Альтернативные источники энергии

Направления альтернативной энергетики, классификация источников альтернативной энергии: ветроэнергетика, геотермальная и грозовая, водородная, космическая энергетика, биотопливо. Перспективы использования альтернативных источников энергии в России.

Рубрика География и экономическая география
Вид контрольная работа
Язык русский
Дата добавления 13.11.2014
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Московский государственный гуманитарный университет

имени М.А.Шолохова

Факультет экологии и естественных наук

Специальность география

Контрольная работа

По курсу Общая экономическая и социальная география

На тему: «Альтернативные источники энергии»

Работу выполнила: студентка 4 курса з/о Титова Л.А.

Работу проверил: к.г-м.н. доцент В. А. Щербинин

Москва 2014

Содержание

Введение

1. Направления альтернативной энергетики. Альтернативный источник энергии. Классификация источников

2. Ветроэнергетика

3. Гелиоэнергетика

4. Геотермальная энергетика

5. Биотопливо

6. Альтернативная гидроэнергетика

7. Грозовая энергетика

8. Управляемый термоядерный синтез

9. Направления альтернативной энергетики помимо использования нетрадиционных источников энергии. Распределённое производство энергии

10. Водородная энергетика

11. Космическая энергетика

12. Перспективы

13. Перспективы в России

14. Инвестиции

15. Распространение

Заключение

Список источников

Введение

Альтернатимвная энергемтика -- совокупность перспективных способов получения, передачи и использования энергии, которые распространены не так широко, как традиционные, однако представляют интерес из-за выгодности их использования и, как правило, низком риске причинения вреда окружающей среде.

альтернативный энергия геотермальный биотопливо

1. Направления альтернативной энергетики. Альтернативный источник энергии

Основным направлением альтернативной энергетики является поиск и использование альтернативных (нетрадиционных) источников энергии. Источники энергии -- «встречающиеся в природе вещества и процессы, которые позволяют человеку получить необходимую для существования энергию»[1]. Альтернативный источник энергии является возобновляемым ресурсом, он заменяет собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле, которые при сгорании выделяют в атмосферу углекислый газ, вызывающий парниковый эффект и глобальное потепление. Причина поиска альтернативных источников энергии -- потребность получать её из энергии возобновляемых или практически неисчерпаемых природных ресурсов и явлений. Во внимание может браться также экологичность и экономичность.

Классификация источников

Тип источников

Используемая энергия

Ветряные

движение воздушных масс

Геотермальные

тепло планеты

Солнечные

электромагнитное излучение Солнца

Гидроэнергетические

движение воды в реках или морях

Биотопливные

теплоту сгорания возобновляемого топлива (например, спирта)

2. Ветроэнергетика

Ветроэнергетика -- отрасль энергетики, специализирующаяся на преобразовании кинетической энергии воздушных масс в атмосфере в электрическую, механическую, тепловую или в любую другую форму энергии, удобную для использования в народном хозяйстве. Такое преобразование может осуществляться такими агрегатами, как ветрогенератор (для получения электрической энергии), ветряная мельница (для преобразования в механическую энергию), парус (для использования в транспорте) и другими.

• Автономные ветрогенераторы

• Ветрогенераторы, работающие параллельно с сетью

Энергию ветра относят к возобновляемым видам энергии, так как она является следствием деятельности Солнца. Ветроэнергетика является бурно развивающейся отраслью, так в конце 2012 года общая установленная мощность всех ветрогенераторов составила 282,6 гигаватт[5]. В 2010 году количество электрической энергии, произведённой всеми ветрогенераторами мира, составило 430 тераватт-часов (2,5 % всей произведённой человечеством электрической энергии).[5] Некоторые страны особенно интенсивно развивают ветроэнергетику, в частности, на 2011 год в Дании с помощью ветрогенераторов производится 28 % всего электричества, в Португалии -- 19 %, в Ирландии -- 14 %,[5] , в Испании -- 16 % и в Германии -- 8 %.[5] В мае 2009 года 80 стран мира использовали ветроэнергетику на коммерческой основе.

Крупные ветряные электростанции включаются в общую сеть, более мелкие используются для снабжения электричеством удалённых районов. В отличие от ископаемого топлива, энергия ветра практически неисчерпаема, повсеместно доступна и более экологична. Однако сооружение ветряных электростанций сопряжено с некоторыми трудностями технического и экономического характера, замедляющими распространение ветроэнергетики. В частности, непостоянство ветровых потоков не создаёт проблем при небольшой пропорции ветроэнергетики в общем производстве электроэнергии, однако при росте этой пропорции, возрастают также и проблемы надёжности производства электроэнергии. Для решения подобных проблем используется интеллектуальное управление распределением электроэнергии.[17]

В последнее время многие страны расширяют использование ветроэнергетических установок (ВЭУ). Больше всего их в странах Западной Европы (Дания, ФРГ, Великобритания,Нидерланды), в США, в Индии, Китае. Дания получает 25 % энергии из ветра.

В России в середине 1920-х годов ЦАГИ разрабатывал ветро-электрические станции и ветряки для сельского хозяйства. Конструкция «крестьянского ветряка» могла быть изготовлена на месте из доступных материалов. Его мощность варьировалась от 3 л. с., 8 л. с. до 45 л. с. Такая установка могла освещать 150--200 дворов или приводить в действие мельницу. Для постоянства работы был предусмотрен гидравлический аккумулятор[9].

Технический потенциал ветровой энергии России оценивается свыше 50 000 млрд кВт?ч/год. Экономический потенциал составляет примерно 260 млрд кВт?ч/год, то есть около 30 процентов производства электроэнергии всеми электростанциями России.[11]

Рис1.

Энергетические ветровые зоны в России расположены, в основном, на побережье и островах Северного Ледовитого океана от Кольского полуострова до Камчатки, в районах Нижней и Средней Волги и Дона, побережье Каспийского, Охотского, Баренцева, Балтийского, Чёрного и Азовского морей. Отдельные ветровые зоны расположены в Карелии, на Алтае, в Туве, на Байкале.

Максимальная средняя скорость ветра в этих районах приходится на осенне-зимний период -- период наибольшей потребности в электроэнергии и тепле. Около 30 % экономического потенциала ветроэнергетики сосредоточено на Дальнем Востоке, 14 % -- в Северном экономическом районе, около 16 % -- в Западной и Восточной Сибири.

Суммарная установленная мощность ветровых электростанций в стране на 2009 год составляет 17-18 МВт.

Самая крупная ветроэлектростанция России (5,1 МВт) расположена в районе посёлка Куликово Зеленоградского района Калининградской области. Зеленоградская ВЭУ состоит из 21 установки датской компании SЕАS Energi Service A.S.

На Чукотке действует Анадырская ВЭС мощностью 2,5 МВт (10 ветроагрегатов по 250 кВт). Годовая выработка в 2011 году не превысила 0,2 млн кВт?ч.

В Республике Башкортостан действует ВЭС Тюпкильды мощностью 2,2 МВт, располагающаяся около одноимённой деревни Туймазинского района[11]. ВЭС состоит из четырёх ветроагрегатов немецкой фирмы Hanseatische AG типа ЕТ 550/41 мощностью по 550 кВт. Годовая выработка электроэнергии в 2008--2010 гг. не превышала 0,4 млн кВт?ч.

В Калмыкии в 20 км от Элисты размещена площадка Калмыцкой ВЭС планировавшейся мощностью в 22 МВт и годовой выработкой 53 млн кВт?ч, на 2006 год на площадке установлена одна установка «Радуга» мощностью 1 МВт и выработкой от 3 до 5 млн кВт?ч.

В Республике Коми вблизи Воркуты недостроена Заполярная ВДЭС мощностью 3 МВт. На 2006 действуют 6 установок по 250 кВт общей мощностью 1,5 МВт.

На острове Беринга Командорских островов действует ВЭС мощностью 1,2 МВт.

Успешным примером реализации возможностей ветряных установок в сложных климатических условиях является ветродизельная электростанция на мысе Сеть-Наволок Кольского полуострова мощностью до 0,1 МВт. В 17 километрах от неё в 2009 году начато обследование параметров будущей ВЭС работающей в комплексе с Кислогубской ПЭС.

Существуют проекты на разных стадиях проработки Ленинградской ВЭС 75 МВт Ленинградская область, Ейской ВЭС 72 МВт Краснодарский край, Калининградской морской ВЭС 50 МВт, Морской ВЭС 30 МВт Карелия, Приморской ВЭС 30 МВт Приморский край, Магаданской ВЭС 30 МВт Магаданская область, Чуйской ВЭС 24 МВт Республика Алтай, Усть-Камчатской ВДЭС 16 МВт Камчатская область, Новиковской ВДЭС 10 МВт Республика Коми, Дагестанской ВЭС 6 МВт Дагестан, Анапской ВЭС 5 МВт Краснодарский край, Новороссийской ВЭС 5 МВт Краснодарский край и Валаамской ВЭС 4 МВт Карелия.

Ветер, как неисчерпаемый источник экологически чистой энергии, находит все более широкое применение и приобретает все большую общественную поддержку.

Начало использования энергии ветра восходит к древнему Вавилону (осушение болот), Египту (помол зерна), Китаю и Маньчжурии (откачка воды с рисовых полей). В Европе эта технология появилась в XII веке, но современные технологии стали использоваться только в XX веке.

Ветряные электростанции могут функционировать в районах со скоростью ветра выше 4,5 м/с. Они могут работать с сетью существующих электростанций либо быть автономными системами. Возникают также так называемые «ветряные фермы» - энергоблоки с некоторым количеством единиц техники, общих для всей системы. Наибольшее количество энергии из ветра в настоящее время производится в Соединенных Штатах, а в Европе - в Дании, Германии, Великобритании, Нидерландах. В Германии находится самая мощная электростанция в мире - 3 МВт. Aeolus II работает на ветряной ферме Вильгельмсхафен и производит ежегодно 7 млн. кВт/ч энергии, обеспечивая около 2 тысяч домашних хозяйств. Всего в мире уже более 20 тысяч ветряных электростанций.

Несмотря на массовое производство, стоимость строительства современной ветряной электростанции велика. Однако, следует отметить, что ничтожна стоимость ее эксплуатации. Экологические и экономические выгоды зависят от правильного расположения. Требует это детального и всестороннего анализа как технических аспектов, так и экологических, а также финансовых. Ветряная энергетика соответствует всем условиям, необходимым для причисления ее к экологически чистым методам производства энергии. Ее основными преимуществами являются:

1. Отсутствие загрязнения окружающей среды - производство энергии из ветра не приводит к выбросам вредных веществ в атмосферу или образованию отходов.

2. Использование возобновляемого, неисчерпаемого источника энергии, экономия на топливе, на процессе его добычи и транспортировки.

3. Территория в непосредственной близости может быть полностью использована для сельскохозяйственных целей.

4. Стабильные расходы на единицу полученной энергии, а также рост экономической конкурентоспособности по сравнению с традиционными источниками энергии.

5. Минимальные потери при передаче энергии - ветряная электростанция может быть построена как непосредственно у потребителя, так и в местах удаленных, которые в случае с традиционной энергетикой требуют специальных подключений к сети.

6. Простое обслуживание, быстрая установка, низкие затраты на техническое обслуживание и эксплуатацию.

Противники ветряной энергетики находят в ней также и недостатки. Большинство потенциальных преград для использования этого вида энергии чрезмерно пропагандируются как недостатки, которые делают невозможным ее развитие. По сравнению с вредом, причиняемым традиционными источниками энергии, они незначительны:

1. Высокие инвестиционные затраты - они имеют тенденцию к снижению в связи с новыми разработками и технологиями. Также стоимость энергии из ветра постоянно снижается.

2. Изменчивость мощности во времени - производство электроэнергии зависит, к сожалению, от силы ветра, на которую человек не может повлиять.

3. Шум - исследования шума, выполненные с использованием новейшего диагностического оборудования, не подтверждают негативного влияния ветряных турбин. Даже на расстоянии 30-40 м от работающей станции, шум достигает уровня шума фона, то есть уровня среды обитания.

4. Угроза для птиц - в соответствии с последними исследованиями, вероятность столкновения лопастей ветряка с птицами не больше, чем в случае столкновения птицы с высоковольтными линиями традиционной энергетики.

5. Возможность искажения приема сигнала телевидения - незначительна.

6. Изменения в ландшафте.

Несмотря на все преимущества, ветряки имели серьезные недостатки. Эффект их работы зависел от погодных условий, поэтому в безветренные дни и дни, когда ветер очень сильный, ветряки не могли работать. Однако, энергия всех видов была, есть и будет нам нужна. Само слово «энергия» происходит от греческого слова energia и означает деятельность, активность. Ее использование может быть разнообразным. Наиболее всего мы нуждаемся в ней в промышленном производстве, отоплении, транспорте, для освещения. В начале она поставлялась нам из окружающей среды (природные ресурсы), такие как бурый уголь, древесина или нефть. Сегодня трудно представить себе жизнь без электроэнергии. Электричество нам необходимо так же, как вода и воздух. [17]

3. Гелиоэнергетика

Солнечная энергетика -- направление нетрадиционной энергетики, основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует неисчерпаемый источник энергии[1] и является экологически чистой, то есть не производящей вредных отходов[2]. Производство энергии с помощью солнечных электростанций хорошо согласовывается с концепцией распределённого производства энергии.

Способы получения электричества и тепла из солнечного излучения:

фотовольтаика -- получение электроэнергии с помощью фотоэлементов;

гелиотермальная энергетика -- нагревание поверхности, поглощающей солнечные лучи, и последующее распределение и использование тепла (фокусирование солнечного излучения на сосуде с водой для последующего использования нагретой воды в отоплении или в паровых электрогенераторах). В качестве особого вида станций гелиотермальной энергетики принято выделять солнечные системы концентрирующего типа (CSP - Concentrated solar power). В этих установках энергия солнечных лучей с помощью системы линз и зеркал фокусируется в концентрированный луч солнца. Этот луч солнца используется как источник тепловой энергии для нагрева рабочей жидкости, которая расходуется для электрогенерации по аналогии с обычными ТЭЦ или накапливается для сохранения энергии[3]. Преобразование солнечной энергии в электричество осуществляется с помощью тепловых машин:

паровые машины (поршневые или турбинные), использующие водяной пар, углекислый газ, пропан-бутан, фреоны; двигатель Стирлинга; термовоздушные электростанции (преобразование солнечной энергии в энергию воздушного потока, направляемого на турбогенератор). солнечные аэростатные электростанции (генерация водяного пара внутри баллона аэростата за счет нагрева солнечным излучением поверхности аэростата, покрытой селективно-поглощающим покрытием). Преимущество -- запаса пара в баллоне достаточно для работы электростанции в темное время суток и в ненастную погоду.

Типы фотоэлектрических элементов

В настоящее время принято различать три поколения ФЭП[5]:

*Кристаллические (первое поколение):

*монокристаллические кремниевые;

*поликристаллические (мультикристаллические) кремниевые;

*технологии выращивания тонкостенных заготовок: EFG (Edge defined film-fed crystal growth technique), S-web (Siemens), тонкослойный поликремний (Apex).

*Тонкоплёночные (второе поколение):

*кремниевые: аморфные, микрокристаллические, нанокристаллические, CSG (crystalline silicon on glass);

*на основе теллурида кадмия (CdTe);

*на основе селенида меди-индия-(галлия) (CI(G)S);

*ФЭП третьего поколения:

*фотосенсибилизованные краситилем (dye-sensitized solar cell, DSC);

*органические (полимерные) ФЭП (OPV);

*неорганические ФЭП (CTZSS);

*ФЭП на основе каскадных структур.

*Наноантенны.

В 2005 году на тонкоплёночные фотоэлементы приходилось 6 % рынка. В 2006 году тонкоплёночные фотоэлементы занимали 7 % долю рынка. В 2007 году доля тонкоплёночных технологий увеличилась до 8 %. В 2009 году доля тонкоплёночных фотоэлементов выросла до 16,8 %[6].

За период с 1999 года по 2006 год поставки тонкоплёночных фотоэлементов росли ежегодно в среднем на 80 %.

рис. 2

Достоинства

*Общедоступность и неисчерпаемость источника.

*Теоретически, полная безопасность для окружающей среды, хотя существует вероятность того, что повсеместное внедрение солнечной энергетики может изменить альбедо (характеристику отражательной (рассеивающей) способности) земной поверхности и привести к изменению климата (однако при современном уровне потребления энергии это крайне маловероятно).

Недостатки

*Зависимость от погоды и времени суток.

*Как следствие, необходимость аккумуляции энергии.

*При промышленном производстве -- необходимость дублирования солнечных ЭС маневренными ЭС сопоставимой мощности.

*Высокая стоимость конструкции, связанная с применением редких элементов (к примеру, индий и теллур).

*Необходимость периодической очистки отражающей поверхности от пыли.

*Нагрев атмосферы над электростанцией.

Экологические проблемы

При производстве фотоэлементов уровень загрязнений не превышает допустимого уровня для предприятий микроэлектронной промышленности. Современные фотоэлементы имеют срок службы 30--50 лет. Применение кадмия, связанного в соединениях, при производстве некоторых типов фотоэлементов с целью повышения эффективности преобразования, ставит сложный вопрос их утилизации, который тоже не имеет пока приемлемого с экологической точки зрения решения, хотя такие элементы имеют незначительное распространение, и соединениям кадмия при современном производстве уже найдена достойная замена.

В последнее время активно развивается производство тонкоплёночных фотоэлементов, в составе которых содержится всего около 1 % кремния, по отношению к массе подложки, на которую наносятся тонкие плёнки. Из-за малого расхода материалов на поглощающий слой, здесь кремния, тонкоплёночные кремниевые фотоэлементы дешевле в производстве, но пока имеют меньшую эффективность и неустранимую деградацию характеристик во времени. Кроме того, развивается производство тонкоплёночных фотоэлементов на других полупроводниковых материалах, в частности CIS и CIGS, достойных конкурентов кремнию. Так, например, в 2005 году компания «Shell» приняла решение сконцентрироваться на производстве тонкоплёночных элементов, и продала свой бизнес по производству монокристаллических (нетонкоплёночных) кремниевых фотоэлектрических элементов.

Солнечные концентраторы вызывают большие по площади затенения земель, что приводит к сильным изменениям почвенных условий, растительности и т. д. Нежелательное экологическое действие в районе расположения станции вызывает нагрев воздуха при прохождении через него солнечного излучения, сконцентрированного зеркальными отражателями. Это приводит к изменению теплового баланса, влажности, направления ветров; в некоторых случаях возможны перегрев и возгорание систем, использующих концентраторы, со всеми вытекающими отсюда последствиями. Применение низкокипящих жидкостей и неизбежные их утечки в солнечных энергетических системах во время длительной эксплуатации могут привести к значительному загрязнению питьевой воды. Особую опасность представляют жидкости, содержащие хроматы и нитриты, являющиеся высокотоксичными веществами.

Перспективы солнечной энергетики

В мире ежегодный прирост энергетики за последние пять лет составлял в среднем около 50%.[18]Сгенерированная на основе солнечного излучения энергия гипотетически сможет к2050 году обеспечить 20-25 % потребностей человечества в электричестве и сократит выбросы углекислоты. Как полагают эксперты Международного энергетического агентства (IEA), солнечная энергетика уже через 40 лет при соответствующем уровне распространения передовых технологий будет вырабатывать около 9 тысяч тераватт-часов -- или 20-25 % всего необходимого электричества, и это обеспечит сокращение выбросов углекислого газа на 6 млрд тонн ежегодно [11].

Альтернативное мнение на перспективы солнечной энергетики через 40 лет

Процент обеспечения потребностей человечества к 2050 году электроэнергией, полученной на СЭС - это вопрос стоимости 1 кВтч при установке солнечной электростанции "под ключ" и развитости мировой энергетической системы, а также сравнительной привлекательности других способов получения электроэнергии. Гипотетически это может быть от 1% до 80%. Одно из чисел в этом диапазоне точно будет соответствовать истине.

Когда углеводородное сырье станет действительно дорогим, его уже не будут массово использовать как топливо, поэтому нефти как сырья для химической промышленности хватит на срок, значительно превышающий 40 лет.

Энергоокупаемость солнечной электростанции значительно меньше 30 лет. Так, для США, при средней мощности солнечного излучения в 1700 кВт*ч на кв.м в год, энергоокупаемость поликристаллического кремниевого модуля с КПД 12% составляет менее 4 лет (данные на январь 2011).[11]. В России перспективы развития солнечной энергетики остаются неопределенными, страна многократно отстаёт от уровня генерации европейских стран. Доля солнечной генерации составляет менее 0,001% в общем энергобалансе. К 2020 году запланирован ввод около 1,5-2 ГВт мощностей. Общая мощность солнечной генерации может увеличиться в тысячу раз, однако составит менее 1% в энергобалансе.

рис.3

Директор Ассоциации солнечной энергетики России Антон Усачев выделяет Республику Алтай, Белгородскую область иКраснодарский край как наиболее развитые регионы с точки зрения солнечной энергетики. В перспективе планируется помещать установки в изолированных от энергосетей районах.[4]

4. Геотермальная энергетика

Геотермальная энергетика -- направление энергетики, основанное на производстве электрической энергии за счёт энергии, содержащейся в недрах земли, на геотермальных станциях. Обычно относится к альтернативным источникам энергии, использующим возобновляемые энергетические ресурсы.

В вулканических районах циркулирующая вода перегревается выше температуры кипения на относительно небольших глубинах и по трещинам поднимается к поверхности, иногда проявляя себя в виде гейзеров. Доступ к подземным тёплым водам возможен при помощи глубинного бурения скважин. Более чем такие паротермы распространены сухие высокотемпературные породы, энергия которых доступна при помощи закачки и последующего отбора из них перегретой воды. Высокие горизонты пород с температурой менее 100 °C распространены и на множестве геологически малоактивных территорий, потому наиболее перспективным считается использование геотерм в качестве источника тепла.

Хозяйственное применение геотермальных источников распространено в Исландии и Новой Зеландии, Италии и Франции, Литве, Мексике, Никарагуа, Коста-Рике, Филиппинах, Индонезии, Китае, Японии, Кении.

Геотермальная энергетика подразделяется на два направления: петротермальная энергетика и гидротермальная энергетика.

Ресурсы.

Перспективными источниками перегретых вод обладают множественные вулканические зоны планеты в том числе Камчатка, Курильские, Японские и Филиппинские острова, обширные территории Кордильер и Анд.

На 2006 г. в России разведано 56 месторождений термальных вод с дебитом, превышающим 300 тыс. мі/сутки. На 20 месторождениях ведется промышленная эксплуатация, среди них: Паратунское (Камчатка), Казьминское и Черкесское (Карачаево-Черкесия и Ставропольский край), Кизлярское и Махачкалинское (Дагестан), Мостовское и Вознесенское (Краснодарский край).

Достоинства и недостатки

Главным достоинством геотермальной энергии является её практическая неиссякаемость и полная независимость от условий окружающей среды, времени суток и года.

Существуют следующие принципиальные возможности использования тепла земных глубин. Воду или смесь воды и пара в зависимости от их температуры можно направлять для горячего водоснабжения и теплоснабжения, для выработки электроэнергии либо одновременно для всех этих целей. Высокотемпературное тепло околовулканического района и сухих горных пород предпочтительно использовать для выработки электроэнергии и теплоснабжения. От того, какой источник геотермальной энергии используется, зависит устройство станции.

Если в данном регионе имеются источники подземных термальных вод, то целесообразно их использовать для теплоснабжения и горячего водоснабжения. Например, по имеющимся данным , в Западной Сибири имеется подземное море площадью 3 млн м2 с температурой воды 70--90 °С. Большие запасы подземных термальных вод находятся в Дагестане, Северной Осетии, Чечне, Ингушетии, Кабардино-Балкарии, Закавказье, Ставропольском и Краснодарском краях, на Камчатке и в ряде других районов России, также в Казахстане.

Главная из проблем, которые возникают при использовании подземных термальных вод, заключается в необходимости возобновляемого цикла поступления (закачки) воды (обычно отработанной) в подземный водоносный горизонт. В термальных водах содержится большое количество солей различных токсичных металлов (например, бора, свинца, цинка, кадмия,мышьяка) и химических соединений (аммиака, фенолов), что исключает сброс этих вод в природные водные системы, расположенные на поверхности.

Наибольший интерес представляют высокотемпературные термальные воды или выходы пара, которые можно использовать для производства электроэнергии и теплоснабжения.

Геотермальная электроэнергетика в мире

Потенциальная суммарная рабочая мощность геотермальных электростанций в мире уступает большинству станций на иных возобновимых источниках энергии. Однако направление получило развитие в силу высокой энергетической плотности в отдельных заселённых географических районах, в которых отсутствуют или относительно дороги горючие полезные ископаемые, а также благодаря правительственным программам.

Установленная мощность геотермальных электростанций в мире на начало 1990-х составляла около 5 тысяч МВт, на начало 2000-х -- около 6 тысяч МВт. В конце 2008 года суммарная мощность геотермальных электростанций во всём мире выросла до 10,5 тысяч МВт[12].

США. Крупнейшим производителем геотермальной электроэнергии являются США, которые в 2005 году произвели около 16 млрд кВт*ч возобновляемой электроэнергии. В 2009 годусуммарные мощности 77 геотермальных электростанций в США составляли 3086 МВт[12]. До 2013 года планируется строительство более 4400 МВт.

Наиболее мощная и известная группа геотермальных электростанций находится на границе округов Сонома и Лейк в 116 км к северу от Сан-Франциско. Она носит название «Гейзерс»(«Geysers») и состоит из 22 геотермальных электростанций с общей установленной мощностью 1517 МВт[6]. «На „Гейзерс“ сейчас приходится одна четвёртая часть всей произведенной в Калифорнии альтернативной [не-гидро] энергии»[7]. К другим основным промышленным зонам относятся: северная часть Солёного моря в центральной Калифорнии(570 МВт установленной мощности)и геотермальные электростанции в Неваде, чья установленная мощность достигает 235 МВт.

Важно отметить тот факт, что американские компании являются мировыми лидерами в этом секторе, несмотря на то, что геотермальная энергетика начала активно развиваться в стране сравнительно недавно. По данным Министерства Торговли, геотермальная энергия является одним из немногих возобновляемых источников энергии, чей экспорт из США больше, чем импорт. Кроме того, экспортируются также и технологии. 60 %[13] компаний-членов Геотермал Энерджи Ассошиэйшн (Geothermal Energy Association) в настоящее время стремятся делать бизнес не только на территории США, но и за её пределами (в Турции, Кении, Никарагуа, Новой Зеландии, Индонезии, Японии и пр.)

Геотермальная электроэнергетика, как один из альтернативных источников энергии в стране, имеет особую правительственную поддержку.

Филиппины. На 2003 год 1930 МВт электрической мощности установлено на Филиппинских островах, в Филиппинах парогидротермы обеспечивают производство около 27 % всей электроэнергии в стране.

Мексика. Страна на 2003 год находилась на третьем месте по выработке геотермальной энергии в мире, с установленной мощностью электростанций в 953 МВт. На важнейшей геотермальной зоне Серро Прието расположились станции общей мощностью в 750 МВт.

Италия. В Италии на 2003 год действовали энергоустановки общей мощностью в 790 МВт.

Исландия. В Исландии действуют пять теплофикационных геотермальных электростанций общей электрической мощностью 570 МВт (2008), которые производят 25 % всей электроэнергии в стране.

Одна из таких станций снабжает столицу Рейкьявик. Станция использует подземную воду, а излишки воды сливают в гигантский бассейн.

Кения. В Кении на 2005 год действовали три геотермальные электростанции общей электрической мощностью в 160 МВт., существуют планы по росту мощностей до 576 МВт.

Россия

Впервые в мире неводяные пары как тепловой носитель применены на Паратунской ГеоТЭС в 1967 году.[9]

По данным института вулканологии Дальневосточного Отделения Российской Академии наук, геотермальные ресурсы Камчатки оцениваются в 5000 МВт.[12] Российский потенциал реализован только в размере немногим более 80 МВт установленной мощности (2009) и около 450 млн. кВт*ч годовой выработки (2009):

*Мутновское месторождение:

*Верхне-Мутновская ГеоЭС установленной мощностью 12 МВт*э (2011) и выработкой 69,5 млн кВт*ч/год (2010) (81,4 в 2004),

*Мутновская ГеоЭС установленной мощностью 50 МВт*э (2011) и выработкой 360,5 млн кВт*ч/год (2010) (на 2006 год ведётся строительство, увеличивающее мощность до 80 МВт*э и выработку до 577 млн кВт*ч)

*Паужетское месторождение возле вулканов Кошелева и Камбального -- Паужетская ГеоТЭС мощностью 14,5 МВт*э (2011) и выработкой 43,1 млн кВт*ч (на 2010 год проводится реконструкция с увеличением мощности до 18 МВт*э).

*Месторождение на острове Итуруп (Курилы): Океанская ГеоТЭС установленой мощностью 2,5 МВт*э (2009). Существует проект мощностью 34,5 МВт и годовой выработкой 107 млн кВт*ч.

*Кунаширское месторождение (Курилы): Менделеевская ГеоТЭС мощностью 3,6 МВт*э (2009).

В Ставропольском крае на Каясулинском месторождении начато и приостановлено строительство дорогостоящей опытной Ставропольской ГеоТЭС мощностью 3 МВт.

В Краснодарском крае эксплуатируется 12 геотермальных месторождений.[12]

5. Биотопливо

Биотомпливо -- топливо из растительного или животного сырья, из продуктов жизнедеятельности организмов или органических промышленных отходов.

Виды топлива

Биотоплива разделяют на твердые, жидкие и газообразные. Твердые -- это традиционные дрова (часто в виде отходов деревообработки) и топливные гранулы (прессованные мелкие остатки деревообработки).

Жидкие топлива -- это спирты (метанол, этанол, бутанол), эфиры, биодизель и биомазут.

Газообразные топлива -- различные газовые смеси с угарным газом, метаном, водородом получаемые при термическом разложении сырья в присутствии кислорода (газификация), без кислорода (пиролиз) или при сбраживании под воздействием бактерий.

По оценкам Worldwatch Institute в 2007 году во всём мире было произведено 54 миллиарда литров биотоплива, что составляет 1,5 % от мирового потребления жидких топлив. Производство этанола составило 46 миллиардов литров. США и Бразилия производят 95 % мирового объёма этанола.

В 2010 году мировое производство жидкого биотоплива выросло до 105 миллиардов литров, что составляет 2,7 % от мирового потребления топлива на дорожном транспорте. В 2010 году было произведено 86 миллиардов литров этанола и 19 миллиардов литров биодизеля. Доля США и Бразилии в мировом производстве этанола снизилась до 90 %

вропейская комиссия поставила задачу использовать к 2020 году альтернативные источники энергии как минимум в 10 % транспортных средств. Есть также промежуточная цель в 5,75 % к 2010 г.

В ноябре 2007 в Великобритании было создано Агентство по возобновляемому топливу (англ. Renewable Fuels Agency), которое должно контролировать введение требований к использованию возобновляемого топлива. Председателем комитета стал Эд Галлахер (Ed Gallaher), бывший исполнительный директор Агентства по окружающей среде.

Дебаты по поводу жизнеспособности биотоплива на протяжении 2008 года привели к повторному всестороннему исследованию проблемы комиссией, возглавляемой Галлахером. Было рассмотрено непрямое влияние использования биотоплива на производство пищевых продуктов, разнообразие выращиваемых культур, цены на продовольствие и площадь сельскохозяйственных земель. В отчете предлагалось снижение динамики внедрения биотоплива до 0,5 % в год. Цель в 5 процентов таким образом должна быть достигнута не ранее чем в 2013/2014 г., на три года позже, чем было изначально предложено. Более того, дальнейшее внедрение должно быть сопряжено с обязательным требованием к компаниям применять новейшие технологии, ориентированные на топливо второго поколения[13].

C 1 апреля 2011 года на более чем 300 шведских заправочных станциях можно приобрести новый дизель. Швеция стала первой страной в мире, где можно заправлять машины эко-дизелем, сделанным на основе масла шведских сосен. «Это хороший пример того, как можно использовать многие ценные составляющие леса и как наше „зеленое золото“ может дать и больше рабочих мест и лучше климат» -- министр сельского хозяйства страны Эскиль Эрландссон/Eskil Erlandsson[14].

8 марта 2013 года был выполнен первый коммерческий трансатлантический авиарейс на биотопливе. Рейс выполнил самолет Боинг-777-200 авиакомпании KLM по маршруту Амстердам - Нью-Йорк.

По данным Росстата, в 2010 году российский экспорт топлива растительного происхождения (в том числе солома, жмых, щепа и древесина) составил более 2,7 млн тонн. Россия входит в тройку стран экспортеров топливных пеллет на европейском рынке. Всего около 20 % произведённых биотоплив потребляется в России[15].

Потенциальное производство в России биогаза -- до 72 млрд мі в год. Потенциально возможное производство из биогаза электроэнергии составляет 151 200 ГВт, тепла -- 169 344 ГВт.

В 2012--2013 годах планируется ввести в эксплуатацию более 50 биогазовых электростанций в 27 регионах России. Установленная мощность каждой станций составит от 350 кВт до 10 МВт. Суммарная мощность станций превысит 120 МВт. Общая стоимость проектов составит от 58,5 до 75,8 млрд рублей (в зависимости от параметров оценки). Реализацией данного проекта занимаются ГК "Корпорация «ГазЭнергоСтрой» и Корпорация «БиоГазЭнергоСтрой».

6. Альтернативная гидроэнергетика

*Приливные электростанции (ПЭС) пока имеются лишь в нескольких странах -- Франции, Великобритании, Канаде, России, Индии, Китае.

*Волновые электростанции

*Мини и микро ГЭС (устанавливаются в основном на малых реках)

*Водопадные электростанции

*Аэро ГЭС (конденсация/сбор водяного пара из атмосферы и гидравлический напор 2-3 км)

7. Грозовая энергетика

Грозовая энергетика -- это способ использования энергии путём поимки и перенаправления энергии молний в электросеть. Компания Alternative Energy Holdings 11 октября 2006 года объявила о создании прототипа модели, которая может использовать энергию молнии. Предполагалось, что эта энергия окажется значительно дешевле энергии, полученой с помощью современных источников, окупаться такая установка будет за 4--7 лет.

8. Управляемый термоядерный синтез

Синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который носит управляемый характер. До сих пор не применяется.

9. Направления альтернативной энергетики помимо использования нетрадиционных источников энергии.Распределённое производство энергии

Новая тенденция в энергетике, связанная с производством тепловой и электрической энергии.

10. Водородная энергетика

На сегодняшний день для производства водорода требуется больше энергии, чем возможно получить при его использовании, поэтому считать его источником энергии нельзя. Он является лишь средством хранения и доставки энергии.

*Водородные двигатели (для получения механической энергии)

*Топливные элементы (для получения электричества)

*Биоводород

Водород, самый простой и легкий из всех химических элементов, можно считать идеальным топливом. Он имеется всюду, где есть вода. При сжигании водорода образуется вода, которую можно снова разложить на водород и кислород, причем этот процесс не вызывает никакого загрязнения окружающей среды. Водородное пламя не выделяет в атмосферу продуктов, которыми неизбежно сопровождается горение любых других видов топлива: углекислого газа, окиси углерода, сернистого газа, углеводородов, золы, органических перекисей н т. п. Водород обладает очень высокой теплотворной способностью: при сжигании 1 г водорода получается 120 Дж тепловой энергии, а при сжигании 1 г бензина - только 47 Дж.[15]

Водород можно транспортировать и распределять по трубопроводам, как природный газ. Трубопроводный транспорт топлива - самый дешевый способ дальней передачи энергии. К тому же трубопроводы прокладываются под землей, что не нарушает ландшафта. Газопроводы занимают меньше земельной площади, чем воздушные электрические линии. Передача энергии в форме газообразного водорода по трубопроводу диаметром 750 мм на расстояние свыше 80 км обойдется дешевле, чем передача тоги же количества энергии в форме переменного тока по подземному кабелю. На расстояниях больше 450 км трубопроводный транспорт водорода дешевле, чем использование воздушной линии электропередачи постоянного тока с напряжением 40кВ, а па расстоянии свыше 900 км - дешевле воздушной линии электропередачи переменного тока с напряжением 500 кВ .

Водород - синтетическое топливо. Его можно получать из угля, нефти, природного газа либо путем разложения воды. Согласно оценкам, сегодня в мире производят и потребляют около 20 млн. т водорода в год. Половина этого количества расходуется на производство аммиака и удобрений, а остальное - на удаление серы из газообразного топлива, в металлургии, для гидрогенизации угля и других топлив. В современной экономике водород остается скорее химическим, нежели энергетическим сырьем.

Небольшое количество водорода получают путем электролиза. Производство водорода методом электролиза воды обходится дороже, чем выработка его из нефти, но оно будет расширяться и с развитием атомной энергетики станет дешевле. Вблизи атомных электростанций можно разместить станции электролиза воды, где вся энергия, выработанная электростанцией, пойдет на разложение воды с образованием водорода. Правда, цена электролитического водорода останется выше цены электрического тока, зато расходы на транспортировку и распределение водорода настолько малы, что окончательная цена для потребителя будет вполне приемлема по сравнению с ценой электроэнергии.

Исследователи интенсивно работают над удешевлением технологических процессов крупнотоннажного производства водорода за счет более эффективного разложения воды, используя высокотемпературный электролиз водяного пара, применяя катализаторы, полунепроницаемые мембраны и т. п. Большое внимание уделяют термолитическому методу, который (в перспективе) заключается в разложении воды на водород и кислород при температуре 2500 ° С. Но такой температурный предел инженеры еще не освоили в больших технологических агрегатах, в том числе и работающих на атомной энергии (в высокотемпературных реакторах пока рассчитывают лишь на температуру около 1000°С). Поэтому исследователи стремятся разработать процессы, протекающие в несколько стадий, что позволило бы вырабатывать водород в температурных интервалах ниже 1000°С.

Рис.4

В 1969 г. в итальянском отделении “Евратома” была пущена в эксплуатацию установка для термолитического получения водорода, работающая с к.п.д. 55% при температуре 730°С. При этом использовали бромистый кальций, воду и ртуть. Вода в установке разлагается на водород и кислород, а остальные реагенты циркулируют в повторных циклах. Другие - сконструированные установки работали - при температурах 700-800°С. Как полагают, высокотемпературные реакторы позволят поднять к.п.д. таких процессов до 85%. Сегодня мы не в состоянии точно предсказать, сколько будет стоить водород. Но если учесть, что цены всех современных видов энергии проявляют тенденцию к росту, можно предположить, что в долгосрочной перспективе энергия в форме водорода будет обходиться дешевле, чем в форме природного газа, а возможно, и в форме электрического тока.

11. Космическая энергетика

Получение электроэнергии в фотоэлектрических элементах, расположенных на околоземной орбите или на Луне. Электроэнергия будет передаваться на Землю в форме микроволнового излучения[7]. Может способствовать глобальному потеплению. До сих пор не применяется.

12. Перспективы

Перспективы использования возобновляемых источников энергии связаны с их экологической чистотой, низкой стоимостью эксплуатации и ожидаемым топливным дефицитом в традиционной энергетике.

По оценкам Европейской комиссии к 2020 году в странах Евросоюза в индустрии возобновляемой энергетики будет создано 2,8 миллионов рабочих мест. Индустрия возобновляемой энергетики будет создавать 1,1 % ВВП[8].

13. Перспективы в России

Россия может получать 10 % энергии из ветра[2] По сравнению с США и странами ЕС использование возобновляемых источников энергии (ВИЭ) в России находится на низком уровне. Сложившуюся ситуацию можно объяснить доступностью традиционных ископаемых энергоносителей. Один из основных барьеров для строительства крупных электростанций на ВИЭ -- отсутствие положения о стимулирующем тарифе, по которому государство покупало бы электроэнергию, производимую на основе ВИЭ (feed-in tariff)[9].

14. Инвестиции

Согласно отчёту ООН, в 2008 году во всём мире было инвестировано $140 млрд в проекты, связанные с альтернативной энергетикой, тогда как в производство угля и нефти было инвестировано $110 млрд.

Во всём мире в 2008 году инвестировали $51,8 млрд в ветроэнергетику, $33,5 млрд в солнечную энергетику и $16,9 млрд в биотопливо. Страны Европы в 2008 году инвестировали в альтернативную энергетику $50 млрд, страны Америки -- $30 млрд, Китай -- $15,6 млрд, Индия -- $4,1 млрд[10].

15. Распространение

В 2010 году альтернативная энергия (не считая гидроэнергии) составляла 4,9% всей потребляемой человечеством энергии.В том числе для отопления и нагрева воды (биомасса, солнечный и геотермальный нагрев воды и отопление) 3,3%; биогорючее 0,7%; производство электроэнергии (ветровые, солнечные, геотермальные электростанции и биомасса в ТЕС) 0,9%.[11]

На возобновляемые (альтернативные) источники энергии приходится всего около 5 % мировой выработки электроэнергии в 2010г.(без ГЭС)[11].

В мае 2009 года 13 % электроэнергии в США были произведены из возобновляемых источников энергии. 9,4 % электроэнергии было выработано на гидроэлектростанциях, около 1,8 % были получены из энергии ветра, 1,3 % из биомассы, 0,4 % из геотермальных источников и 0,3 % от энергии солнца[12].

В Австралии в 2009 году 8 % электроэнергии вырабатывается из возобновляемых источников[13].

Заключение

Сегодня энергетика мира базируется на не возобновляемых источниках энергии. В качестве главных энергоносителей выступают нефть, газ и уголь. Ближайшие перспективы развития энергетики связаны с поисками лучшего соотношения энергоносителей и, прежде всего с тем, чтобы попытаться уменьшить долю жидкого топлива. Но можно сказать, что человечество уже сегодня вступило в переходный период - от энергетики, базирующейся на органических природных ресурсах, которые ограничены к энергетике на практически неисчерпаемой основе.

Большие надежды в мире возлагаются на альтернативные источники энергии. Их преимущество заключается в возобновимости и в том, что это экологически чистые источники энергии.

Истощение ресурсов заставляет вырабатывать ресурсосберегающую политику, широко использовать вторичное сырье. Во многих странах прилагаются огромные усилия для экономии энергии и сырья. Сегодня уже около 1/3 всей массы используемых в мире металлов - алюминия, меди, цинка, свинца и олова - добывается из отходов и вторичного сырья. В ряде стран приняты государственные программы экономии энергии.

Энергетическая и сырьевая проблемы становятся все более острыми в России, хотя ее доля в мировой добыче нефти, газа, в производстве металлов, минеральных удобрений значительна. Это объясняется, в частности, тем, что наша страна в расчете на единицу национального дохода расходует слишком много топлива, электроэнергии, металла. Металла, например, расходуется в 2,4 раза больше, чем в США. На выплавку 1т. меди расходуется в 3 раза больше энергии, чем в ФРГ. А из вторичных ресурсов производится примерно 1/3 черных и цветных металлов. Тогда как в ФРГ соответствующая доля равна 60%.

Для решения этих проблем требуются усилия всех стран.

Размещено на Allbest.ru

...

Подобные документы

  • Экономическая характеристика мировой энергетики. Производство и потребление энергии по регионам. Основные экспортно-импортные потоки топливно-энергетической промышленности. Альтернативные источники энергии. Топливно-энергетический комплекса Беларуси.

    курсовая работа [1,4 M], добавлен 03.08.2010

  • Исследование различных альтернативных источников энергии. Их основные преимущества и недостатки. Процессы связанные с добычей, переработкой и хранением ресурсов. Захоронение отработанного ядерного топлива. Мировая тенденция процесса загрязнения планеты.

    презентация [1,3 M], добавлен 06.01.2009

  • Мировые тенденции роста загрязнения планеты в ходе нерационального использования природных ресурсов. Преимущества и недостатки альтернативных источников энергии. Процессы, связанные с добычей, переработкой и хранением ресурсов, с точки зрения географии.

    презентация [1,2 M], добавлен 04.09.2012

  • Программа энергетической безопасности России: освоение принципиально новых источников энергии (термоядерный синтез), развитие и внедрение нефтезаменяющих технологий (энергия рек, приливов и прибоя, ветра), рациональное использование нефтепродуктов.

    научная работа [54,9 K], добавлен 07.12.2008

  • Оценка проблемы энергосбережения в современном мире. Основные инструменты и методы осуществления государственной политики ФРГ в области энергосбережения. Освоение альтернативных видов энергетики и использование возобновляемых источников энергии.

    курсовая работа [38,1 K], добавлен 23.09.2014

  • Эндогенные и экзогенные (космическая и солнечная энергия) энергетические источники географических процессов, их влияние на географическую оболочку. Соотношение различных потоков энергии. Циклы круговорота вещества и энергии. Формы динамики земной коры.

    презентация [3,7 M], добавлен 01.12.2013

  • Энергетическая отрасль: цели, задачи, специфика, значение. Особенности размещения и развития электроэнергетики. Типы электростанций: тепловые; гидравлические; атомные. Альтернативные источники энергии. Реструктуризация и перспективы электроэнергетики.

    курсовая работа [70,5 K], добавлен 12.10.2009

  • Пути поступления первичной энергии в ландшафт. Вещественно-энергетические ландшафтные связи. Схема тепло-влагооборота в условиях летней антициклональной погоды. Распределение энергии на примере ландшафтов широколиственного леса умеренного пояса.

    презентация [620,3 K], добавлен 16.09.2015

  • Понятие и многообразие видов сырья. Возникновение глобальной ресурсно-сырьевой проблемы, её сущность (недостаточное обеспечение производства сырьем), причины (быстрый рост добычи запасов) и пути решения (использование альтернативных источников энергии).

    презентация [3,9 M], добавлен 06.10.2013

  • Природно-географические и экономические особенности, состояние, проблемы и перспективы развития энергетики России. Современные способы производства и передачи электроэнергии. История развития и размещения энергетики РФ, ее сравнение с другими отраслями.

    курсовая работа [33,9 K], добавлен 03.01.2010

  • Основа топливно-энергетической базы Китая, экономически рентабельные для добычи запасы нефти. Динамика производства топлива и энергии в Китае, использование нетрадиционных видов топлива. Развитие атомной энергетики в Китае, импорт энергоносителей.

    реферат [367,0 K], добавлен 30.11.2009

  • Атомная энергетика как подотрасль мировой энергетики, ее сырьевая база, основные этапы и перспективы развития. Политика разных стран по отношению к ней. Структура топливно-энергетического баланса мира. География крупнейших атомных электростанций мира.

    курсовая работа [789,3 K], добавлен 24.03.2015

  • Обзор энергетического потенциала возобновляемых источников энергии. Изучение уровня самоэнергообеспечения Украины, для которого важна добыча урановой руды, торфа. Анализ потенциальных ресурсов гидро-, ветроэнергетики. Биотехнологии, утилизация отходов.

    реферат [29,7 K], добавлен 01.06.2010

  • Этапы развития, современное состояние и структура атомной энергетики. Общее потребление первичных энергоносителей, их доля в производстве электроэнергии на АЭС в регионах мира. Оценка потенциальных возможностей атомной энергетики, долгосрочные прогнозы.

    контрольная работа [110,4 K], добавлен 07.10.2013

  • Превращение мировой атомной энергетики в крупную отрасль, важную составную часть мирового хозяйства. Последствия катастрофы на Чернобыльской АЭС, политики энергосбережения и постепенного удешевления нефти на снижение темпов роста атомной энергетики.

    реферат [100,6 K], добавлен 23.11.2009

  • Тепловые электростанции и теплоцентрали России мощностью 1000 МВт и выше, основные потребители электроэнергии. Низкая степень освоения гидроресурсов страны, крупнейшие гидротурбины и плотины. Атомная энергетика России. Геотермальные электростанции.

    реферат [31,4 K], добавлен 14.11.2011

  • Газ как лучший вид топлива. История и особенности его использования для нужд энергетики, как технологического топлива для сушки различной продукции, в коммунальном хозяйстве, для автомобилей. Области применения газа в различных отраслях промышленности.

    презентация [6,2 M], добавлен 19.11.2013

  • Стратегические цели развития энергетики в Республике Татарстан. Основные принципы модернизации энергосистемы. Мероприятия по повышению эффективности функционирования энергосистемы. Особенности формирования правовой системы по развитию энергетики.

    курсовая работа [77,9 K], добавлен 19.02.2010

  • Гроза, ее влияние на человека и народное хозяйство. Связь между грозой и солнечной активностью. Явление шаровой молнии. Статистические характеристики индексов грозовой активности. Анализ регрессионной зависимости числа дней с грозой от чисел Вольфа.

    курсовая работа [153,5 K], добавлен 25.05.2009

  • Использование энергии водного потока на гидроэлектростанции. Крупнейшие гидроэлектростанции, их особенности, принцип работы, местонахождение. Аварии и происшествия. Себестоимость электроэнергии. Трансформаторная станция, распределительные устройства.

    презентация [301,7 K], добавлен 10.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.