Построение математической модели линейного программирования

Определение переменной, построение целевой функции. Процесс максимизации маржинальной прибыли. Ограничения – система уравнений и неравенств, которые ограничивают величины искомых переменных. Графический метод решения задачи линейного программирования.

Рубрика Экономико-математическое моделирование
Вид реферат
Язык русский
Дата добавления 20.01.2015
Размер файла 164,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Рассмотрим пример построения математической модели линейного программирования

Николай Кузнецов управляет небольшим механическим заводом. В будущем месяце он планирует изготавливать два продукта (А и В), по которым удельная маржинальная прибыль оценивается в 2500 и 3500 руб., соответственно. переменная линейное программирование маржинальный

Изготовление обоих продуктов требует затрат на машинную обработку, сырье и труд (рис. 1). На изготовление каждой единицы продукта А отводится 3 часа машинной обработки, 16 единиц сырья и 6 единиц труда. Соответствующие требования к единице продукта В составляют 10, 4 и 6. Николай прогнозирует, что в следующем месяце он может предоставить 330 часов машинной обработки, 400 единиц сырья и 240 единиц труда. Технология производственного процесса такова, что не менее 12 единиц продукта В необходимо изготавливать в каждый конкретный месяц.

Николай хочет построить модель с тем, чтобы определить количество единиц продуктов А и В, которые он доложен производить в следующем месяце для максимизации маржинальной прибыли.

Линейная модель может быть построена в четыре этапа.

Этап 1. Определение переменных

Существует целевая переменная (обозначим её Z), которую необходимо оптимизировать, то есть максимизировать или минимизировать (например, прибыль, выручка или расходы). Николай стремится максимизировать маржинальную прибыль, следовательно, целевая переменная:

Z - суммарная маржинальная прибыль (в рублях), полученная в следующем месяце в результате производства продуктов А и В.

Существует ряд неизвестных искомых переменных (обозначим их х1, х2, х3 и пр.), чьи значения необходимо определить для получения оптимальной величины целевой функции, которая, в нашем случае является суммарной маржинальной прибылью. Эта маржинальная прибыль зависит от количества произведенных продуктов А и В. Значения этих величин необходимо рассчитать, и поэтому они представляют собой искомые переменные в модели. Итак, обозначим:

х1 - количество единиц продукта А, произведенных в следующем месяце.

х2 - количество единиц продукта В, произведенных в следующем месяце.

Очень важно четко определить все переменные величины; особое внимание уделите единицам измерения и периоду времени, к которому относятся переменные.

Этап. 2. Построение целевой функции

Целевая функция - это линейное уравнение, которое должно быть или максимизировано или минимизировано. Оно содержит целевую переменную, выраженную с помощью искомых переменных, то есть Z выраженную через х1, х2… в виде линейного уравнения.

В нашем примере каждый изготовленный продукт А приносит 2500 руб. маржинальной прибыли, а при изготовлении х1 единиц продукта А, маржинальная прибыль составит 2500 * х1. Аналогично маржинальная прибыль от изготовления х2 единиц продукта В составит 3500 * х2. Таким образом, суммарная маржинальная прибыль, полученная в следующем месяце за счет производства х1 единиц продукта А и х2 единиц продукта В, то есть, целевая переменная Z составит:

Z = 2500 * х1 + 3500 *х2

Николай стремится максимизировать этот показатель. Таким образом, целевая функция в нашей модели:

Максимизировать функцию

Этап. 3. Определение ограничений

Ограничения - это система линейных уравнений и/или неравенств, которые ограничивают величины искомых переменных. Они математически отражают доступность ресурсов, технологические факторы, условия маркетинга и иные требования. Ограничения могут быть трех видов: «меньше или равно», «больше или равно», «строго равно».

В нашем примере для производства продуктов А и В необходимо время машинной обработки, сырье и труд, и доступность этих ресурсов ограничена. Объемы производства этих двух продуктов (то есть значения х1 их2) будут, таким образом, ограничены тем, что количество ресурсов, необходимых в производственном процессе, не может превышать имеющееся в наличии. Рассмотрим ситуацию со временем машинной обработки. Изготовление каждой единицы продукта А требует трех часов машинной обработки, и если изготовлено х1, единиц, то будет потрачено З * х1, часов этого ресурса. Изготовление каждой единицы продукта В требует 10 часов и, следовательно, если произведено х2 продуктов, то потребуется 10 * х2 часов. Таким образом, общий объем машинного времени, необходимого для производства х1 единиц продукта А и х2 единиц продукта В, составляет 3 * х1 + 10 * х2. Это общее значение машинного времени не может превышать 330 часов. Математически это записывается следующим образом:

3 * х1 + 10 * х2 ? 330

Аналогичные соображения применяются к сырью и труду, что позволяет записать еще два ограничения:

16 * х1 + 4 * х2 ? 400

6 * х1 + 6 * х2 ? 240

Наконец следует отметить, что существует условие, согласно которому должно быть изготовлено не менее 12 единиц продукта В: х2 ? 12

Этап 4. Запись условий неотрицательности

Искомые переменные не могут быть отрицательными числами, что необходимо записать в виде неравенств х1 ? 0 и х2 ? 0. В нашем примере второе условия является избыточным, так как выше было определено, что х2 не может быть меньше 12.

Полная модель линейного программирования для производственной задачи Николая может быть записана в виде:

Максимизировать

При условии, что:

3 * х1 + 10 * х2 ? 330

16 * х1 + 4 * х2 ? 400

6 * х1 + 6 * х2 ? 240

х2 ? 12

х1 ? 0

Рассмотрим графический метод решения задачи линейного программирования.

Этот метод подходит только для задач с двумя искомыми переменными. Модель, построенная выше, будет использована для демонстрации метода.

Оси на графике представляют собой две искомые переменные (рис. 2). Не имеет значения, какую переменную отложить вдоль, какой оси. Важно выбрать масштаб, который в конечном итоге позволит построить наглядную диаграмму. Поскольку обе переменные должны быть неотрицательными, рисуется только I-й квадрант.

Рассмотрим, например, первое ограничение:

3 * х1 + 10 * х2 ? 330

Это неравенство описывает область, лежащую ниже прямой:

3 * х1 + 10 * х2 = 330

Эта прямая пересекает ось х1 при значении х2 = 0, то есть уравнение выглядит так: 3 * х1 + 10 * 0 = 330, а его решение: х1 = 330 / 3 = 110

Аналогично вычисляем точки пересечения с осями х1 и х2 для всех условий-ограничений:

Область допустимых значений

Граница допустимых значений

Пересечение с осью х1

Пересечение с осью х2

3 * х1 + 10 * х2 ? 330

3 * х1 + 10 * х2 = 330

х1 = 110; х2 = 0

х1 = 0; х2 = 33

16 * х1 + 4 * х2 ? 400

16 * х1 + 4 * х2 = 400

х1 = 25; х2 = 0

х1 = 0; х2 = 100

6 * х1 + 6 * х2 ? 240

6 * х1 + 6 * х2 = 240

х1 = 40; х2 = 0

х1 = 0; х2 = 40

х2 ? 12

х2 = 12

не пересекает; идет параллельно оси х1

х1 = 0; х2 = 12

Любая точка в пределах выделенного треугольника или на его границах будет соответствовать этому ограничению. Такие точки называются допустимыми, а точки за пределами треугольника называются недопустимыми.

Аналогично отражаем на графике остальные ограничения (рис. 4). Значения х1 и х2 на или внутри заштрихованной области ABCDE будут соответствовать всем ограничениям модели. Такая область называется областью допустимых решений.

Теперь в области допустимых решений необходимо определить значения х1 и х2, которые максимизируют Z. Для этого в уравнении целевой функции:

Z = 2500 * х1 + 3500 *х2

разделим (или умножим) коэффициенты перед х1 и х2 на одно и тоже число, так чтобы получившиеся значения попали в диапазон, отражаемый на графике; в нашем случае такой диапазон - от 0 до 120; поэтому коэффициенты можно разделить на 100 (или 50):

Z = 25х1 + 35х2

затем присвоим Z значение равное произведению коэффициентов перед х1 и х2 (25 * 35 = 875):

875 = 25х1 + 35х2

и, наконец, найдем точки пересечения прямой с осями х1 и х2:

и, наконец, найдем точки пересечения прямой с осями х1 и х2:

Уравнение целевой функции

Пересечение с осью х1

Пересечение с осью х2

875 = 25х1 + 35х2

х1 = 35; х2 = 0

х1 = 0; х2 = 25

Нанесем это целевое уравнение на график аналогично ограничениям (рис. 5):

Значение Z постоянно на всем протяжении линии целевой функции. Чтобы найти значения х1 и х2, которые максимизируют Z, нужно параллельно переносить линию целевой функции к такой точке в границах области допустимых решений, которая расположена на максимальном удалении от исходной линии целевой функции вверх и вправо, то есть к точке С

Можно сделать вывод, что оптимальное решение будет находиться в одной из крайних точек области принятия решения. В какой именно, будет зависеть от угла наклона целевой функции и от того, какую задачу мы решаем: максимизации или минимизации. Таким образом, не обязательно чертить целевую функцию - все, что необходимо, это определить значения х1 и х2 в каждой из крайних точек путем считывания с диаграммы или путем решения соответствующей пары уравнений. Найденные значения х1 и х2 затем подставляются в целевую функцию для расчета соответствующей величины Z. Оптимальным решением является то, при котором получена максимальная величина Z при решении задачи максимизации, и минимальная - при решении задачи минимизации.

Определим, например значения х1 и х2 в точке С. Заметим, что точка С находится на пересечении линий: 3х1 + 10х2 = 330 и 6х1 + 6х2 = 240. Решение этой системы уравнений дает: х1 = 10, х2 = 30. Результаты расчета для всех вершин области допустимых решений приведены в таблице:

Точка

Значение х1

Значение х2

Z = 2500х1 + 3500х2

А

22

12

97 000

В

20

20

120 000

С

10

30

130 000

D

0

33

115 500

E

0

12

42 000

Таким образом, Николай Кузнецом должен запланировать на следующий месяц производство 10 изделий А и 30 изделий В, что позволит ему получить маржинальную прибыль в размере 130 тыс. руб.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие задач оптимизации, которые сводятся к нахождению экстремума целевой функции. Функции линейного программирования – наиболее широко применяющегося математического средства решения экономических задач. Пример решения задачи о раскрое материала.

    контрольная работа [60,3 K], добавлен 17.02.2012

  • Построение экономической модели по оптимизации прибыли производства. Разработка математической модели задачи по оптимизации производственного плана и её решение методами линейного программирования. Определение опорного и оптимального плана производства.

    дипломная работа [311,3 K], добавлен 17.01.2014

  • Цель работы: изучить и научиться применять на практике симплекс - метод для решения прямой и двойственной задачи линейного программирования. Математическая постановка задачи линейного программирования. Общий вид задачи линейного программирования.

    реферат [193,4 K], добавлен 28.12.2008

  • Транспортная задача линейного программирования, закрытая модель. Создание матрицы перевозок. Вычисление значения целевой функции. Ввод зависимостей из математической модели. Установление параметров задачи. Отчет по результатам транспортной задачи.

    контрольная работа [202,1 K], добавлен 17.02.2010

  • Составление математической модели, целевой функции, построение системы ограничений и симплекс-таблиц для решения задач линейного программирования. Решение транспортной задачи: определение опорного и оптимального плана, проверка методом потенциалов.

    курсовая работа [54,1 K], добавлен 05.03.2010

  • Математическая формулировка задачи линейного программирования. Применение симплекс-метода решения задач. Геометрическая интерпретация задачи линейного программирования. Применение методов линейного программирования к экстремальным задачам экономики.

    курсовая работа [106,0 K], добавлен 05.10.2014

  • Основные понятия линейной алгебры и выпуклого анализа, применяемые в теории математического программирования. Характеристика графических методов решения задачи линейного программирования, сущность их геометрической интерпретации и основные этапы.

    курсовая работа [609,5 K], добавлен 17.02.2010

  • Геометрический способ решения стандартных задач линейного программирования с двумя переменными. Универсальный метод решения канонической задачи. Основная идея симплекс-метода, реализация на примере. Табличная реализация простого симплекс-метода.

    реферат [583,3 K], добавлен 15.06.2010

  • Характеристика и описание метода линейного программирования, основные области его применения и ограничения использования. Решение экономических задач, особенности формирования оптимизационной модели, расчет и анализ результатов оптимизации прибыли.

    курсовая работа [99,0 K], добавлен 23.03.2010

  • Решение задачи линейного программирования графическим способом. Определение экстремальной точки. Проверка плана на оптимальность. Правило прямоугольников. Анализ и корректировка результатов решения задач линейного программирования симплексным методом.

    контрольная работа [40,0 K], добавлен 04.05.2014

  • Способы решения задач линейного программирования с вещественными числами симплекс-методом. Общие задачи, формы записи, максимизация и минимизация функции методом искусственного базиса. Пути поиска и исключения из базиса искусственных переменных.

    контрольная работа [130,6 K], добавлен 09.02.2013

  • Применение линейного программирования для решения транспортной задачи. Свойство системы ограничений, опорное решение задачи. Методы построения начального опорного решения. Распределительный метод, алгоритм решения транспортной задачи методом потенциалов.

    реферат [4,1 M], добавлен 09.03.2011

  • Экономико-математическая модель получения максимальной прибыли, её решение графическим методом. Алгоритм решения задачи линейного программирования симплекс-методом. Составление двойственной задачи и её графическое решение. Решение платёжной матрицы.

    контрольная работа [367,5 K], добавлен 11.05.2014

  • Построение экономико-математической модели задачи, комментарии к ней и получение решения графическим методом. Использование аппарата теории двойственности для экономико-математического анализа оптимального плана задачи линейного программирования.

    контрольная работа [2,2 M], добавлен 27.03.2008

  • Решение задачи линейного программирования графическим и симплекс-методом. Решение задачи двойственной к исходной. Определение оптимального плана закрепления потребителей за поставщиками однородного груза при условии минимизации общего пробега автомобилей.

    контрольная работа [398,2 K], добавлен 15.08.2012

  • Характерные черты задач линейного программирования. Общая постановка задачи планирования производства. Построение математической модели распределения ресурсов фирмы. Анализ чувствительности оптимального решения. Составление отчета по устойчивости.

    презентация [1,1 M], добавлен 02.12.2014

  • Симплекс-метод решения задач линейного программирования. Элементы теории игр. Системы массового обслуживания. Транспортная задача. Графоаналитический метод решения задач линейного программирования. Определение оптимальной стратегии по критерию Вальде.

    контрольная работа [400,2 K], добавлен 24.08.2010

  • Формулировка проблемы в практической области. Построение моделей и особенности экономико-математической модели транспортной задачи. Задачи линейного программирования. Анализ постановки задач и обоснования метода решения. Реализация алгоритма программы.

    курсовая работа [56,9 K], добавлен 04.05.2011

  • Основные понятия моделирования. Общие понятия и определение модели. Постановка задач оптимизации. Методы линейного программирования. Общая и типовая задача в линейном программировании. Симплекс-метод решения задач линейного программирования.

    курсовая работа [30,5 K], добавлен 14.04.2004

  • Симплекс метод решения задач линейного программирования. Построение модели и решение задачи определения оптимального плана производства симплексным методом. Построение двойственной задачи. Решение задачи оптимизации в табличном процессоре MS Excel.

    курсовая работа [458,6 K], добавлен 10.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.