Влияние деятельности человека на атмосферу

Описание основных геоэкологических проблем отдельных геосфер Земли. Природные и социально-экономические последствия изменения климата. Причины роста концентрации углекислого газа. Гидроклиматические последствия антропогенного парникового эффекта.

Рубрика Экология и охрана природы
Вид реферат
Язык русский
Дата добавления 08.11.2013
Размер файла 31,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Реферат

Влияние деятельности человека на атмосферу

План

1. Парниковый эффект

2. Деградация озонового экрана

3. Асидификация экосферы и кислотные осадки

4. Локальное загрязнение воздуха

Литература

Рассмотрим основные геоэкологические проблемы отдельных геосфер Земли. Начнем с атмосферы. Влияние деятельности человека на атмосферу и климат проявляется в 4-х основных геоэкологических проблемах: парникового эффекта, деградации озонового экрана, асидификации экосферы, кислотных осадках, локальном загрязнении воздуха.

Атмосфера - это газовая оболочка Земли с содержащимися в ней аэрозольными частицами. Она движется вместе с твердой Землей как единое целое и одновременно принимает участие во вращении Земли. Половина всей массы атмосферы сосредоточена в нижних 5 км, а три четверти -- в нижних 10 км. Большая часть геоэкологических проблем, относящихся преимущественно к атмосфере, сосредоточена в тропосфере, и в особенности на нижней ее границе.

В формировании погоды и климата участвуют три основных взаимосвязанных и взаимообусловленных группы атмосферных процессов, называемых климатообразующими: теплооборот, влагооборот и атмосферная циркуляция. Вследствие большой подвижности атмосферы и относительно быстрого ее перемешивания в нижних 100 км процентное соотношение содержащихся в ней газов постоянно (в % по объему): азот- 78,08, кислород 20,95, аргон-0,93, углекислый газ- 0,03. На долю остальных нескольких десятков и даже сотен газов приходится всего лишь 0,01%, но многие из этих газов играют значительную роль в состоянии экосферы.

Изменения атмосферы под влиянием деятельности человека.

1. Локальные изменения состояния природно-территориальных комплексов (ландшафтов), такие как возникновение и развитие городов, оросительных и других земледельческих систем, антропогенные преобразования пастбищ, возникновение водохранилищ, ведут к локальным изменениям климата.

2. Крупномасштабные антропогенные изменения поверхности Земли (например, обезлесение, опустынивание, деградация внутренних морей и озер и др.) также обусловливают изменения особенностей теплового и водного режима на больших территориях и акваториях, хотя пока еще менее заметные.

Наряду с изменениями физических особенностей атмосферы с вытекающими отсюда последствиями, происходят антропогенные изменения ее газового состава.

К их числу надо отнести антропогенное изменение климата (парниковый эффект), нарушение естественного состояния озонового слоя, асидификацию экосферы, включая кислотные осадки, и локальное загрязнение атмосферы.

1. Парниковый эффект

Источником энергии атмосферных процессов является солнечная радиация. К земной поверхности приходит коротковолновая радиация, тогда как нагреваемая таким образом Земля испускает в атмосферу и далее за ее пределы энергию в виде длинноволнового (инфракрасного, или теплового) излучения.

Некоторые газы в атмосфере, включая водяной пар, отличаются парниковым эффектом, т.е. способностью в большей степени пропускать к поверхности Земли солнечную радиацию по сравнению с тепловым излучением, испускаемым нагретой Солнцем Землей. В результате температура поверхности Земли и приземного слоя воздуха выше, чем она; была бы при отсутствии парникового эффекта. Средняя температура поверхности Земли равна плюс 15°С, а без парникового эффекта она была бы минус 18°С. Парниковый эффект - один из механизмов жизнеобеспечения на Земле.

Ведущую роль в парниковом эффекте играет водяной пар, находящийся в атмосфере. Удивительно, что большую роль играют также газы, не отличающиеся высокой концентрацией в атмосфере. К основным парниковым газам относятся: углекислый газ (СО2), метан (СН4), оксиды азота, в особенности N2О и озон (О3), а также пары Н2О. В эту же категорию следует включить не встречающуюся в природе группу газов, синтезируемых человеком, под общим названием хлорфторбромуглероды.

Если баланс на верхней границе тропосферы между приходящей коротковолновой и отраженной длинноволновой радиацией не равен нулю, то возникает дополнительный эффект радиационного воздействия на атмосферу, приводящий либо к нагреванию (при преобладании приходящей радиации), либо к охлаждению тропосферы. Атмосфера реагирует на эти изменения, постепенно устанавливая новый радиационный баланс посредством соответствующего повышения или понижения температуры тропосферы и поверхности Земли.

Деятельность человека за последние 200 лет, и в особенности после 1950 г., привела к продолжающемуся и в настоящее время повышению концентрации в атмосфере газов, обладающих парниковым эффектом. Неизбежно последовавшая за этим реакция атмосферы заключается в антропогенном усилении естественного парникового эффекта. Суммарное антропогенное усиление парникового эффекта оценивается, по состоянию на 1995 г., величиной +2,45 Вт/м2 (Международный Комитет по изменению климата).

Парниковый эффект каждого из таких газов зависит от трех основных факторов:

- ожидаемого парникового эффекта на протяжении ближайших десятилетий или веков (например, 20,100 или 500 лет), вызываемого единичным объемом газа, уже поступившим в атмосферу, по сравнению с эффектом от углекислого газа, принимаемым за единицу;

- типичной продолжительности его пребывания в атмосфере;

- объема эмиссии газа.

Комбинация первых двух факторов носит название «относительный парниковый потенциал» и выражается в единицах от потенциала СО2. Он является удобным показателем текущего состояния парникового эффекта и используется в международных дипломатических переговорах. Относительная роль каждого из парниковых газов весьма чувствительна к изменению каждого фактора и к их взаимозависимости и потому определяется весьма приближенно.

Газы с парниковым эффектом.

Для понимания суммарного парникового эффекта необходимо оценить роль каждого из газов. Картина отличается большой сложностью и изменчивостью во времени и пространстве.

Роль водяного пара, содержащегося в атмосфере, в общемировом парниковом эффекте велика и трудно определима однозначно. При потеплении климата содержание водяного пара в атмосфере будет увеличиваться, тем самым, усиливая парниковый эффект.

Диоксид углерода, или углекислый газ (С02), отличается, по сравнению с другими парниковыми газами, относительно низким (парниковым) потенциалом, но довольно значительной продолжительностью существования в атмосфере (50-200 лет) и сравнительно высокой концентрацией. Доля диоксида углерода в парниковом эффекте составляет в настоящее время около 64%, но эта относительная величина неустойчива, поскольку зависит от изменяющейся роли других парниковых газов.

Причины роста концентрации углекислого газа.

1. Основной источник поступления углекислого газа в атмосферу - сжигание горючих ископаемых (угля, нефти, газа) для производства энергии. Около 80% всей энергии в мире производится за счет тепловой энергетики. Поступление углекислого газа в атмосферу за период с 1860 по 1990 г. увеличивалось в среднем на 0,4% в год. В течение 1980-х годов оно составляло 5,5 + 0,5 млрд. т углерода в год.

2. Сокращение лесов тропического и экваториального поясов, деградация почв, другие антропогенные трансформации ландшафтов приводят в основном к высвобождению углерода, которое сопровождается его окислением, т.е. образованием СО2. В целом эмиссия в атмосферу за счет преобразования тропических ландшафтов составляет 1,6 ± 1,0 млрд. т углерода. С другой стороны, в умеренных и высоких широтах Северного полушария отмечается, в целом, преобладание восстановления лесов над их исчезновением. Для построения органического вещества лесов в процессе фотосинтеза углекислый газ забирается из атмосферы. Это количество, в пересчете на углерод, равно 0,5 ± 0,5 млрд. т. Пределы точности, равные самой величине, указывают нам также на все еще низкий уровень понимания антропогенной роли в некоторых звеньях глобального биогеохимического цикла углерода.

3. В атмосфере в результате деятельности человека ежегодно дополнительно накапливается 3,3 ± 0,2 млрд. т углерода в виде углекислого газа.

4. Мировой океан поглощает из атмосферы (растворяет, химически и биологически связывает) около 2,0 ± 0,8 млрд. т углерода в виде углекислого газа. Суммарные величины поглощения углекислого газа океаном пока непосредственно не измеряются. Они рассчитываются на основе моделей, описывающих обмен между атмосферой, поверхностным и глубинным слоями океана.

Увеличение концентрации СО2 в атмосфере должно стимулировать процесс фотосинтеза. Это так называемая фертилизация, благодаря которой, по некоторым о кого вещества может возрасти на 20-40% при удвоенной по сравнению с современной концентрацией углекислого газа. В балансе антропогенных потоков углерода все пока еще плохо понимаемые процессы, протекающие в экосистемах суши, включая фертилизацию, оцениваются в 1,3±1,5 млрд. т.

Метан (СН4) также играет заметную роль в парниковом эффекте, составляя приблизительно 19% от общей его величины (на 1995 г.). Метан образуется в анаэробных условиях, таких как естественные болота разного типа, толща сезонной и вечной мерзлоты, рисовые плантации, свалки, а также в результате жизнедеятельности жвачных животных и термитов.

Оценки показывают, что около 20% суммарной эмиссии метана связаны с технологией использования горючих ископаемых (сжигание топлива, эмиссии из угольных шахт, добыча и распределение природного газа, переработка нефти). Всего антропогенная деятельность обеспечивает 60-80% суммарной эмиссии метана в атмосферу. В атмосфере метан неустойчив. Он удаляется из нее вследствие взаимодействия с ионом гидроксила (ОН) в тропосфере. Несмотря на этот процесс, концентрация метана в атмосфере увеличилась примерно вдвое по сравнению с доиндустриальным временем и продолжает расти со скоростью около 0,8% в год.

Оксид азота. Текущая роль оксида азота (N2О) в суммарном парниковом эффекте составляет всего около 6%. Концентрация оксида азота в атмосфере также увеличивается. Предполагается, что его антропогенные источники приблизительно вдвое меньше естественных. Источниками антропогенного оксида азота является сельское хозяйство (в особенности пастбища в тропиках), сжигание биомассы и промышленность, производящая азотсодержащие вещества. Его относительный парниковый потенциал (в 290 раз выше потенциала углекислого газа) и типичная продолжительность существования в атмосфере (120 лет) значительны, компенсируя его относительно невысокую концентрацию.

Хлорфторбромуглероды (ХФУ) -- это вещества, синтезируемые человеком и содержащие хлор, фтор и бром. Они обладают очень сильным относительным парниковым потенциалом и значительной продолжительностью жизни в атмосфере. Их итоговая роль в парниковом эффекте составляет на середину 1990-х годов приблизительно 7%.

Озон (03) - важный парниковый газ, находящийся как в стратосфере, так и в тропосфере.

Аэрозоли - это твердые частицы в атмосфере диаметром несколько микрон. Они образуются вследствие ветровой эрозии почвы, извержений вулканов и других природных процессов, а также благодаря деятельности человека (сжигание горючих ископаемых и биомассы).

В отличие от парниковых газов, типичный срок существования аэрозолей в атмосфере не превышает нескольких дней. Поэтому их радиационный потенциал быстро реагирует на рост эмиссии загрязнений и столь же быстро сокращается. В отличие от глобального воздействия газов с парниковым эффектом, влияние атмосферных аэрозолей является локальным. Географическое распространение сульфатных аэрозолей в воздухе в основном совпадает с промышленными районами мира. Именно там локальный охлаждающий эффект аэрозолей может значительно уменьшить и даже свести практически на нет глобальный парниковый эффект. Извержения вулканов - нерегулярный, но существенный фактор образования высоких концентраций аэрозольных частиц, вызывающих задержку солнечной радиации у земли и поэтому заметные похолодания. Катастрофический взрыв вулкана Тамбора в 1815 г. в Индонезии привел к заметному снижению температуры воздуха во всем мире в течение трех последующих лет.

Гидроклиматические последствия антропогенного парникового эффекта

Накопление парниковых газов в атмосфере и последующее усиление парникового эффекта приводят к повышению температуры приземного слоя воздуха и поверхности почвы. За последние сто лет средняя мировая температура повысилась приблизительно на 0,3-0,6°С. В особенности заметный рост температуры происходил в последние годы, начиная с 1980-х годов, которые были самым теплым десятилетием за весь период инструментальных наблюдений. Анализ глобальных данных по температурам воздуха позволил сделать обоснованный вывод о том, что наблюдаемый рост температуры обусловлен не только естественными колебаниями климата, но и деятельностью человека. Можно полагать, что прогрессирующее антропогенное накопление парниковых газов в атмосфере приведет к дальнейшему усилению парникового эффекта. Оценки ожидаемых изменений климата обычно производятся на основе использования глобальных моделей циркуляции атмосферы. Однако точность моделей все еще не высока даже для расчетов на глобальном уровне. Прогноз же изменений по регионам мира, чрезвычайно важный для практических целей, пока еще вряд ли надежен. Кроме того, необходимо учитывать возможные изменения в деятельности человека, осознанные или неосознанные, приводящие к изменениям в накоплении парниковых газов, а значит, и к последующим изменениям парникового эффекта.

Эти обстоятельства учитываются посредством сценариев.

1. В соответствии со сценарием наиболее вероятной величины эмиссии парниковых газов, средняя мировая температура приземного слоя воздуха за период с 1990 по 2100 г. увеличится приблизительно на 2°С. По сценариям низкой и высокой эмиссии рост температуры составит соответственно 1°С и 3,5°С. Вследствие термической инерции океанов средняя температура воздуха будет повышаться и после 2100 г., даже если концентрация парниковых газов к этому времени стабилизируется.

2. При удвоении содержания углекислого газа в атмосфере по сравнению с прединдустриальным периодом повышение температуры воздуха в различных регионах будет в пределах между 0,6°С и 7°С. Суша будет нагреваться больше, чем океаны. Наибольшее повышение температуры ожидается в арктических и субарктических поясах, в особенности зимой, в основном вследствие сокращения площади морского льда.

3. Рост температуры воздуха будет сопровождаться увеличением количества осадков, хотя картина пространственного распределения осадков будет более пестрой, чем распределение температуры воздуха. Вариация изменения осадков будет находиться в пределах от -35% до +50%. Надежность оценки изменений влажности почвы, что столь важно для сельского хозяйства, также значительно ниже, чем оценки изменения температуры воздуха.

4. Относительно небольшие изменения средних показателей климата будут, по всей вероятности, сопровождаться повышением частоты редких катастрофических событий, таких как тропические циклоны, штормы, засухи, экстремальные температуры воздуха и пр. Событие масштаба всего голоцена - катастрофическое цунами, обрушившееся на северные берега Индийского океана 26 декабря 2005 г. и унесшее 250-400 тыс. чел.

5. В последнее столетие происходил неуклонный рост среднего уровня Мирового океана, составивший 10-25 см. Основные причины роста уровня океана - термическое расширение воды вследствие ее нагревания из-за потепления климата, а также дополнительный приток воды вследствие сокращения горных и небольших полярных ледников. Эти же факторы будут работать и в дальнейшем, с постепенным подключением в более отдаленном будущем талых вод Гренландского, а затем и Антарктического ледниковых щитов. Ожидается, что уровень Мирового океана поднимется к 2100 г. на 50 см, а с учетом неопределенности прирост уровня ожидается в пределах от 20 до 86 см. Уровень океана будет продолжать расти в течение нескольких столетий после 2100 г., даже если концентрация парниковых газов стабилизируется. Рост уровня океана вызовет серьезные естественные и социально-экономические проблемы в прибрежных зонах морей и океанов.

Природные и социально-экономические последствия изменения климата.

Начавшееся изменение климата окажет серьезнейшее влияние, как на естественные, так и на социально-экономические процессы. Межправительственный комитет по изменению климата внимательно рассмотрел возможные воздействия изменений, перспективы управления ими и стратегии приспособления к ним. Анализ проводился на основе шести альтернативных сценариев изменения населения, экономики и энергетики на период до 2100 г. Ниже приводятся основные выводы из этих исследований.

Имея в виду, что неопределенность развития событий весьма велика, можно все же ожидать нижеследующие последствия:

1. Изменения ландшафтов суши. В средних широтах повышение температуры на 1-3,5°С за ближайшие сто лет будет эквивалентно смещению изотерм на 150-550 км по широте в сторону полюсов, или на 150-550 м по высоте. Соответственно начнется перемещение растительности, подобное тем, которые происходили при значительных изменениях оледенения в четвертичный период. Флора и фауна отстанут от того климата, в котором они развивались, и будут существовать в другом климатическом режиме. Скорость изменений климата будет, по-видимому, выше, чем способность некоторых видов приспосабливаться к новым условиям, и ряд видов может быть потерян. Могут исчезнуть некоторые типы лесов. Экосистемы не будут передвигаться вслед за климатическими условиями как нераздельная единица; их компоненты будут перемещаться с различной скоростью, в результате чего сформируются новые комбинации видов, т.е. возникнут новые экосистемы и их наборы более высоких рангов. Леса умеренного пояса потеряют часть деревьев при сопутствующем увеличении эмиссии углекислого газа, образующегося при окислении отмирающей биомассы. Пространственное приспособление экосистем к новым климатическим условиям, связанное с миграцией видов, будет осложняться антропогенными препятствиями, такими, как существование полей, населенных пунктов, дорог.

Наибольшие изменения произойдут в арктическом и субарктическом поясах. Сократятся компоненты криосферы: морские льды, горные и небольшие покровные ледники, глубина и распространение вечной и сезонной мерзлоты, площадь и продолжительность залегания сезонного снежного покрова. Ландшафты сдвинутся в сторону полюса, при их значительной трансформации. Можно ожидать развития пока еще плохо предсказуемых обратных связей, которые могут привести к сюрпризам. Например, сокращение площади морских льдов может привести к снижению степени континентальное™ климата, повышению количества твердых осадков с последующим ростом ледников Арктики и Субарктики. Частичная деградация вечной и сезонной мерзлоты повлияет на увеличение эмиссии углекислого газа и перестройку процессов эмиссии метана в атмосферу. От трети до половины массы горных ледников растает, в то время как ледниковые покровы Антарктики и Гренландии в ближайшие сто лет практически не изменятся. Пустыни станут еще более аридными вследствие более значительного повышения температуры воздуха по сравнению с осадками.

2.Прибрежные морские системы вследствие их разнообразия будут по-разному реагировать на увеличение температуры воздуха и рост уровня океана. Следует заметить, что изменение уровня океана в конкретных точках побережья зависит от двух факторов: гидрометеорологических, которые определяют изменения объема океана и зависят от изменений климата, и тектонических, определяющих изменения формы его ложа. Зачастую добавляется и третий фактор: экзогенные геоморфологические процессы, такие как аккумуляция наносов в устьях рек или эрозия морских берегов. Наблюдавшийся за последнее столетие рост уровня океана в пределах от 10 до 25 см -- это результат сложения трех упомянутых факторов при очевидно ведущей роли гидрометеорологических факторов.

В настоящее время около 46 млн. человек подвержены риску затопления от морских штормов. При росте уровня океана на 1 м этот показатель возрастает до 118 млн. человек даже без учета ожидаемого прироста населения. Средняя высота Бангладеш равна 7 м над уровнем моря; при подъеме уровня воды на 1 м и при учете роста населения затоплению будет подвержено 17,5% площади страны с 70 млн. жителей. Некоторые островные страны практически перестанут существовать.

3. Океан. Изменение климата может также воздействовать на изменения циркуляции вод океана, что в свою очередь повлияет на обилие питательных веществ, биологическую продуктивность, структуру и функции морских экосистем, с последующим воздействием на потоки углерода и, следовательно, на режим парниковых газов, а потому и на климат.

4. Водные ресурсы и их использование. Изменения климата приведут к интенсификации глобального гидрологического цикла и заметным региональным изменениям, хотя конкретный региональный прогноз пока ненадежен. Относительно небольшие изменения климата могут вызвать нелинейные изменения суммарного испарения и влажности почвы, что приведет к относительно большим изменениям стока, в особенности в аридных районах. В отдельных случаях при росте средней температуры на 1-2°С и сокращении осадков на 10% средний годовой сток может сократиться на 40-70%. Потребуются значительные капиталовложения для приспособления водохозяйственных систем к новым условиям. В особенности серьезные проблемы возникнут там, где водопотребление уже значительно или велико загрязнение вод.

5.Сельское хозяйство. Изменение климата окажет серьезное влияние как вследствие непосредственного климатического воздействия на агроэкосистемы, так и из-за необходимости приспособления сельского хозяйства к новым условиям.

Воздействия на агроэкосистемы будут весьма сложными и неоднозначными. Вследствие увеличения концентрации углекислого газа несколько возрастут величины фотосинтеза и, возможно, урожай. В районах, где земледелие лимитируется притоком тепла (например, в России и Канаде), вероятность повышения урожая увеличится. В аридных и семиаридных районах, где оно ограничено наличием доступной для растений влаги, изменение климата отразится неблагоприятным образом. Потребности в воде для орошения найдут серьезную конкуренцию с другими потребителями водных ресурсов -- промышленностью и коммунальным водоснабжением. Более высокие температуры воздуха будут способствовать ускорению естественного разложения органического вещества почвы и снижению ее плодородия. Вероятность распространения вредителей и болезней растений увеличится.

В целом ожидается, что общемировой уровень производства продуктов сельского хозяйства может быть сохранен, но региональные последствия будут варьировать в широких пределах.

Ожидаются также значительные изменения, касающиеся проблем здоровья людей, энергетики, транспорта, промышленности и многих других аспектов. Каждый из факторов заслуживает специального изучения.

Стратегии, связанные с проблемой изменения климата.

Предстоящее изменение климата и его последствия -- это крупнейшая проблема выживания человечества, требующая международного сотрудничества по скоординированным действиям каждой страны. Стратегия сотрудничества распадается на два основных компонента: управление и приспособление. При стратегии управления проблемой основные усилия направлены на снижение эмиссии парниковых газов, прежде всего углекислого газа. При осуществлении стратегии приспособления разрабатываются, например, комплексные проекты защиты конкретных прибрежных зон (систем) от растущего уровня моря.

Основной документ, регулирующий сотрудничество в области изменения климата, - Конвенция ООН по изменению климата, принятая в июне 1992 г. в Рио-де-Жанейро на Конференции ООН по окружающей среде и развитию. В соответствии с Конвенцией, страны-участники должны взять на себя обязательство по сокращению эмиссии парниковых газов, и прежде всего углекислого газа. Межправительственный Комитет вырабатывает рекомендации по стратегии, но решения все же остаются за правительствами, периодически собирающимися на Конференции членов Конвенции. Отчет Межправительственного Комитета (1995 г.) указывает на следующие главнейшие трудности проблемы изменения климата, стоящие перед правительствами:

- проблема содержит много неопределенностей вследствие ее сложности;

- уровень затрат, или же невосполнимых потерь, может быть очень высок;

- период планирования чрезвычайно продолжителен;

- сдвиг во времени между эмиссиями парниковых газов и их последствиями весьма велик;

- региональные вариации последствий очень велики, но очень плохо предсказуемы;

- проблема может решаться только на глобальном уровне и только при условии общемирового сотрудничества, что не так просто;

- необходимо разрабатывать стратегии по отношению ко многим парниковым газам и аэрозолям.

парниковый геоэкологический углекислый

2. Деградация озонового слоя

Максимальная концентрация озона сосредоточена в тропосфере на высотах 15-30 км, где существует так называемый озоновый слой. Его масса столь мала, что при нормальном, приземном давлении весь атмосферный озон образовал бы слой всего 3 мм толщиной. Даже при столь малой мощности озоновый слой в стратосфере играет очень важную роль, защищая живые организмы Земли от вредного и даже губительного воздействия ультрафиолетовой радиации Солнца.

В естественных условиях наиболее важными катализаторами реакции распада озона являются оксиды азота (NO и NО2). В свою очередь, они образуются вследствие окисления нитрита кислорода (N2О), происходящего на суше и в океанах главным образом вследствие естественных микробиологических процессов денитрификации или нитрификации. Тропические леса являются важным источником нитрита кислорода.

С воздействием жесткой ультрафиолетовой радиации связаны неизлечимые формы рака кожи, болезни глаз, нарушение иммунной системы людей, неблагоприятные воздействия на жизнедеятельность планктона в океане, снижение урожая зерновых и другие экологические последствия.

Другой катализатор - семейство хлорфтор(бром)углеродов (ХФУ) насчитывает ряд сравнительно недорогих синтезируемых веществ. Более десятка из них нашли широкое применение как хладоносители (фреоны) в холодильниках и кондиционерах воздуха, а также в качестве растворителей, пенообразователей, распылителей (аэрозолей) в различных областях индустрии. ХФУ отличаются малой химической активностью и потому высокой продолжительностью существования в атмосфере. Эти свойства оказались вредными, когда стало ясно, что они играют решающую роль в разрушении озонового слоя. Хлорфторуглероды представляют собой группу органических веществ, в которых все атомы водорода замещены на комбинацию атомов хлора, фтора и брома

Расчеты демонстрируют весьма значительные неблагоприятные последствия деградации озонового слоя. Предположительно, потери озона достигнут 6-7% от его первоначального количества, что будет соответствовать увеличению среднего годового количества биологически вредной части УФ радиации на 6-12%.

В 1984 г. английским исследователем Д. Фарманом была обнаружена над Антарктидой область, соизмеримая со всем континентом, где содержание озона в атмосфере в октябре--ноябре было до 40% ниже, чем в среднем. Это означало увеличение ультрафиолетовой радиации, достигающей земной поверхности, приблизительно в 10 раз. Вследствие деятельности человека с конца 1960-х годов до 1995 г. озоновый слой потерял около 5% массы. Ожидается, что максимум потерь стратосферного озона будет достигнут к концу XX в., с последующим постепенным восстановлением в течение первой половины XXI в. в соответствии с обязательствами стран по Конвенции по защите озонового слоя.

Озоновая «дыра» над Антарктидой стала тревожным сигналом общепланетарного неблагополучия экосферы, требующего серьезного внимания всех стран мира.

Поэтому вскоре, в 1988 г., был подписан Монреальский протокол к Конвенции по защите озонового слоя, предусматривающий полное сокращение производства и употребления хлорфторуглеродов. Это был первый пример такого международного сотрудничества, которое направлено на решение будущей, только еще возникающей природно-антропогенной проблемы. Эти химические вещества отличаются, однако, продолжительным существованием в атмосфере, и поэтому даже при соблюдении всеми странами всех принятых обязательств, проблема угрозы состоянию озонового слоя будет существовать, по крайней мере, в течение нескольких десятилетий.

3. Асидификация экосферы и кислотные осадки

Асидификация - это антропогенный природный процесс повышения кислотной реакции компонентов экосферы, прежде всего атмосферы, гидросферы и педосферы (сферы почв), а также и усиления воздействия повышенной кислотности на другие природные явления.

В естественных условиях атмосферные осадки обычно имеют нейтральную или слабо кислую реакцию, т.е. показатель их кислотности/ щелочности обычно меньше 7,0 (рН < 7). В присутствии углекислого газа и при температуре 20°С дождевая вода имеет рН равный 5,6. В присутствии других природных газов рН дождевой воды снижается примерно до 5,0. Однако, часто случается выпадение атмосферных осадков, имеющих значительно более кислую реакцию. Кислотная реакция осадков может быть в 10 раз больше (т.е. рН = 4) и даже временами, в очень загрязненных районах, достигать 3,5. Принято, что кислотные осадки (или «кислотные дожди») это осадки с рН < 5.

Основные компоненты кислотных осадков - аэрозоли оксидов серы и азота, которые при взаимодействии с атмосферной, гидросферной или почвенной влагой образуют серную, азотную и другие кислоты. Аммиак (NН3) - еще один основной компонент кислотных осадков.

Кислотные осадки имеют как естественное, так и антропогенное происхождение.

1. Основные природные источники - извержения вулканов, лесные пожары, дефляция почв.

2. Источником антропогенных кислотных осадков является сжигание горючих ископаемых, главным образом угля, в тепловых электростанциях, в котельных, в металлургии, нефтехимической промышленности, на транспорте.

3. Источником кислотных соединений является также сельское хозяйство. В настоящее время естественная фиксация соединений азота в процессе построения растительной массы уже не в состоянии обеспечить потребности земледелия в этом биогенном элементе. Приходится увеличивать использование азотных удобрений и расширять площади под бобовыми и рисом, поскольку эти культуры обладают азотфиксирующими свойствами. Часть азотных соединений при этом уходит в окружающую среду в качестве одного из основных загрязнителей.

Влияние антропогенных соединений азота и серы на атмосферу.

1.Антропогенные соединения азота и серы повышают, иногда значительно, степень кислотности атмосферы и экосистем. Это приводит к значительным изменениям состояния почв, лесов, подземных вод, озер, рек, а также неблагоприятно воздействует на инженерные сооружения.

2. Накопление антропогенной серы и азота в экосфере не только приводит к значительной и широко распространенной асидификации, но также во все усиливающейся степени влияет на радиационный баланс Земли, глобальный баланс питательных веществ (биогенов) и окисляющую способность тропосферы.

3.Соединения азота вызывают эвтрофирование водоемов, способствуя развитию водорослей, поглощающих кислород.

4. При оценке реального воздействия кислотных осадков на ландшафты и их компоненты необходимо сравнивать величины осадков с буферной способностью почв и почвообразующих пород. В целом в зонах недостаточного увлажнения кислотные осадки нейтрализуются и потому серьезной проблемы не представляют. Наоборот, в зонах избыточного увлажнения, в особенности на Канадском и Фенноскандинавском кристаллических щитах, воздействие кислотных осадков на почвы, леса, водные объекты сказывается наиболее неблагоприятным образом. Кислотные осадки играют решающую роль в резком увеличении подвижности в ландшафте алюминия, высокотоксичного для живых существ. Нижеследующая цепочка, на первый взгляд, не связанных событий приводит к внезапному вымыванию алюминия из почв, вследствие медленного и постепенного изменения буферной способности почв снижать кислотность.

Почвы с низкой первоначальной буферной способностью, получающие к тому же значительное количество кислотных осадков, быстрее асидифицируются и отдают алюминий по сравнению с почвами, отличающимися высокой буферной способностью и (или) получающими меньше кислотных выпадений. Восстановление буферной способности почв происходит благодаря выветриванию горных пород, содержащих основные ионы, нейтрализующие кислотность. Но в районах со значительными кислотными осадками скорость выветривания не поспевает за скоростью асидификации.

Меры борьбы.

1.Снижение эмиссии оксидов серы и азота посредством таких технологическитх приемов, как использование менее загрязняющего топлива благодаря промывке измельченного угля перед его сжиганием, понижение температуры сжигания угля, извлечение серы из отходящих газов и т. п. Однако, это повышает стоимость производимой энергии.

2. Экономия в использовании энергии.

3.Поскольку кислотные осадки частично переносятся на значительные расстояния, возникает необходимость в международном сотрудничестве в этой области. С этой целью в 1979 г. заключена европейская (с участием США и Канады) Конвенция по трансграничному переносу загрязнений воздуха, к которой впоследствии добавился ряд протоколов по сокращению эмиссий оксидов серы и азота. В процессе выполнения Конвенции достигнуты значительные успехи в снижении асидификации.

4. Локальное и региональное загрязнение воздуха

Выше уже говорилось, что геоэкологические проблемы могут иметь глобальный и универсальный характер. Первые охватывают всю Землю или, по крайней мере, имеют размеры, соизмеримые с океанами или континентами. Вторые многократно повторяются во многих точках или небольших территориях мира. Загрязнение воздуха - пример проблемы универсальной, встречающейся как чрезвычайно серьезная локальная проблема во многих местах мира.

Фоновое загрязнение воздуха охватывает площади, соизмеримые с площадью континентов или всего мира. Оно связано с поллютантами, отличающимися относительно продолжительным временем жизни в атмосфере. К ним относятся парниковые газы, оксиды азота и серы и некоторые другие вещества. Рост их концентрации в атмосфере свидетельствует о том, что естественный экологический баланс нарушен, и природная поглотительная емкость атмосферы исчерпана.

Основными источниками загрязнения воздуха являются теплоэнергетика, черная и цветная металлургия, химическая промышленность, транспорт, нефте- и газопереработка. В 150 городах России объем выбросов транспорта превышал объем выбросов промышленных предприятий.

Последствия локального загрязнения воздуха столь же многообразны, как и загрязнители. По статистике, собранной в США, в городах с высоким загрязнением воздуха заболеваемость выше, чем в сельской местности, на 15-17%. Есть все основания полагать, что этот показатель для ряда городов России еще хуже. В экосистемах городов и прилегающих территорий накапливаются вредные вещества (например, тяжелые металлы), а растительность трансформирована или угнетена. Радиус зоны вредных воздействий достигает нескольких десятков километров.

Основными направлениями защиты воздушного бассейна являются:

а) санитарно-технические мероприятия (строительство сверхвысоких труб, установка газопылеочистного оборудования, герметизация производственных процессов и др.).

б) технологические мероприятия (внедрение малоотходных или безотходных технологий, соответствующая подготовка сырья, замена сухих технологических способов на мокрые);

в) пространственно-планировочные мероприятия (выделение санитарно-защитных зон, планировка городской и промышленной застройки в соответствии с преобладающими ветрами, озеленение и пр.);

г) контрольно-запретительные мероприятия (введение величин предельно допустимых концентраций веществ и предельно допустимых выбросов в окружающую среду, запрещение производства отдельных веществ, временная приостановка загрязняющей деятельности, мониторинг загрязнения воздуха).

Принципиальный путь решения проблемы - внедрение малоотходных технологий, иными словами, предотвращение загрязнений, а не очистка от них на заключительном этапе производства.

Вывод. Несмотря на весьма сложные геоэкологические процессы, связанные с деятельностью человека в атмосфере, все же не будет ошибкой сказать, что из систем четырех основных геосфер (атмосферы, гидросферы, литосферы и биосферы) простейшая и наиболее чувствительная - это атмосфера.

Литература

1. Комарова Н.Г.Геоэкология и природопользование. М.: Академия, 2003. 190 с.

2. Карлович И.А. Геоэкология. М.: Альма-Матер Академический проект, 2005. 511.

3. Карлович И.А.Основы техногенеза: Кн. 1. Источники и потоки загрязнения окружающей среды. Владимир: ВГПУ, 2003. 330 с.

4. Карлович И.А.Основы техногенеза: Кн. 2. Факторы загрязнения окружающей среды. Владимир: ВГПУ, 2003. 540 с.

5. Ласточкин А.Н. Геоэкология ландшафта (экологические исследования окружающей среды на геотопологической основе) СП б.: СПб ГУ, 1995. 280 с.

6. Петров К.М. Геоэкология. С.-Петербург: С.-Петербургский университет, 2004. 274 с.

7. Родзевич Н.Н. Геоэкология и природопользование.М.:наука, 2003. 256 с.

8. Ясаманов Н.А. Основы геоэкологии. М.: Академия, 2003. 352 с.

Размещено на Allbest.ru

...

Подобные документы

  • Сущность парникового эффекта. Пути исследования изменения климата. Влияние диоксида углерода на интенсивность парникового эффекта. Глобальное потепление. Последствия парникового эффекта. Факторы изменения климата.

    реферат [20,6 K], добавлен 09.01.2004

  • Природа и количественное определение парникового эффекта. Парниковые газы. Решения проблемы изменения климата в разных странах. Причины и последствия парникового эффекта. Интенсивность солнечной радиации и инфракрасного излучения поверхности Земли.

    курсовая работа [856,9 K], добавлен 21.04.2011

  • Причины изменения климата. Комплексность климатической системы Земли. Понятие и сущность парникового эффекта. Глобальное потепление и воздействие на него человека. Последствия глобального потепления. Меры, необходимые для предотвращения потепления.

    реферат [30,8 K], добавлен 10.09.2010

  • Причины возникновения парникового эффекта. Отрицательные экологические последствия парникового эффекта. Положительные экологические последствия парникового эффекта. Эксперименты протекания парникового эффекта в разных условиях.

    творческая работа [11,4 K], добавлен 20.05.2007

  • Причины прогнозируемого на XXI век изменения климата Земли. Повышение средней температуры в атмосфере и в приземном слое, его неблагоприятное воздействие на природные экосистемы и человека. Механизм действия парникового эффекта, планетарное альбедо.

    реферат [843,4 K], добавлен 15.12.2009

  • Проблема изменения климата Земли как один из главных вопросов выживания человечества. Сущность и предпосылки глобального потепления, направления и перспективы разрешения связанных с ним проблем. Причины роста концентрации углекислого газа в атмосфере.

    презентация [864,3 K], добавлен 06.04.2014

  • Причины и последствия "парникового эффекта", обзор методов решения данной проблемы. Экологическое прогнозирование. Пути снижения воздействия парникового эффекта на состояние климата Земли. Киотский протокол к Рамочной конвенции ООН об изменении климата.

    контрольная работа [53,6 K], добавлен 24.12.2014

  • Природные и антропогенные загрязнения окружающей среды. Последствия парникового эффекта и потепления климата. Разрушение озонового экрана веществами, используемыми в промышленности и быту. Влияние кислотных и радиоактивных осадков на природу и человека.

    доклад [8,3 K], добавлен 18.01.2011

  • Понятие парникового эффекта. Потепление климата, повышение среднегодовой температуры на Земле. Последствия парникового эффекта. Накопление в атмосфере "парниковых газов", пропускающих кратковременные солнечные лучи. Решение проблемы парникового эффекта.

    презентация [1,3 M], добавлен 08.07.2013

  • Изменение климата в глобальних масштабах из-за “парникового эффекта” как международная и политическая проблема. Влияние на экосистему земли и биосферу посредством использования в современных масштабах ископаемого топлива (уголь, нефть, природный газ).

    контрольная работа [24,8 K], добавлен 25.03.2009

  • Причины возникновения парникового эффекта. Парниковый газ, его особенности и характеристика проявлений. Последствия парникового эффекта. Киотский протокол, его сущность и описание основных положений. Прогнозы на будущее и методы решения этой проблемы.

    реферат [60,7 K], добавлен 16.02.2009

  • Основные причины возникновения парникового эффекта. Парниковые газы, их воздействие на тепловой баланс Земли. Негативные последствия парникового эффекта. Киотский протокол: сущность, главные задачи. Прогнозирование экологической ситуации в мире.

    реферат [17,0 K], добавлен 02.05.2012

  • Сущность идеи о механизме парникового эффекта, основные его причины и возможные последствия, роль химических веществ. Глобальные климатические изменения и факторы влияния не ускорение или замедление процесса потепления, пять его возможных сценариев.

    реферат [23,1 K], добавлен 27.01.2010

  • Функции атмосферы Земли, возникновение, роль и состав парниковых газов. Причины предполагаемого потепления климата. Положительные и отрицательные последствия парникового эффекта для органического мира. Пути решения глобальной экологической проблемы.

    презентация [1,3 M], добавлен 16.12.2010

  • Экологические последствия воздействия человека на живую природу. Влияние природы на живые организмы. Сущность антропогенного загрязнения, парникового эффекта и воздействие на почвы и биосферу сельскохозяйственного производства. Охрана окружающей среды.

    презентация [403,3 K], добавлен 03.05.2014

  • Причины и последствия постепенного роста температуры поверхностного слоя атмосферы Земли и Мирового океана. Отрицательные показатели парникового эффекта. Возможные пути решения проблемы глобального потепления и меры по снижению выбросов парниковых газов.

    контрольная работа [20,2 K], добавлен 20.04.2015

  • Исследования газового состава атмосферы. Атмосферная химия. Спутниковый мониторинг атмосферы. Прогнозирование изменений состава атмосферы и климата Земли. Явление парникового эффекта атмосферы. Влияние увеличивающейся концентрации СО2.

    реферат [49,4 K], добавлен 27.12.2002

  • Накопление углекислого газа в атмосфере - одна из основных причин парникового эффекта. Углекислый газ действует в атмосфере, как стекло в оранжерее: он пропускает солнечную радиацию и не пропускает обратно в космос инфракрасное (тепловое) излучение Земли.

    реферат [6,7 K], добавлен 26.12.2004

  • Исследование явления парникового эффекта, связанного с поступлением в атмосферу парниковых газов, которые препятствуют теплообмену между Землей и космосом. Сравнение баланса потоков углекислого газа для экосистем, вклада стран в мировое загрязнение.

    презентация [662,4 K], добавлен 27.09.2011

  • Парниковый эффект: исторические сведения и причины. Рассмотрение влияния атмосферы на радиационный баланс. Механизм парникового эффекта и его роль в биосферных процессах. Усиление парникового эффекта в индустриальную эпоху и последствия этих усилений.

    реферат [24,6 K], добавлен 03.06.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.