Разработка газовых месторождений — комплекс работ по извлечению природного газа из пласта-коллектора

Режимы разработки газоконденсатных месторождений. Сбор нефти и газа. Предупреждение образования гидратов. Очистка газа от сероводорода и углекислого газа. Основное назначение нефтебаз. Основные этапы нефтепереработки. Трубопроводный транспорт нефти.

Рубрика Геология, гидрология и геодезия
Вид реферат
Язык русский
Дата добавления 23.10.2013
Размер файла 37,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

РАЗРАБОТКА ГАЗОВЫХ МЕСТОРОЖДЕНИЙ -- комплекс работ по извлечению природного газа из пласта-коллектора

Под системой разработки газовых месторождений понимают размещение на площади газоносности и структуре необходимого числа эксплуатационных наблюдательных и пьезометрических скважин и соблюдением порядка ввода их в эксплуатацию и поддержанием допустимых технологических режимов эксплуатации скважин. Добываемый природный газ на поверхности подвергается промысловой обработке.

Разработки газовых месторождений характеризуются зависимостями изменения по времени среднего пластового давления, забойных и устьевых давлений по скважинам, числом скважин, мощностью дожимных компрессорных станций, объёмами поступающей в залежь пластовой воды, технологическими параметрами системы обустройства промысла, а также уровнями капитальных вложений и эксплуатационных расходов, себестоимостью добычи газа и др. Изменение этих показателей в значительной мере зависит от режима газовой залежи. При газовом режиме в процессе разработки газовых месторождений контурная или подошвенная воды практически не поступают в залежь. При водонапорном режиме продвижение в залежь воды приводит к замедлению темпа падения среднего пластового давления. Последнее обстоятельство непосредственно сказывается на изменениях дебитов газовых скважин, а следовательно, на их количестве, продолжительности периодов бескомпрессорной эксплуатации и компрессорной эксплуатации, постоянной и падающей добычи газа, мощности дожимной компрессорной станции. В этом случае также отмечаются обводнение части скважин (что вызывает необходимость бурения новых), снижение коэффициента газоотдачи пласта (см. Газоотдача) и, кроме того, осложнения, возникающие при эксплуатации скважин и системы обустройства промыслов при значительных объёмах добываемой вместе с газом пластовой воды. На темп падения среднего пластового давления оказывают влияние деформация коллектора продуктивного пласта (вследствие изменения коэффициента пористости при снижении внутрипорового давления), процессы десорбции, дегазации остаточной воды и нефти, имеющие место притоки или утечки газа в близлежащие продуктивные горизонты, соседние залежи газа. В ряде случаев при снижении давления в газовую залежь может поступать вода, выжимаемая, например, из вышезалегающего глинистого пласта -- покрышки залежи.

РАЗРАБОТКА ГАЗОКОНДЕНСАТНЫХ МЕСТОРОЖДЕНИЙ

В отличие от чисто газовых месторождений газоконденсатные разрабатываются для получения не только газа, но и высокомолекулярных компонентов -- газового конденсата, ценнейшего сырья нефтехимического производства. Нередко конденсат является основным целевым сырьем. Поэтому режимы разработки газоконденсатных месторождений следует оценивать как способы добычи и газа, и -- особенно -- конденсата. Газоконденсатные залежи в их начальном -- на момент открытия -- состоянии характеризуются высокими пластовыми давлениями, достигающими обычно нескольких десятков мегапаскалей. Встречаются залежи с относительно низкими (8--10) и очень высокими (до 150-- 180 МПа) начальными пластовыми давлениями. Основные запасы углеводородов в залежах газоконденсатного типа приурочены к объектам с начальными пластовыми давлениями 30 -- 60 МПа. В отечественной газопромысловой практике разработка газоконденсатных месторождений осуществлялась до недавнего времени на режиме использования только естественной энергии пласта. Такой режим («истощения») требует для своей реализации минимальных капитальных вложений и относительно умеренных текущих материальных и финансовых затрат. В истории разработки газоконденсатного месторождения, как и при разработке чисто газового, происходит последовательная смена нескольких характерных периодов: освоения и пробной эксплуатации; нарастающей, максимальной, падающей добычи; завершающий период. В отличие от разработки чисто газовой залежи в данном случае приходится иметь дело с продукцией, постоянно изменяющей свой состав.

Увеличение коэффициента конденсатоотдачи, а нередко и газоотдачи при разработке газоконденсатных месторождений может быть достигнуто путем возврата в пласт в течение определенного периода времени добытого газа, из которого предварительно извлечены компоненты С2+ или С3+. Такой режим разработки, обеспечивающий отбор пластового газа с начальным высоким или слабо уменьшающимся содержанием конденсата (благодаря поддержанию давления) получил название сайклинг-процесса.

Сбор нефти и газа

Сбор осуществляется посредством комплекса оборудования и трубопроводов, предназначенных для сбора продукции отд. скважин и транспортировки их до центр. пункта подготовки нефти, газа и воды (ЦПС).

B зависимости от природно-климатич. условий, систем разработки м-ний, физ.-хим. свойств пластовых жидкостей, способов и объёмов добычи нефти, газа и воды выбираются разл. схемы внутрипромыслового сбора продукции скважин. Это даёт возможность измерения продукции каждой скважины и транспорта продукции скважин под давлением, имеющимся на устье скважин, на максимально возможное расстояние, a также макс. герметизации системы в целях исключения потерь газа и лёгких фракций нефти. При проектировании системы сбора продукции скважин учитывается также возможность смешения нефтей разл. горизонтов, необходимость подогрева продукции скважин в случае добычи высоковязких и высокопарафинистых нефтей.

Ha нефт. м-ниях в осн. применяются однотрубные системы сбора, при к-рых продукция скважин по выкидным линиям поступает на групповую замерную установку (ГЗУ), где производится измерение дебитов (производительности) отд. скважин, затем по трубопроводу нефть в газонасыщенном состоянии (без отделения газа) направляется на ЦПС.

Помимо однотрубных систем сбора применяются и двухтрубные, когда после ГЗУ нефть поступает на дожимную насосную станцию (ДНС), где производится сепарация нефти (отделение осн. кол-ва газа от нефти). После ДНС нефть насосами откачивается на ЦПС, a газ по отд. газопроводу за счёт давления в сепараторе ДНС (обычно 0,6-0,8 МПa) направляется также на ЦПС, где производится его подготовка к дальнейшему транспорту. Двухтрубные системы сбора продукции скважин применяются на больших по площади м-ниях нефти, когда давление на устье скважин недостаточно для транспортировки продукции скважин до ЦПС.

Ha нек-рых м-ниях осуществляется раздельный сбор продукции безводных и обводнённых скважин. B этом случае продукция безводных скважин, не смешиваясь c продукцией обводнённых скважин, поступает на ЦПС. Tакже раздельно собирают продукцию скважин, если нежелательно смешение нефтей разных горизонтов, напр. не содержащих и содержащих сероводород. Продукция обводнённых скважин или продукция, к-рую нежелательно смешивать, по отд. выкидным линиям и нефтегазосборным коллекторам транспортируется до ЦПС.

ОТДЕЛЕНИЕ НЕФТИ ОТ ВОДЫ

При извлечении из пласта, движении по насосно-компрессорным трубам в стволе скважины, а также по промысловым трубопроводам смеси нефти и воды, образуется водонефтяная эмульсия - механическая смесь нерастворимых друг в друге и находящихся в мелкодисперсном состоянии жидкостей.

В эмульсиях принято различать дисперсионную (внешнюю, сплошную) среду и дисперсную (внутреннюю, разобщенную) фазу. По характеру дисперсионной среды и дисперсной фазы различают два типа эмульсий: «нефть в воде» и «вода в нефти». Тип образующейся эмульсии, в основном, зависит от соотношения объемов фаз, а также от температуры, поверхностного натяжения на границе «нефть-вода» и др.

Одной из важнейших характеристик эмульсий является диаметр капель дисперсной фазы, так как от него зависит скорость их осаждения.

Для разрушения эмульсий применяются следующие методы:

- гравитационное холодное разделение;

- внутритрубная деэмульсация;

- термическое воздействие;

- термохимическое воздействие;

- электрическое воздействие;

- фильтрация;

- разделение в поле центробежных сил.

^ Гравитационное холодное разделение применяется при высоком содержании воды в пластовой жидкости. Отстаивание производится в отстойниках периодического и непрерывного действия.

В качестве отстойников периодического действия обычно используются сырьевые резервуары, аналогичные резервуарам для хранения нефти. После заполнения таких резервуаров сырой нефтью вода осаждается в их нижнюю часть.

^ В отстойниках непрерывного действия отделение воды осуществляется при непрерывном прохождении обрабатываемой смеси через отстойник. Принципиальная схема отстойника непрерывного действия приведена на рис. 105.

Длина отстойника определяется из условия, что от нефти должны отделиться капли заданного размера.

Сущность метода внутритрубной деэмульсации заключается в том, что в смесь нефти и воды добавляется специальное вещество - деэмульгатор в количестве 15...20 г на тонну эмульсии. Деэмульгатор разрушает бронирующую оболочку на поверхности капель воды и обеспечивает тем самым условия для их слияния при столкновениях. В последующем эти укрупнившиеся капельки относительно легко отделяются в отстойниках за счет разности плотностей фаз.

^ Термическое воздействие заключается в том, что нефть, подвергаемую обезвоживанию, перед отстаиванием нагревают. При нагревании, с одной стороны, уменьшается прочность бронирующих оболочек на поверхности капель, а, значит, облегчается их слияние, с другой стороны, уменьшается вязкость нефти, в которой оседают капли, а это увеличивает скорость разделения эмульсии.

Нагревают эмульсию в резервуарах, теплообменниках и трубчатых печах до температуры 45...80 °С.

^ Термохимический метод заключается в сочетании термического воздействия и внутритрубной деэмульсации.

Электрическое воздействие на эмульсии производится в аппаратах, которые называются электродегидраторами. Под действием электрического поля на противоположных концах капель воды появляются разноименные электрические заряды. В результате капельки притягиваются друг к другу и сливаются. Затем они оседают на дно емкости.

Фильтрация применяется для разрушения нестойких эмульсий. В качестве материала фильтров используются вещества, не смачиваемые водой, но смачиваемые нефтью. Поэтому нефть проникает через фильтр, вода нет.

^ Разделение в поле центробежных сил производится в центрифугах, которые представляют собой вращающийся с большим числом оборотов ротор. В ротор по полому валу подается эмульсия. Здесь она под действием сил инерции разделяется, так как капли воды и нефти имеют различные плотности. При обезвоживании содержание воды в нефти доводится до!...2%.

Стабилизация нефти

Под процессом стабилизации нефти понимается отделение от нее легких (пропан-бутанов и частично бензиновых) фракций с целью уменьшения потерь нефти при ее дальнейшей транспортировке.

Стабилизация нефти осуществляется методом горячей сепарации или методом ректификации. При горячей сепарации нефть сначала нагревают до температуры 40...80 °С, а затем подают в сепаратор. Выделяющиеся при этом легкие углеводороды отсасываются компрессором и направляются в холодильную установку. Здесь тяжелые углеводороды конденсируются, а легкие собираются и закачиваются в газопровод.

^ При ректификации нефть подвергается нагреву в специальной стабилизационной колонне под давлением и при повышенных температурах (до 240 °С). Отделенные в стабилизационной колонне легкие фракции конденсируют и перекачивают на газофракционирующие установки или на ГПЗ для дальнейшей переработки.

К степени стабилизации товарной нефти предъявляются жесткие требования: давление упругости ее паров при 38°С не должно превышать 0,066 МПа (500 мм рт. ст.).

СИСТЕМЫ СБОРА ГАЗА

Все существующие системы сбора газа можно классифицировать по следующим признакам:

1. по степени централизации технологических объектов подготовки газа. Различают индивидуальные,групповые и централизованные.

При индивидуальной каждая скважина имеет свой комплекс сооружения для подготовки газа, после чего по сборному коллектору на центральный сборный пункт.

При групповой системе сбора весь комплекс сооружений на групповом сборном пункте ГСП обслуживает несколько близлежащих скважин (до 16 и более), а далее на ЦСП и потребителю.

Бывает смешанная система сбора, например часть скважин обслуживается по групповой, а часть по централизованной системе.

2. по конфигурации тркбопроводной коммуникации. Различают бесколлекторные системы сбора, при которых газ поступает на ЦСП со скважин по индивидуальной линии.

В коллекторных отдельные скважины подключаются к главным коллекторам, а уж потом они идут на ЦСП.

В зависимости от формы коллектора, бывают линейные системы сбора которые применяются при вытянутой форме площади газоносности.

Лучевая состоит из нескольких коллекторов примыкающих к ЦСП

Применяются когда большие площади и при разработке многопластовых месторождений с различными свойствами.Кольцевая - более маневреная при помощи перемычек позволяющих отключать часть коллктора.

3. по рабочему давлению: вакуумные - менее 0,1 Мпа; низкого давления 0,1<P<0.6 МПа; среднего давления - 0,6<P<1.6 МПа; высокого P>1.6 МПа.

Очистка газа от мех.примесей.

Предупреждение образования гидратов

1. Предупреждение образования гидратов методом подогрева газа заключается в том, что при сохранении давления в газопроводе температура газа поддерживается выше равновесной температуры образования гидратов. В условиях транспорта газа по магистральному газопроводу этот метод неприменим, так как связан с большими затратами энергии.

2. Предупреждение образования гидратов методом снижения давления заключается в том, что при сохранении температуры в газопроводе снижается давление ниже равновесного давления образования гидратов. Этот метод возможен и при ликвидации уже образовавшихся гидратов. Ликвидация гидратных пробок осуществляется путем выпуска газа в атмосферу через продувочные свечи. После снижения давления необходимо некоторое время для разложения гидратов. Очевидно, что этот метод пригоден только для ликвидации гидратных пробок при положительных температурах. Иначе гидратная пробка перейдет в ледяную.

3. Ингибиторы, введенные в насыщенный водяными парами поток природного газа, частично поглощают водяные пары и переводят их вместе со свободной водой в раствор, который совсем не образует гидратов или образует их при температурах более низких, чем температура гидратообразования в случае наличия чистой воды. В качестве ингибиторов применяют метанол CH3OH, растворы этиленгликоля (ЭГ), диэтиленгликоля (ДЭГ), триэтиленгликоля (ТЭГ), хлористого кальция СаСl2.

Очистка от мех.примесей.

Для очистки газа от механических примесей используют горизонтальные и вертикальные сепараторы, цилиндрические масляные и циклонные пылеуловители.

В сепараторах производится отделение примесей от газа. По принципу действия сепараторы делятся на объемные (гравитационные) и циклонные.

В гравитационных аппаратах примеси оседают вследствие резкого изменения направления потока газа при одновременном уменьшении скорости его движения. В циклонных установках используются центробежные силы инерции, возникающие в камере при входе газа по тангенциальному вводу.

Масляные цилиндрические пылеуловители представляют собой вертикальные цилиндрические сосуды со сферическими днищами. На головных сооружениях магистральных газопроводов их устанавливают группами в зависимости от необходимой пропускной способности. Размеры пылеуловителей по диаметру от 1000 до 2400 мм, по высоте от 5.8 до 8,8 м.

В пылеуловителе имеются устройства, обеспечивающие контактирование газа с маслом и отделение твердых и жидких частиц от газа. Оседающий в пылеуловителе шлам периодически удаляют, загрязненное масло заменяют.

ОСНОВНЫЕ МЕТОДЫ ОСУШКИ ГАЗА

При больших объемах транспортируемого газа его осушка является наиболее эффективным и экономичным способом предупреждения образования кристаллогидратов в магистральном газопроводе. Существующие способы осушки при промысловой подготовке газа к транспорту подразделяются на две основные группы: абсорбция и адсорбция и охлаждение газового потока. В результате осушки газа точка росы паров воды должна быть снижена ниже минимальной температуры при транспортировании газа.

СОРБЦИОННЫЕ СПОСОБЫ ОСУШКИ ГАЗА

Жидкие сорбенты, применяемые для осушки природных и нефтяных газов, должны иметь высокую растворимость в воде, низкую стоимость, хорошую антикоррозионность, стабильность по отношению к газовым компонентам и при регенерации; простоту регенерации, малую вязкость и т.д.

Осушка газа твердыми поглотителями

В качестве твердых поглотителей влаги в газовой промышленности широко применяются активированная окись алюминия и боксит, который на 50--60% состоит из Al2O3. Поглотительная способность боксита 4,0--6,5% от собственной массы. Преимущества метода: низкая точка росы осушенного газа (до --65° С), простота регенерации поглотителя, компактность, несложность и низкая стоимость установки.

Осушка газа молекулярными ситами

Для глубокой осушки применяют молекулярные сита, так называемые цеолиты. Цеолиты состоят из кислорода, алюминия, кремния и щелочноземельных металлов и представляют собой сложные неорганические полимеры с кристаллической структурой.

ОСУШКА ГАЗА ОХЛАЖДЕНИЕМ

Охлаждение широко применяется для осушки и выделения конденсата и газа газоконденсатных месторождений на установках низкотемпературной сепарации, а также при получении индивидуальных компонентов газа сжижении газов и т.д. Газ можно охлаждать путем расширения, когда необходимо снижать его давление, а также пропуская через холодильные установки

ОЧИСТКА ГАЗА ОТ СЕРОВОДОРОДА И УГЛЕКИСЛОГО ГАЗА

Сероводород часто является примесью природного газа. Он горюч, хорошо растворяется в воде. Сам по себе газ и продукт его сгорания сернистый ангидрид -- ядовиты. Кроме того, сероводород и сернистые соединения вызывают коррозию стальных труб, резервуаров, оборудования трубопроводов и др. Присутствие сероводорода в газе ускоряет гидратообразование.

В качестве адсорбента в сухих провесах используют окись железа и активированный уголь. Наиболее распространен способ извлечения сероводорода гидратом окиси железа. Его осуществляют при сравнительно высоком содержании Н2S в газе. В результате извлечения сероводорода его содержание снижается до 0,02г/см3.

«Мокрым» способом одновременной очистки газа от сероводорода и углекислого газа при сравнительно низкой стоимости является процесс с использованием аминов: моноэтаноламина, диэтаноламина и динизопропанамина.

ОДОРИЗАЦИЯ ГАЗ

Природный газ, очищенный от сероводорода, не имеет ни цвета, ни запаха. Поэтому обнаружить утачку газа довольно трудно. Чтобы обеспечить безопасность транспорта и использования газа, его одорируют, т. е. придают ему резкий и неприятный запах. Для этой цели в газ вводят специальные компоненты (одоранты). Одоранты и продукты их сгорания должны быть физиологически безвредными, достаточно летучими, не должны вызывать коррозию, химически взаимодействовать с газом, поглощаться водой или углеводородным конденсатом. Этим требованиям в наибольшей степени удовлетворяет этилмеркаптан C2H5SH.

ТРУБОПРОВОДНЫЙ ТРАНСПОРТ НЕФТИ

В зависимости от вида транспортируемого продукта различают следующие типы узкоспециализированных трубопроводных систем: нефтепроводы, нефтепродуктопроводы, газопроводы и трубопроводы для транспортирования нетрадиционных грузов. Независимо от того, что транспортируется по трубам, все узкоспециализированные системы состоят из одних и тех же элементов.

Состав сооружения магистрального нефтепровода: 1 - подводящий трубопровод; 2 - головная нефтеперекачивающая станция; 3 - промежуточная нефтеперекачивающая станция; 4 - конечный пункт; 5 - линейная часть; 6 - линейная задвижка; 7 - дюкер; 8 - надземный переход; 9 - переход под автодорогой; 10 - переход под железной дорогой; 11 - станция катодной защиты; 12 - дренажная установка; 13 - доля обходчика; 14 - линия связи; 15 - вертолетная площадка; 16 - вдольтрассовая дорога подводящих трубопроводов.

Подводящие трубопроводы связывают источники нефти с головными сооружениями МНП.

Головная НПС предназначена для приема нефтей с промыслов, смешения или разделения их по сортам, учета нефти и ее закачки из резервуаров в трубопровод. Головная НПС располагается вблизи нефтепромыслов.

Промежуточные НПС служат для восполнения энергии, затраченной потоком на преодоление сил трения, с целью обеспечения дальнейшей перекачки нефти. Промежуточные НПС размещают по трассе трубопровода согласно гидравлическому расчету (через каждые 50... 200 км).

Конечным пунктом магистрального нефтепровода обычно является нефтеперерабатывающий завод или крупная перевалочная нефтебаза. Собственно трубопровод - основная составляющая магистрального нефтепровода - представляет собой трубы, сваренные в "нитку", оснащенные камерами приема и пуска скребков, разделителей, диагностических приборов, а также трубопроводы-отводы.

Трубопроводный транспорт обладает большим количеством достоинств:

1. Магистральные трубопроводы позволяют обеспечить возможность подачи практически неограниченного потока нефти, автобензинов, дизельных и реактивных топлив в любом направлении;

2. По магистральным трубопроводам можно осуществлять последовательную перекачку нефти разных сортов или нефтепродуктов различных видов, а также разных газов;

3. Работа магистральных трубопроводов непрерывна, планомерна в течение года, месяца, суток и не зависит от климатических, природных, географических и других условий, что гарантирует бесперебойное обеспечение потребителей;

4. Трубопровод может быть проложен практически во всех районах РФ, направлениях, в любых инженерно-геологических, топографических и климатических условиях;

5. Трасса трубопровода -- это кратчайший путь между начальным и конечным пунктами следования и может быть значительно короче, чем трассы других видов транспорта;

6. Сооружение трубопроводов проводят в сравнительно непродолжительные сроки, что обеспечивает быстрое освоение нефтяных и газовых месторождений, мощности нефтеперекачивающих заводов;

7. На магистральных трубопроводах может быть обеспечено применение частично или полностью автоматизированных систем управления технологическими процессами (АСУ ТП) перекачки нефти, нефтепродуктов и газа;

8. Трубопроводный транспорт имеет лучшие технико-экономические показатели по сравнению с другими видами транспорта нефтяных грузов, а для транспорта природного газа, находящегося в газообразном состоянии, является единственно возможным. Возможность значительной автоматизации и телемеханизации, внедрение систем автоматизированного управления технологическими процессами способствует поддержанию оптимальных режимов эксплуатации трубопроводных систем, сокращению расхода электроэнергии, а также потерь нефти, нефтепродуктов и газа при перекачке, сокращению численности обслуживающего персонала.

Однако несмотря на упомянутые преимущества, нужно отметить и два существенных недостатка: большой расход металла и "жёсткость" трассы перевозок, то есть невозможность изменения направления перевозок нефти, нефтепродуктов или газа после постройки трубопровода.

Железнодорожный транспорт

Транспортирование энергоносителей по железной дороге производится в специальных цистернах или в крытых вагонах в таре.

Различают следующие виды цистерн. Цистерны специального назначения в основном предназначены для перевозки высоковязких и высокопарафинистых нефтей и нефтепродуктов. Цистерны с паровой рубашкой отличаются от обычных тем, что нижняя часть у них снабжена системой парового подогрева с площадью поверхности нагрева около 40 м2. Цистерны-термосы предназначены для перевозки подогретых высоковязких нефтепродуктов; они покрыты тепловой изоляцией, а внутри котла у них установлен стационарный трубчатый подогреватель с поверхностью нагрева 34 м2. Цистерны для сжиженных газов рассчитаны на повышенное давление (для пропана - 2 МПа, для бутана - 8 МПа).

Достоинствами железнодорожного транспорта являются:

1) возможность круглогодичного осуществления перевозок;

2) в одном составе (маршруте) могут одновременно перевозиться различные грузы;

3) нефть и нефтепродукты могут быть доставлены в любой пункт страны, имеющий железнодорожное сообщение;

4) скорость доставки грузов по железной дороге примерно в 2 раза выше, чем речным транспортом.

К недостаткам железнодорожного транспорта относятся:

1) высокая стоимость прокладки железных дорог;

2) увеличение загрузки существующих железных дорог и как следствие возможные перебои в перевозке других массовых грузов;

3) холостой пробег цистерн от потребителей нефтегрузов к их производителям.

Водный транспорт

Для перевозки нефтегрузов используются сухогрузные и наливные суда. Сухогрузными судами груз перевозится непосредственно на палубе (в основном, в бочках). Нефтеналивные суда перевозят нефть и нефтепродукты в трюмах, а также в танках (баках), размещенных на палубе.

Различают следующие типы нефтеналивных судов:

1) танкеры морские и речные;

2) баржи морские (лихтеры) и речные.

Танкер - это самоходное судно, корпус которого системой продольных и поперечных переборок разделен на отсеки. Различают носовой (форпик), кормовой (ахтерпик) и грузовые отсеки (танки). Для предотвращения попадания паров нефти и нефтепродуктов в хозяйственные и машинное отделения грузовые танки отделены от носового и кормового отсеков специальными глухими отсеками (коффердамами). Для сбора продуктов испарения нефтегрузов и регулирования давления в танках на палубе танкера устроена специальная газоотводная система с дыхательными клапанами.

Все грузовые танки соединены между собой трубопроводами,, проходящими от насосного отделения по днищу танка. Кроме того, они оборудуются подогревателями, установками для вентиляции и пропаривания танков, средствами пожаротушения и др.Речные танкеры в отличие от морских имеют относительно небольшую грузоподъемность.Баржи отличаются от танкеров тем, что не имеют собственных насосов.Морские баржи (лихтеры) обычно служат для перевозок нефти и нефтепродуктов когда танкеры не могут подойти непосредственно к причалам для погрузки-выгрузки. Их грузоподъемность составляет 10000 т и более.

Достоинствами водного транспорта являются:

1) относительная дешевизна перевозок;

2) неограниченная пропускная способность водных путей (особенно морских);

3) возможность завоза нефтепродуктов в отдаленные районы страны, не связанные железной дорогой с НПЗ.

К недостаткам водного транспорта относятся:

1) сезонность перевозок по речным и частично морским путям, что вызывает необходимость создавать большие запасы нефтегрузов;

2) медленное продвижение грузов (особенно вверх по течению рек);

3) невозможность полностью использовать тоннаж судов при необходимости переброски специальных нефтепродуктов в небольших количествах;

4) порожние рейсы судов в обратном направлении.

Автомобильный транспорт

Автомобильный транспорт используется для завоза нефтегрузов потребителям, удаленным на небольшое расстояние от источников снабжения (наливных пунктов, складов и баз). Например, автотранспортом отгружаются нефтепродукты с нефтебаз в автохозяйства, на автозаправочные станции и сельские склады горючего.

Достоинствами автомобильного транспорта нефтегрузов являются:

1) большая маневренность;

2) быстрота доставки;

3) возможность завоза грузов в пункты, значительно удаленные от водных путей или железной дороги;

4) всесезонность.

К его недостаткам относятся:

1) ограниченная вместимость цистерн;

2) относительно высокая стоимость перевозок;

3) наличие порожних обратных пробегов автоцистерн;

4) значительный расход топлива на собственные нужды.

ТРАНСПОРТ ГАЗА

Магистральный газопровод -- это сложная система сооружений, предназначенных для транспортировки газа из районов его добычи или производства в районы потребления.

Магистральный газопровод характеризуют высокое давление (до 55--75 кгс/см2), поддерживаемое в системе, большой диаметр труб (1020, 1220, 1420 мм) и значительная протяженность (сотни и тысячи километров).

По характеру линейной части различают следующие магистральные газопроводы:

1) простые, с постоянным диаметром труб от головных сооружений до конечной ГРС, без отводов к попутным потребителям и без дополнительного приема газа по пути следования; их протяженность, как правило, незначительна, газ перекачивается за счет пластового давления без дополнительного компримирования;

2) телескопические, с различным диаметром труб по трассе; их сооружают при использовании пластового давления или одной головной компрессорной станции, причем на начальном участке укладывают трубы меньшего диаметра, чем на последующих; быстрое падение давления на головном участке даст возможность большей части газопровода работать под меньшим давлением;

3) многониточные, когда параллельно основной проложены дополнительно одна, две или три нитки газопровода того же или иного диаметра; с учетом перемычек образуется система газопровода; если параллельные нитки сооружают на отдельных участках, их называют лупингами (обводами);

4) кольцевые, создаваемые вокруг крупных городов для увеличения надежности газоснабжения и равномерной подачи газа, а также для объединения магистральных газопроводов в единую газотранспортную систему страны.

ХРАНЕНИЕ НЕФТИ И НЕФТЕПРОДУКТОВ

ХРАНЕНИЕ НЕФТИ И НЕФТЕПРОДУКТОВ-- содержание резервных запасов нефти и нефтепродуктов в условиях, обеспечивающих их количественную и качественную сохранность в течение установленного времени. Предусматривается при необходимости компенсации неравномерности потребления, оперативного и народно-хозяйственного резервирования. Иногда хранение нефти и нефтепродуктов совмещается с другими технологическими операциями (обезвоживание, обессоливание нефти, смешение, подогрев и т.д.). Осуществляется в ёмкостях на нефтепромыслах, перекачивающих станциях и наливных станциях магистральных нефте- и продуктопроводов, сырьевых и товарных парках нефтеперерабатывающих заводов; в ёмкостях и мелкой таре на нефтебазах и автозаправочных станциях.

Складские предприятия для хранения нефти и нефтепродуктов разделяются на самостоятельные и входящие в состав других предприятий (см. нефтебаза, нефтехранилище, резервуарный парк).

Емкости для хранения нефти и нефтепродуктов сооружают из несгораемых материалов в наземном, подземном и полуподземном исполнении (см. нефтяной резервуар). Наибольшее распространение получили наземные вертикальные стальные цилиндрические резервуары (тип PBC), на мелких нефтебазах и АЗС -- подземные и наземные горизонтальные цилиндрические резервуары (тип РГС), для хранения нефти и мазута -- железобетонные резервуары (тип ЖБР).

КЛАССИФИКАЦИЯ НЕФТЕБАЗ

Основное назначение нефтебаз - обеспечить бесперебойное снабжение промышленности, транспорта, сельского хозяйства и других потребителей нефтепродуктами в необходимом количестве и ассортименте; сохранение качества нефтепродуктов и сокращение до минимума их потерь при приеме, хранении и отпуске потребителям.

Нефтебазы представляют большую опасность в пожарном отношении. Наиболее пожароопасными объектами являются резервуары. Поэтому за критерий пожароопасности нефтебаз принят суммарный объем резервуарного парка. Его величина положена в основу деления нефтебаз на категории:

- I - общий объем резервуарного парка свыше 100 000 м3;

- II - то же свыше 20 000 м3 по 100 000 м3;

- III а - то же свыше 10 000 м3 по 20 000 м3;

- III б-то же свыше 2 000 м3 по 10 000 м3;

- III в - то же до 2 000 м3 .включительно.

^ По принципу оперативной деятельности нефтебазы делятся на перевалочные, распределительные и перевалочно-распределительные.

Перевалочные нефтебазы предназначены для перегрузки (перевалки) нефтепродуктов с одного вида транспорта на другой. Размещают их на берегах судоходных рек и озер, вблизи морских портов, крупных железнодорожных магистралей, промежуточных перекачивающих станций нефтепродуктопроводов. Роль конечного пункта магистрального нефтепродуктопровода (МНПП) также обычно играет перевалочная нефтебаза.

^ Распределительные нефтебазы предназначены для непродолжительного хранения нефтепродуктов и снабжения ими потребителей обслуживаемого района. Их разделяют на оперативные, обслуживающие лишь местных потребителей, и сезонного хранения, предназначенные как для удовлетворения местных потребностей, так и для компенсации неравномерности подачи нефтепродуктов на оперативные нефтебазы, входящие в зону влияния нефтебазы сезонного хранения.

^ Перевалочно-распределительные нефтебазы совмещают функции перевалочных и распределительных нефтебаз.

По транспортным связям нефтебазы делятся на железнодорожные, водные (речные, морские), водно-железнодорожные, трубопроводные и базы, получающие нефтепродукты автотранспортом.

По номенклатуре хранения нефтепродуктов различают нефтебазы общего хранения, только для светлых нефтепродуктов, только для темных нефтепродуктов и др.

Операции, проводимые на нефтебазах

Все производственные операции, проводимые на нефтебазах, разделяют на основные и вспомогательные. К основным операциям относятся:

- прием нефтепродуктов, доставляемых на нефтебазу железнодорожным, водным, автомобильным транспортом и по трубопроводам или отводам от них;

- хранение нефтепродуктов в резервуарах и тарных хранилищах;

- отпуск нефтепродуктов в железнодорожные и автомобильные цистерны, нефтеналивные суда или по трубопроводам;

- замер и учет нефтепродуктов.

^ К вспомогательным операциям относятся:

- очистка и обезвоживание масел и других вязких нефтепродуктов;

- смешение масел и топлив;

- регенерация отработанных масел;

- изготовление и ремонт тары;

- ремонт технологического оборудования, зданий и сооружений;

- эксплуатация котельных, транспорта и энергетических устройств.

Количество вспомогательных операций на различных нефтебазах неодинаково.

ПОДЗЕМНЫЕ ХРАНИЛИЩА НЕФТИ

Подземные хранилища нефти и нефтепродуктов сооружают в различных естественных искусственных емкостях (горных выработках). Подземное хранение основано на неизменяемости химического состава нефти и нефтепродуктов при прямом контакте с горными породами и на возможности уравновешивания избыточного давления их паров давлением лежащих над емкостью горных пород. Подземные хранилища предназначаются главным образом для хранения больших запасов нефти и нефтепродуктов в целях обеспечения их максимального сезонного потребления. Хранилища этого типа наиболее экономичны и требуют значительно меньшей пло­щади застройки по сравнению с наземными резервуарными парками .

Выбор типа хранилища зависит от геологической характеристики пластов, географического месторасположения и комплекса эксплуатационных показателей, учитываемых при технико-экономических расчетах. Существует несколько типов подземных хранилищ нефтепродуктов в зависимости от схемы устройства и способа их сооружения. К основным типам относятся:

1) хранилища в отложениях каменной соли;

2) шахтные хранилища;

3) ледогрунтовые хранилища;

4) хранилища, создаваемые в естественных и искусственных выработках;

5) хранилища, сооружаемые специальными методами.

Наибольшее распространение получили хранилища, создаваемые в отложениях каменной соли, так как в большинстве случаев они являются наиболее экономичными, а месторождения каменной соли широко распространены на территории России.

Подземные хранилища в отложениях каменной соли сооружают путем размыва (выщелачивания) полостей в толще соли через буровые скважины. Размыв каменной соли осуществляют двумя основными способами -- циркуляционным и струйным.

Шахтные хранилища представляют собой систему горных выработок, связанных с поверхностью вертикальными стволами (рис. 6.13). Такие хранилища обычно сооружают в горных выработках, сложенных непроницаемыми и химически нейтральными к хранимым нефтепродуктам (нефти), породами, которые не изменяют своей прочности в процессе длительного контакта с ними.

Ледогрунтовые хранилища сооружают в северных районах страны (в зоне распространения многолетнемерзлых пород), где требуется создавать большие запасы нефтепродуктов, до­ставляемых в летнее время. Такие хранилища устраивают в виде траншей в многолетнемерзлом грунте, которые имеют специально намороженное ледяное покрытие сводчатой формы, покрытое сверху теплоизоляционным слоем (для поддержания в хранилище температуры не выше --3 °С).

Хранилища в выработках сооружают в естественных и искусственно создаваемых выемках в виде отработанных соляных шахт, копей, а также в виде различных выработок и карьеров. В этом случае достигается существенная экономия за счет сведения к минимуму выполнение земляных и горных работ. Выработки используются путем установки в них резервуаров или специальной облицовкой их внутренней поверхности.

Газораспределительные станции

Газораспределительные станции (ГРС) должны обеспечивать подачу потребителям (предприятиям и населённым пунктам) газа обусловленного количества с определённым давлением, степенью очистки и одоризации.Для снабжения газом населённых пунктов и промышленных предприятий от МГ сооружаются отводы, по которым газ поступает на газораспределительную станцию.

На ГРС осуществляются следующие основные технологические процессы:

- очистка газа от твёрдых и жидких примесей;

- снижение давления (редуцирование);

- одоризация;

- учёт количества (расхода) газа перед подачей его потребителю.

Основное назначение ГРС - снижение давления газа и поддержание его на заданном уровне. Газ с давлением 0,3 и 0,6 МПа поступает на городские газораспределительные пункты, газорегулирующие пункты потребителя и с давлением 1,2 и 2 МПа - к специальным потребителям (ТЭЦ, ГРЭС, АГНКС и тд.). На выходе ГРС должна обеспечиваться подача заданного количества газа с поддержанием рабочего давления в соответствии с договором между ЛПУ МГ и потребителем с точностью до 10%.

ХРАНИЛИЩА ГАЗА

Для обеспечения бесперебойных поставок природного газа потребителю необходимо правильно организовать все процессы его обработки. Прежде всего, это касается доставки и хранения природного газа. Основным фактором, влияющим на график поставок этого сырья в нашем регионе считаются климатические условия. Пиковые нагрузки приходятся на холодное время года. Хранилища газа классифицируются в соответствии со своим назначением. Емкости с природным газом, предназначенным для сглаживания суточных нагрузок (газгольдеры), расположены вблизи объектов потребления газа. Они имеют небольшой объем. Стационарные хранилища, рассчитанные на компенсацию сезонных пиков потребления газа или аварийных ситуаций -- это подземные хранилища, для которых используют естественные подземные полости. Глубина залегания естественных подземных хранилищ от 100 до 1000 м.

В первую очередь, это подземные выработки месторождений нефти и газа, водоносные пласты. Как правило, это пористые породы, в которых сырье находится в газообразном состоянии. Этот способ считается наиболее дешевым. Для устройства хранилища необходима только установка специального оборудования и прокладка коммуникаций. В местности, где такой возможности нет, в качестве хранилищ используют водоносные пласты с герметичной каверной для газа. Окруженная плотными слоями грунта каверна позволяет содержать газ под высоким давлением.

газ сероводород нефть трубопроводный

Основные этапы нефтепереработки

Нефтеперерабoтка-крупнотоннажное производство, основанное на превращениях нефти, ее фракций и нефтяных газов в товарные нефтепродукты и сырье для нефтехимии, основного органического синтеза и микробиологического синтеза. Это производство представляет собой совокупность осуществляемых на нефтеперераб. заводах (НПЗ) физических и химико-технологических процессов и операций, включающую подготовку сырья, его первичную и вторичную переработку.Перед переработкой нефть подвергают спец. подготовке сначала на нефтепромыслах, а затем непосредственно на НПЗ, где ее освобождают от пластовой воды. минер. солей и мех. примесей (см. Обезвоживание и обессоливание нефти)и стабилизируют, отгоняя главным образом пропан-бутановую, а иногда частично и пентановую углеводородные фракции.

Первичная переработка нефти заключается в разделении ее на фракции, различающиеся пределами выкипания, с помощью первичной (в основном) или вторичной атм. и вакуумной перегонки (см. Дистилляция нефти). Такая переработка позволяет выделять из нефти только изначально присутствующие в ней вещества. Ассортимент, выход и качество вырабатываемых продуктов полностью определяются хим. составом сырья.

Для увеличения выхода т. наз. светлых нефтепродуктов (фракций, выкипающих до 350 °С,- бензинов, керосинов, газотурбинных, дизельных и реактивных топлив) и улучшения качества фракций и продуктов, полученных при перегонке, широко используется в т о р и ч н а я п е р е р а б о т к а нефти.Она включает: процессы деструктивной переработки тяжелого и остаточного сырья процессы, обеспечивающие повышение качества основных типов нефтепродуктов-топлив и масел; процессы переработки нефтяных газов производств масел, парафинов. присадок, битумов и иных спец. типов нефтепродуктов, а также нефтехим. и хим. сырья.

ОСНОВНЫЕ ПРОДУКТЫ НЕФТЕХИМИИ

Продукция нефтехимии находит применение практически во всех отраслях промышленности, транспорта, сельского хозяйства, в оборонном и топливно-энергетическом комплексе, в сфере услуг, торговле, науке и образовании. В машиностроении растет спрос на конструкционные полимерные материалы, специальные лакокрасочные покрытия, изолирующие, шумопоглощающие и другие, во многих случаях незаменимые материалы. Оборонная безопасность и экономическая независимость невозможны без развития отечественной нефтехимии, так как альтернативы многим материалам для изделий военного назначения не существует. Без современных материалов нефтехимии невозможны дальнейшее развитие электроники и информатики, выпуск лекарственных и парфюмерно-косметических средств, химических бытовых товаров.

1) Поверхностно-активные вещества (ПАВ). ПАВ широко применяются в различных отраслях промышленности, в сельском хозяйстве и в быту.

2) Синтетические каучуки.

3) Пластические массы.

4) Синтетические волокна

Экологический мониторинг

Проблема уменьшения вредного влияния производств нефтегазового комплекса на окружающую среду выявляется законодательством всех цивилизованных стран. Существенный вклад в негативное воздействие на окружающую среду вносят процессы образования отходов производства нефтегазовой отрасли. На предприятиях нефтегазовой отрасли образуется большое количество отходов основных и вспомогательных производственных процессов. Основными видами технологических отходов на добывающих и эксплуатационных скважинах является буровой шлам, нефтешламы, отработанный мастильный материал; на объектах добычи нефти, газа и конденсата - нефтешламы, парафиновая пробка и отработанные масла; на объектах трубопроводного транспорта нефти и газа - нефтешламы, кристаллогидратная пробка, отработанные масляные фильтры и твердые фильтрационные материалы.

- проведение наблюдений за изменением состояния окружающей среды и экосистемами, источниками антропогенных воздействий с определенным пространственным и временным разрешением;

- проведение оценок состояния окружающей среды, экосистем территории страны, источников антропогенного воздействия;

- прогноз состояния окружающей среды, экологической обстановки на территории России и ее регионов, уровней антропогенного воздействия при различных условиях размещения производительных сил, социальных и экономических сценариях развития страны и ее регионов.

В соответствии с основными задачами в ЕГСЭМ осуществляется мониторинг состояния природных сред, экосистем, природных ресурсов и источников антропогенного воздействия, а также информационное обеспечение решения экологических проблем. Этиработы выполняются в рамках ЕГСЭМ на единых научно-методических и метрологических подходах.

ЗАЩИТА ОКРУЖАЮЩЕЙ СРЕДЫ ПРИ ДОБЫЧЕ НЕФТИ

Объекты нефтедобычи по степени воздействия на ОПС находятся среди лидеров во многих регионах РФ. При извлечении и подготовке нефти к подаче ее в магистральный нефтепровод в ОС попадают (кроме нефти) высокоактивные пластовые воды, попутный нефтяной газ, многие химические реагенты, которые используются в бурении скважин и при интенсификации извлечения углеводородов.

К природоохранным мероприятиям относятся все виды хозяйственной деятельности отрасли, направленные на снижение или ликвидацию отрицательного антропогенного воздействия на природную среду, на сохранение, улучшение и рациональное использование природных ресурсов:

опережающая отсыпка автодорог и площадок;

размещение сооружений, строительных баз, обслуживающих объектов и транспортных систем с учетом экологических требований;

повышение надежности газотранспортных систем;

мероприятия по охране водных объектов;

строительство и эксплуатация очистных сооружений и устройств;

уменьшение вредных выбросов в атмосферу и борьба с шумами;

рекультивация земель и меры борьбы с эрозией;

борьба с пожарами или утечками транспортируемого продукта;

меры по охране и воспроизводству ресурсов растительного и животного мира;

применение природосберегающих строительных технологий и специальных машин и механизмов, оказывающих минимальное воздействие на природу;

мероприятия по защите от загрязнения и разрушения геологической среды, в том числе вечномерзлых пород и подземных вод;

мероприятия по охране памятников природы, заповедных зон и др.

Природоохранные мероприятия дифференцироваться в соответствии с природными особенностями регионов.

Размещено на Allbest.ur

...

Подобные документы

  • Методы поиска и разведки нефтяных и газовых месторождений. Этапы поисково-разведочных работ. Классификация залежей нефти и газа. Проблемы при поисках и разведке нефти и газа, бурение скважин. Обоснование заложения оконтуривающих разведочных скважин.

    курсовая работа [53,5 K], добавлен 19.06.2011

  • Основные технико-экономические показатели геолого-разведочных работ. Поиски и разведка нефтяных и газовых месторождений. Нефтегазовый комплекс России. Состав и параметры нефти. Месторождения нефти и газа. Типы залежей по фазовому составу. Понятие ловушки.

    презентация [20,4 M], добавлен 10.06.2016

  • Физические свойства и месторождения нефти и газа. Этапы и виды геологических работ. Бурение нефтяных и газовых скважин и их эксплуатация. Виды пластовой энергии. Режимы разработки нефтяных и газовых залежей. Промысловый сбор и подготовка нефти и газа.

    реферат [1,1 M], добавлен 14.07.2011

  • Геологические основы поисков, разведки и разработки нефтяных и газовых месторождений. Нефть: химический состав, физические свойства, давление насыщения, газосодержание, промысловый газовый фактор. Технологический процесс добычи нефти и природного газа.

    контрольная работа [367,2 K], добавлен 22.01.2012

  • Изучение методов системы разработки месторождений нефти и газа. Определение рациональной системы извлечения нефти из недр. Выбор оборудования для хранения нефти после добычи из залежей, а также для транспортировки. Описание основных видов резервуаров.

    курсовая работа [970,7 K], добавлен 11.11.2015

  • Расчет инженерно-технических решений по обустройству систем сбора и внутрипромыслового транспорта нефти, газа и пластовой воды. Особенности системы сбора газа и технологии подготовки газа. Определение технологических параметров абсорбционной осушки газа.

    курсовая работа [2,2 M], добавлен 16.11.2022

  • Понятие природного газа и его состав. Построение всех видов залежей нефти и газа в ловушках различных типов. Физические свойства природных газов. Сущность ретроградной конденсации. Технологические преимущества природного газа как промышленного топлива.

    контрольная работа [2,0 M], добавлен 05.06.2013

  • История возникновения и особенности развития нефтяных и газовых месторождений. Методы сбора, подготовки, способы транспортировки и хранение газа и нефти, продукты их переработки. Обеспечение технической и экологической безопасности при транспортировке.

    дипломная работа [162,1 K], добавлен 16.06.2010

  • Основные сведения о месторождениях нефти и газа, способы их формирования и особенности разведки полезных ископаемых. Сферы применения и режимы эксплуатации различных видов скважин, используемых для добычи. Промысловый сбор и подготовка нефти, газа и воды.

    отчет по практике [3,2 M], добавлен 21.07.2012

  • Исторические сведения о нефти. Геология нефти и газа, физические свойства. Элементный состав нефти и газа. Применение и экономическое значение нефти. Неорганическая теория происхождения углеводородов. Органическая теория происхождения нефти и газа.

    курсовая работа [3,2 M], добавлен 23.01.2013

  • Факторы миграции нефти и газа в земной коре. Проблема аккумуляции углеводородов. Граничные геологические условия этого процесса. Главное свойство геологического пространства. Стадии выделения воды, уплотнения глин. Формирование месторождений нефти и газа.

    презентация [2,5 M], добавлен 10.10.2015

  • Исследование геологической природы нефти и газа. Изучение плотности, вязкостных свойств, застывания и плавления, загустевания и размягчения, испарения, кипения и перегонки нефти. Групповой химический состав нефти. Физические свойства природного газа.

    реферат [363,1 K], добавлен 02.12.2015

  • Извлечение нефти из пласта. Процесс разработки нефтяных и газовых месторождений. Изменение притока нефти и газа в скважину. Механические, химические и тепловые методы увеличения проницаемости пласта и призабойной зоны. Гидравлический разрыв пласта.

    презентация [1,8 M], добавлен 28.10.2016

  • Физические и химические свойства нефти. Теория возникновения газа. Применение продуктов крекинга. Внутреннее строение Земли. Геодинамические закономерности относительного изменения запасов и физико-химических свойств нефти различных месторождений.

    дипломная работа [3,8 M], добавлен 06.04.2014

  • Преимущества газа, которые способствуют росту его потребления. Решающий критерий разработки месторождений. Эксплуатационные, наблюдательные и разведочные скважины. Промысловая подготовка газа и конденсата к транспортированию. Классификация системы сбора.

    реферат [260,2 K], добавлен 15.12.2012

  • Подсчет и пересчет запасов различными методами. Размещение месторождений нефти и газа в мире. Нетрадиционные ресурсы и возможности их реализации. Главные экономические критерии в новой классификации запасов и прогнозных ресурсов нефти и горючих газов.

    реферат [705,7 K], добавлен 19.03.2014

  • Происхождение нефти, образование месторождений. Оборудование, необходимое для бурения скважин. Транспортировка нефти и газа на нефтеперерабатывающие заводы и электростанции. Особенности переработки нефти. Добыча растворенного газа в Томской области.

    реферат [52,3 K], добавлен 27.11.2013

  • Критерии выделения эксплуатационных объектов. Системы разработки нефтяных месторождений. Размещение скважин по площади залежи. Обзор методов увеличения производительности скважин. Текущий и капитальный ремонт скважин. Сбор и подготовка нефти, газа, воды.

    отчет по практике [2,1 M], добавлен 30.05.2013

  • Понятие и основные характеристики сланцевого (природного) газа, некоторые параметры для определения его месторождений. Методы добычи газа из сланцевых пород, описание технологий и схемы бурения. Ресурсы газа и их распределение по географическим регионам.

    реферат [7,1 M], добавлен 14.12.2011

  • Концепции неорганического происхождения нефти: гипотеза Менделеева, Кудрявцева, Соколова. Основные аргументы в пользу биогенного происхождения нефти. Образование природного газа. Условия нефтеобразования: время, умеренные температуры, давление.

    реферат [178,7 K], добавлен 16.06.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.