.12.2012

  • Характеристика сырья, материалов, реагентов, полупродуктов. Фазовый состав промотированных железно-оксидных катализаторов, находящихся в атмосфере паров углеводородов и воды. Приготовление жидкого стекла. Материальный баланс железо-оксидного катализатора.

    дипломная работа [3,0 M], добавлен 16.03.2011

  • Основные и побочные реакции образования углеводородов, их механизм и главные этапы. Факторы, влияющие на данный процесс, и особенности применения различных катализаторов. Классификация и разновидности технологических схем, современные производства.

    реферат [1,4 M], добавлен 16.05.2015

  • Получение, применение и свойства полиакрилонитрила. Расчет Ван-дер-ваальсовых объемов полимера, показатель преломления. Плотность энергии когезии и параметр растворимости Гильдебранда. Расчет физико-химических свойств замещенного полиакрилонитрила.

    курсовая работа [2,4 M], добавлен 12.01.2013

  • Понятие степени окисления элементов в неорганической химии. Получение пленок SiO2 методом термического окисления. Анализ влияния технологических параметров на процесс окисления кремния. Факторы, влияющие на скорость получения и качество пленок SiO2.

    реферат [147,2 K], добавлен 03.12.2014

  • Особенности влияния различных примесей на строение кристаллической решетки селенида цинка, характеристика его физико-химических свойств. Легирование селенида цинка, диффузия примесей. Применение селенида цинка, который легирован различными примесями.

    курсовая работа [794,8 K], добавлен 22.01.2017

  • Характеристика кобальта по положению в периодической системе. Электронная формула. Нахождение кобальта в природе. Получение кобальта. Химические свойства кобальта, соединений кобальта. Биологическая роль кобальта для сельского хозяйства.

    реферат [12,7 K], добавлен 08.04.2005

  • Химические превращения компонентов древесины в условиях сульфатной варки. Показатели качества технических целлюлоз. Определение равномерности отбелки целлюлозы и способа варки. Химические и физико-химические анализы. Идентификация целлюлозных волокон.

    курсовая работа [391,8 K], добавлен 16.05.2011

  • Исследование свойств аммиака как нитрида водорода, бесцветного газа с резким запахом и изучение физико-химических основ его синтеза. Определение активности катализатора синтеза аммиака, расчет материального и теплового баланса цикла синтеза аммиака.

    курсовая работа [267,4 K], добавлен 27.07.2011

  • Физические и химические свойства аммиака. Промышленный способ получения. Физиологическое действие нашатырного спирта на организм. Выбор оптимальных условий процесса синтеза аммиака. Влияние давления, температуры и катализаторов. Пассивация и регенерация.

    реферат [318,6 K], добавлен 04.11.2015

  • Цепочка химического синтеза Mg(NO3)2-MgO-MgCl2. Физико-химические характеристики веществ, участвующих в химических реакциях при синтезе MgCl2 из Mg(NO3)2, их химические свойства и методы качественного и количественного анализа соединений магния.

    практическая работа [81,6 K], добавлен 22.05.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.