Первичная миграция углеводородов и ее механизмы

Рассмотрение изменений и миграционных потерь в процессе миграции углеводородов. Отделение углеводородов от материнской породы и переход их в проницаемый резервуар. Эмиграция углеводородов в водорастворенном, газорастворенном и свободном состояниях.

Рубрика Геология, гидрология и геодезия
Вид реферат
Язык русский
Дата добавления 25.01.2022
Размер файла 5,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

РЕФЕРАТ

по дисциплине: «Геология нефти и газа»

на тему: «Первичная миграция углеводородов и ее механизмы»

Оглавление

миграция углеводород газорастворенный водорастворенный

Введение

Механизмы первичной миграции

Эмиграция углеводородов в водорастворенном состоянии

Эмиграция углеводородов в газорастворенном состоянии

Эмиграция углеводородов в свободном состоянии

Заключение

Список литературы

Введение

Миграция - это перемещение подвижных флюидов углеводородов в горных породах.

Условно выделяют 2 фазы миграции:

• первичная;

• вторичная.

По расстояниям движения (масштабам) миграция может быть:

• региональной, контролируемой размещением зон нефтегазообразования и зон нефтегазонакопления;

• локальной, контролируемой отдельными структурами дизъюнктивной тектоникой, литологическими и стратиграфическими экранами.

В процессе миграции углеводороды испытывают изменения и миграционные потери. Часть нефти адсорбируется, часть идет на преобразование минеральных веществ. Газ растворяется в воде и выходит на поверхность в виде источников.

В некоторых складчатых сооружениях расход газа составляет десятки и тысячи кубометров в сутки.

Первичной миграцией называется отделение углеводородов от материнской породы и переход их в проницаемый резервуар.

Первичная миграция может идти в любом направлении: вбок, вверх, вниз.

Первичная миграция начинается еще в диагенезе: по мере уплотнения осадка из него отжимается седиментационная вода вместе с заключенным в ней органическим веществом, находящимся в состоянии коллоидных и мицеллярных растворов.

Механизмы первичной миграции

Механизм миграции и эмиграции УВ до настоящего времени является предметом дискуссий, так как общепризнанной теории еще нет, хотя именно этот механизм определяет возможность появления скопления нефти или газа. Со стороны сторонников неорганического происхождения нефти эмиграция вызывает наибольшее количество возражений. В.Ф. Линецкий вообще считал невозможным процесс миграции углеводородов по материнским толщам, сложенным глинистыми породами из-за высокой сорбционной способности глин, их низкой проницаемости, которая уменьшается с глубиной.

Сторонники осадочно-миграционной теории С.Г. Неручев и И.С. Ковачевой в 1965 году определили изменения состава флюидов в материнской породе в зависимости от расстояния до кровли коллектора. Они проанализировали состав нефтей палеозойского возраста в месторождениях Шпаковского и Туймановского Волго-Уральского нефтегазоносного бассейна и выяснили, что содержание N+S+O на расстоянии 14-16 метра до контакта с коллектором составляет 8,65%, а на расстоянии 0-2 м их 13,61%. Содержание углерода и водорода в данном случае уменьшается. Это служит доказательством перемещения УВ, при котором более тяжелые молекулы смол и асфальтенов сорбируются на минеральном матриксе породы, а лёгкие УВ свободно проникают вглубь коллектора (рис. 6).

Рис. 6 Изменение состава УВ при удалении от коллектора

Перенос молекул нефти и газа внутри НГМП может осуществляться разными способами в зависимости от особенностей распределения этих молекул в материнской породе. Существует различные формы переноса

? в водорастворённом состоянии;

? в виде газовых растворов;

? в свободном состоянии.

Экспериментально было выяснено, что растворимость жидких УВ в воде крайне мала и измеряется в пределах от 0.03 до 0.25 л/м3. До главной зоны нефтегазообразования видно, что жидкие УВ могут раствориться в воде, каковыми являются коллоидные и мицеллярные растворы, так как УВ плохо растворяются при такой температуре. Поэтому большинство жидких УВ способно растворяться в свободном состоянии за счет соотношения объёма генерации УВ с их количеством, способным раствориться в воде или газе. Глубже, на стадии нижней зоны газообразования жидкие УВ способны хорошо растворяться в газе, за счет его преобразования и уже возможна миграция в газовой форме. Главными агентами данного процесса являются давление и состав газа.

Газ, в отличие от жидких УВ, хорошо растворяется в воде, поэтому форма его эмиграции определяется, прежде всего соотношением количества сгенерированного газа, поровой воды и растворимостью газа. Измеряется от 2.5 до 10 м33. Итак, выяснено, что генерирующийся газ способен эмигрировать в водорастворённом состоянии за счет высоких температур и давлений, а так же в виде попутного газа с жидкими УВ. (рис. 7)

Эмиграция углеводородов в водорастворенном состоянии

Эмиграция УВ в водорастворенном состоянии, предполагает, что седиментационные воды в процессе уплотнения материнской свиты выносят в прилегающий коллектор растворенные жидкие и газообразные УВ или находящиеся в эмульсионной или коллоидной форме жидкие УВ.

Рис. 7 Общая схема эмиграции (Высоцкий, Корчагина, 1995)

В дальнейшем УВ мигрируют вместе с пластовыми водами и с ухудшением растворимости в результате понижения температуры выделяются в свободное состояние и заполняют ловушки. УВ могут находиться в воде в виде молекул, мицелл и эмульсий.

Исследования по растворимости УВ в воде были высказаны Дж. Адамсом в 1903 году, а позднее В.Д. Ламтадзе, Н.М. Страховым, Н.Б. Вассоевичем и другими. В результате многих исследований было получено, что растворимость УВ в воде колеблется от первых граммов до нескольких килограммов на кубический метр воды и зависит эта величина от многих факторов. (Высоцкий, Высоцкий 1986)

Температура - один их главных факторов, определяющих растворимость УВ в воде. С повышением температуры влияние размеров молекул на растворимость УВ снижается (рис. 8). По данным Прайса наибольшую растворимость имеют арены, а наименьшую - н-алканы. Например растворимость бензола составляет 1740 мг/л, а н-нонана 0,122 мг/л. Таким образом растворимость УВ увеличивается от алканов к цикланам и более резко к аренам. (Баженова, Бурлин, 2000)

Присутствие в воде растворенного газа также влияет на растворимость в ней УВ. (табл. 2) Влияние газа зависит от степени насыщения им воды, состава газа и температуры. Отрицательное влияние газов на растворимость в воде жидких углеводородов увеличивается в ряду азот-метан-этан-углекислый газ-пропан, (Баженова, Бурлин, 2000)

Рис. 8 Относительная растворимость УВ в воде с ростом температуры

По данным Л. Прайса в интервале температур 25-180С растворимость нефтей тяжёлого состава составляет первые граммы на 1м3, для лёгких этот показатель составляет сотни граммов на 1м3.

Таблица 2

Температура воды, С

Усреднённые значения растворимости смеси УВ, г/100г

Снижение растворимости смеси УВ в воде, насыщенной метаном, %

В пресной воде

В воде, насыщенной метаном

80 90 100 110 120 130 140

0.044 0.052 0.059 0.070 0.086 0.108 0.120

0.028 0.036 0.042 0.051 0.045 0.062 0.073

36 31 27 27 47 42 39

Из данной таблицы мы видим, что в среднем растворимость УВ в воде насыщенной метаном снижается на 27-47%. Это означает, что повышение газонасыщенности вод снижает растворимость УВ.

Так же на растворимость УВ оказывает влияние минерализация пластовых вод. Минерализация пластовых вод в природных условиях может варьировать от нескольких миллиграммов до сотен граммов на литр. Она оказывает непосредственное влияние на растворение УВ. По данным Л. Прайса растворимость пентана при 25С в дистиллированной воде равна 39.5 г/м3, в морской воде 27.6 г/м3, а в воде с большой минерализацией всего 2.01 г/м3. Если учесть во внимание, что большинство пластовых вод имеют высокую минерализацию, то растворимость УВ в них незначительна (Высоцкий, Высоцкий, 1986).

Мицеллярная растворимость УВ также имеет определенное значение для первичной миграции. Она была рассмотрена в работах В. Майншайна 1959г., М.И. Гербера и М.Ф. Двали 1961г., Э. Бейкера 1962 и 1967 гг., а так же С.Н. Белецкой 1978г. и др. Проведенные опыты по извлечению водой ОВ из глин показали, что количество извлекаемого РОВ превышает величину истинной растворимости его компонентов. Вероятно, причиной этому послужило существование в водном растворе углеводородных мицелл. Для образования мицелл в воде требуется значительное количество поверхностно-активных полярных веществ (ПАВ) - мицеллообразователей, например, жирных и нафтеновых кислот, а так же гетерогенных компонентов асфальтено-смолистых веществ, способных, по мнению Р. Корделла, давать высокомолекулярные коллоидообразующие вещества. Однако содержание таких веществ в пластовых водах несколько сотых грамм на литр. Кроме этого, для мицелл максимум их образования приходится на температуру 70С, а при дальнейшем повышении температуры они распадаются. Также в водных растворах, содержащих Ca и Mg, органические кислоты могут образовывать нерастворимые соли кальция и магния, что препятствует возникновению мицелл. Размер мицеллы достигает до 500 нм, что превышает диаметр сообщающихся пор в глинах в 100 - 50 раз, и исключает возможность их просачивания через глины. Таким образом, миграция УВ возможна только при наличии большого количества мицеллообразователей и глубине до 1.5 км, где глины ещё не уплотнены.

Возможность образования слабоконцентрированных эмульсий УВ в воде была высказана еще в 1909 году М. Мэнном. Позднее данная теория рассматривалась в работах М.Ф. Двали 1959 г., В.И. Сергеевича 1972 г., а так же Н.М. Кругликова и Н.С. Петрова в 1976 году.

Представление данной теории выдвигалось в двух тезисах:

Жидкие УВ образуются из ОВ в тонкодисперсном состоянии.

2. Возникает химическое эмульгирование УВ при взаимодействии кислотных компонентов ОВ с щелочными пластовыми водами, при pH равном 8-9.

А.А. Трофимчук, А.Э. Конторович и В.С. Вышемирский провели несколько экспериментов с предварительно дебитуминизированной и насыщенной водой глиной и тяжёлым остатком нефти. Глина подвергалась сжатию под давлением 15-30 Мпа и температуре 40-70С. В результате в отжатой воде, содержание нефтяного остатка составляло 0.0085%, что превышало его истинную растворимость в 4 раза. Экспериментаторы считают, что часть нефтяного остатка находилась в виде тонких эмульсий (Высоцкий, Высоцкий, 1986)

Эмиграция углеводородов в газорастворенном состоянии

Расчёт количественной интенсивности генерации УВ на различных стадиях превращения был произведён А.Э. Конторовичем, С.Г. Неручевым и др. по методу В.А. Успенского. Подсчеты объема генерации ОВ приведены в таблице 3.

Таблица 3

Стадии и подстадии литогенеза и углефикации ОВ

Количество высокомолекулярных УВ, смол и асфальтенов

г/100г ОВ

г/м3 породы при содержании 1% ОВ

Сапропелевое ОВ

Гумусовое ОВ

Сапропелевое ОВ

Гумусовое ОВ

ПК-Б

1.3

0.3

299

69

МК11

2.1

1.2

483

276

МК12

1.6

1.25

368

277

МК2

0.4

1.03

92

236

Из приведенных данных в таблице следует, что генерация высокомолекулярных УВ, смол и асфальтенов составляет сотни граммов на кубический метр осадка от протокатагенеза до газовой стадии углефикации при содержании сапропелевого ОВ, равного 1%. На стадии жирных углей генерация уменьшается. Для гумусового ОВ наблюдается обратная зависимость: в протокатагенезе и на буроугольной стадии углефикации объем генерирующихся УВ небольшой, а начиная со стадии метокатагенеза он резко увеличивается до сотен грамм на кубический метр породы.

Для расчёта удельной продуктивности материнских пород извлекаемых из РОВ растворителями используется следующая формула:

П = СовdKв * 100

П - удельная продуктивность породы;

Cов - содержание ОВ в породе;

D - плотность породы;

Кв - коэффициент выхода УВ из РОВ

Из расчётов данной формулы И.Ю. Корчагиной и О.П. Четвериковой была придумана классификация материнских пород по продуктивности:

Очень бедные материнские породы - продуктивность 10-50 г/м3 и коэффициент выхода УВ не более 0.5% от РОВ;

2. Бедные - продуктивность 50-100 г/м3 и выход УВ до 1%;

Средние - продуктивность 100-250 г/м3и выходом УВ до 9%;

Хорошие - продуктивность 250-500 г/м3;

Богатые и очень богатые - продуктивность 500-2500 г/м3.

К последнему типу относятся материнские породы баженовской свиты и доманиковой свиты. Наиболее распространены по мнению Корчагиной и Четвериковой материнские породы с продуктивностью от 250 до 500 г/м3, каковыми являются хорошие материнские породы с содержанием ОВ от 0.1 до 5% и коэффициентом выхода УВ от 10.87 до 0.21%

Изучение вопроса растворимости жидких УВ в природном газе было начато в 50х годах прошлого века Т.П. Жузе и М.А. Капелюшниковым и продолжается до настоящего времени. Главными агентами данного процесса являются давление и состав газа. Способность газа растворять жидкие УВ уменьшается в ряду пропан, двуокись углерода, метан, этан. Зависит она от наличия гомологов в газе. Так, например, по данным Л.Н. Королёва и Т.П. Жузе присутствие в газе 10-15% гомологов метана повышает растворимость жидких УВ подобно увеличению давления на 35 МПа. Метан при температуре 40С и давлении 10 МПа способен растворять парафиновые УВ в количестве 50-70 г/м3, а ароматические 10-49 г/м3. Смолы и асфальтены растворяются при высоком давлении, температуре и содержания в газе гомологом метана. Растворимость жидких УВ в природном горючем газе составляет десятки, а то и сотни грамм на 1 м3. (Высоцкий, Высоцкий, 1986)

Исследователями также установлено, что при прохождении сквозь материнскую породу углеводородный и углекислый газы способны извлекать жидкие УВ, смолы и асфальтены. Количество увеличивается при повышении давления, температуры, степени влажности и длительности воздействия на них газа. При этом наблюдается следующая последовательность извлечения: парафиновые УВ - нафтеновые - ароматические - смолистые вещества - асфальтены. М.А. Капелюшников, Т.П. Жузе и Л.С. Закс выяснили, что растворимость бензино-керосиновых фракций нефти составляет 50-60 г/м3 при давлении 15 Мпа и температуры до 50С, а при давлении 40 МПа и температуре более 90С растворимость достигает 100 г/м3. Также определено, что в пористой среде давление растворения нефти в газе ниже, чем в лабораторных опытах, что связано с сорбцией поверхностью пород наименее растворимых соединений.

Исследования в области определения роли угленосных и субугленосных толщ в генерации углеводородных газов также проводились многими исследователями. Основная заслуга в разработке этой проблемы принадлежит А.Л. Козлову, В.И. Ермакову, И.В. Еремину, М.В. Голицыну и др. В процессе преобразования органического вещества углей образуются различные газы. Большинством исследователей признаётся, что на высоких градациях катагенеза (глубины 4 км и выше) процесс газогенерации идёт особенно активно. Этот вывод очень важен для установления роли газа в миграции жидких УВ. Углеводороды, растворённые в газе, по-видимому, являются преобладающей формой перемещения в породах с очень мелкими порами. Эмиграция нефтяных углеводородов в виде газовых растворов доказана экспериментально. Существует также мнение о возможности перемещения нефти в виде пленки на поверхности пузырьков газа. На основе теоретических расчетов Н.М. Кругликов обосновал механизм миграции нефти в виде пленки на газовом пузырьке. При прохождении через жидкую фазу газовый пузырёк захватывает пленку нефти, толщина нефтяной плёнки не должна превышать 1/3 радиуса газового пузырька, масса же нефти может превышать массу газа более чем на порядок. (Баженова, Бурлин, 2000)

Эмиграция углеводородов в свободном состоянии

Возможность эмиграции жидких УВ в свободном состоянии определяется соотношением объёма генерации УВ с их количеством, способным раствориться в воде или газе. В условиях генерации УВ происходит растрескивание материнской породы под действием выхода паров легких УВ и воды. Выяснено, что при температуре 300?С (в недрах это соответствует условиям диагенеза) происходит образование трещин, связанных с выходом паров легких УВ и воды (рис. 9а). При температуре 400?С (конец ПК - начало МК) появляются крупные линзообразные трещины, образованные в местах наибольшей концентрации вновь образованных флюидов, на этом этапе происходит максимум генерации УВ (рис. 9б). При температуре 470?С (начало АК) новые крупные трещины не образуются, отмечаются мелкие трещины поперек напластования, соединяющие ранее образованные более крупные пустоты (рис. 9в), начинается процесс миграции. А при температуре 510?С уже изменений в структуре порового пространства не фиксируется. В процессе миграции разница давлений выравнивается, поры схлопываются и снова начинается процесс аккумуляции.

Рис. 9 Изменение структуры порового пространства (Корост, Надежкин, 2010)

а - нагревание до 300?С,

б - нагревание до 400?С,

в - нагревание до 470?С, красным пунктиром показаны зоны трещиноватости поперёк напластованию.

Если взять мощность материнской породы 20 метров, то площадная продуктивность материнской толщи будет 700 кг на 1м2. Площадная продуктивность рассчитывается по формуле

Ппл = 6,4CовКв

Измеряемая величина площадной продуктивности кг/м2. Площадная продуктивность позволяет подсчитать общий объём сгенерированных УВ и сравнить его с количеством УВ, растворившихся в воде или сжатом газе. Так, количество жидких УВ, которые способны раствориться в воде, измеряется лишь граммами на кубометр породы и иногда достигает нескольких десятков граммов при температуре 150С. В процессе эмиграции растворением УВ в воде можно пренебречь.

Генерирующийся в материнской толще газ растворяется в жидких УВ, а его избыток способен растворить легкие УВ при определенных термобарических условиях. Количество газа, растворившегося в жидких УВ характеризуется величиной газового фактора:

Qг = Cув G * 10-6

Сув - количество жидких УВ,

G - газовый фактор.

Растворённый в жидких УВ газ составляет лишь небольшую часть от объёма образующегося газа. Возможность растворения и переноса жидких УВ в газе происходит при контакте двух фаз: жидких и газовых находящихся в свободном состоянии. Такая возможность появляется на глубинах 3-4 км, то есть ниже зоны генерации жидких УВ, где образуются лёгкие УВ и газ. В таких условиях жидких УВ в газе достигает 100г/м3, а при меньших давлениях и температуре показатель уменьшается. Если принять площадную продуктивность жидких УВ равной 6.5 кг/м2, что является минимальным показателем для расчета значений, то количество газа, необходимое для растворения полученной нефти, составляет 86м3. Это можно наблюдать на глубинах свыше 3 км. Выше по разрезу предполагается раздельное существование газа и жидких газонасыщенных УВ в порах материнской породы. (Высоцкий, Высоцкий, 1986)

Возможность первичной миграции в виде самостоятельной жидкой непрерывной фазы рассматривалась многими исследователями (А.Н. Снарский, Б. Тиссо, и др.). Известно, что нефть плохо смачивает большинство минералов, и лишь поверхности частиц, имеющих битуминозное покрытие, родственное нефти, образуют пути, благоприятные для её движения. Движение потоков углеводородов может облегчаться наличием прожилок и трещин, заполненных керогеном. В богатых нефтематеринских породах типа баженовской свиты или формации Монтерей с содержанием ОВ 10-20% и выше эти керогеновые включения образуют непрерывную сеть. При высоких содержаниях сапропелевого ОВ, богатого липидными компонентами, в НМ толщах (более 5%) стенки поровых каналов оказываются смоченными не водой, а нефтью (микронефтью) (Баженова, Бурлин, 2000) (рис. 10).

Рис. 10 Зерна породы, покрытые пленкой нефти

Поверхностное натяжение, обычно возникающее на границе двух сред - воды и нефти, исчезает, и новообразованным УВ легко подниматься вверх. Эта гидрофобная система рассматривается как путь перемещения углеводородов. При этом углеводороды будут подниматься от участков большей их концентрации в сторону меньшей концентрации.

Существуют «слабые места» концепции первичной миграции УВ в свободном состоянии. Во-первых, жидкие УВ в стандартных условиях обладают более низкой, чем вода относительной проницаемостью, т.е. при выжимании из НГМП в первую очередь ее должна покинуть именно вода. Микронефти в этом случае может просто не хватить давления. Однако, при высоких температурах (более 100?С) вязкость воды уменьшается (в 2,5 раза). Также она снижается при насыщении воды газом, как это повсеместно отмечается в условиях ГЗН (в одном м3 нефти может быть растворено несколько десятков и даже сотен м3 газа). Соответственно в этих условиях вязкость нефти может сравняться с вязкостью воды или даже стать меньше, и тогда при выжимании из НГМП первой может уйти именно нефть.

Во-вторых, капельки микронефти имеют размеры, значительно превышающие диаметры межпоровых каналов в глинах. Для того, чтобы пройти через эти каналы капля должна изменить свою форму, что потребует немалых энергетических затрат на преодоление сил поверхностного натяжения.

В-третьих, при фильтрации жидких УВ через породу свою негативную роль будут играть сорбционные силы. Пленки сорбированных УВ будут сужать и без того неширокие межпоровые каналы. Но возможен вариант, когда УВ движутся не по всему объему породы, а выбирают устойчивые каналы (т.н. «тоннельный эффект» Р.Коллинза). Первые порции микронефти здесь уйдут на насыщение сорбционных связей, но последующие за ними пройдут относительно свободно. Только в пределах этих каналов достигается насыщение, необходимое для перемещения в непрерывной фазе (в виде струй) (рис. 11).

Рис. 11 Миграционные струи внутри резервуара

Таким образом, можно сделать выводы, что в истории существования материнской толщи происходит смена механизмов эмиграции жидких УВ. Изначально вынос УВ осуществляется в водорастворенном состоянии, позднее на уровне зоны генерации жидких УВ - в свободном состоянии, и в конце на самой поздней стадии с уменьшающейся ролью эмиграции в свободном состоянии - вынос происходит в газорастворенном состоянии. Границы и объемы стадий контролируются содержание ОВ в материнской свите, определяя ее продуктивность и геотермический градиент.

Наличие в материнских толщах значительного количества УВ указывает на то, что действующие механизмы эмиграции не способны обеспечить полного удаления их из породы, вследствие сорбционных и капиллярных явлений, наличия в материнской породе закрытых пор и микроловушек. Количество УВ, покинувших материнскую толщу называется коэффициентом эмиграции (Кэ). Корчагин и Четверикова рассмотрели методы подсчета коэффициента эмиграции и выяснили, что Кэ повышается с глубиной за счет смены малоэффективного механизма эмиграции в водорастворённом состоянии на более эффективную эмиграцию в газорастворённом состоянии, а также уменьшения объема уменьшения объема сорбционного и капиллярного захвата УВ, в связи с увеличением температуры и раскрытием части закрытых пор. Исследователи пришли к выводу, что коэффициент эмиграции жидких УВ не превышает 0.5. Также было выяснено, что Кэ газа составляет 0.9, а для жидких УВ, растворённых в газа несколько меньше 0.9. Связано это с большой вязкостью газа с растворенными жидкими УВ. (Высоцкий, Высоцкий, 1986)

В итоге процесс первичной миграции начинается с аккумуляции микронефти в порах нефтематеринской толщи. Пластовое давление растёт и в определенный момент становится аномально высоким, т.е. превышает гидростатическое. Увеличение давления происходит под действием уменьшения объёма пор и увеличения объёма генерируемого газа. В тот момент, когда давление в породах сильно превышает пластовое давление в порах коллектора, пустотное пространство не выдерживает и происходит флюидоразрыв. Эмиграция происходит под действием уменьшения объёма пор и увеличения объёма генерируемого газа

Также чтобы движение не прекращалось нужна постоянная подпитка. Огромное значение имеет смачиваемость стенок каналов при движении нефти. УВ, выжатые из материнских пород и объединившиеся в нефть, перемещаются струями среди пленок воды на поверхности зерен.

В процессе было выяснено, что газовые УВ мигрируют в водном растворе, а жидкие УВ в свободном состоянии. В процессе миграции разница давлений выравнивается, поры схлопываются и снова начинается процесс аккумуляции. Тем самым процесс миграции идёт не постоянно и носит импульсный характер.

Заключение

Миграция является важным этапом в формировании скоплений, залежей и месторождений углеводородов.

Первичная миграция имеет большое количество особенностей, которые необходимо учитывать при анализе истории движений флюида. Это время начала и длительность миграции, способы и формы миграции, физико-химические особенности.

Изучением процессов первичной миграции занимались многие российские и зарубежные учёные, но, к сожалению, целый ряд вопросов до сих пор остаётся без ответа.

Список литературы

1. Баженова О.К., Бурлин Ю.К., Соколов Б.А., Хаин В.Е. Геология и геохимия нефти и газа. Издательство Московского университета, 2000. 384 с.

2. Бурлин Ю.К., Конюхов А.И., Карнюшина Е.Е. Литология нефтегазоносных толщ. - М.: Недра, 1991. 287 с

3. Высоцкий И.В., Высоцкий В.И. Формирование нефтяных, газовых и конденсатногазовых месторождений. Москва «Недра», 1986. 228 с.

4. https://neftegaz.ru/ 13.12.2021г. 12.21

Размещено на Allbest.ru

...

Подобные документы

  • Процессы миграции флюидов в недрах. Масштабы и физико-химические особенности нефтематеринских толщ земной коры. Классификация и свойства коллекторов. Структура порового пространства. Эмиграция углеводородов в водо-, газорастворённом и свободном состоянии.

    курсовая работа [6,9 M], добавлен 19.04.2015

  • Группа гопанов как одна из групп углеводородов-биомаркеров, обнаруженная в нефтях. Специфика их хромато-масс-спектрометрии, структура этой группы углеводородов, методика изучения. Применение гопанов для повышения достоверности прогноза нефтегазоносности.

    курсовая работа [2,6 M], добавлен 20.04.2012

  • Определение и понятие флюидодинамики осадочных бассейнов. Анализ существующих гипотез происхождения нефти и формирования месторождений углеводородов. Критика осадочно-миграционной теории происхождения нефти и взгляды современных ученых на эту проблему.

    реферат [58,4 K], добавлен 28.06.2009

  • Роль осадочных горных пород в строении земной коры. Породообразующие салические и фемические минералы. Породы покрышки и их роль в формировании и скоплении углеводородов. Опробование, характеристика и освоение скважин в разных геологических условиях.

    контрольная работа [45,5 K], добавлен 04.12.2008

  • Факторы миграции нефти и газа в земной коре. Проблема аккумуляции углеводородов. Граничные геологические условия этого процесса. Главное свойство геологического пространства. Стадии выделения воды, уплотнения глин. Формирование месторождений нефти и газа.

    презентация [2,5 M], добавлен 10.10.2015

  • Давление флюидов под землей для гидростатических условий. Система "нефть-вода" в разведке и разработке, миграция углеводородов из нефтематеринской породы в породу-коллектор. Характеристика капиллярного давления. Кривые дренирования и впитывания.

    презентация [310,9 K], добавлен 14.09.2014

  • Физико-химические свойства пластовых жидкостей и газов. Состояние борьбы с потерями на объектах нефтяной отрасли и оценка их величины. Источники потерь углеводородов и предложения по их уменьшению. Мероприятия по охране окружающей среды и труда.

    курсовая работа [333,5 K], добавлен 28.11.2010

  • Историко-статистический метод прогноза начальных ресурсов углеводородов частично освоенного поискового объекта. Преимущества применения модели Хабберта для оценки балансовых изменений запасов. Построение логистической кривой роста начальных ресурсов.

    презентация [192,9 K], добавлен 17.07.2014

  • Состав, особенности добычи нефти. Влияние нефтехимического производства на окружающую среду. Природный газ и его основные компоненты. Виды ископаемых углей. Проблемы, возникающие при их добыче. Области применения углеводородных полезных ископаемых.

    презентация [1,5 M], добавлен 05.11.2014

  • Группы углеводородов (алканы, арены и нафтены) и неуглеводородных компонентов, составляющие нефть. Мировые ресурсы и месторождения полезного ископаемого. Состав природного газа и история его использования. Примеры применения ископаемых видов топлива.

    презентация [147,6 K], добавлен 05.11.2013

  • Геологическая характеристика Усть-Тегусского месторождения, его литолого-стратиграфический разрез, тектоническое строение. Свойства и состав пластовых флюидов. Запасы углеводородов. Потребность ингибитора для технологии периодического ингибирования.

    курсовая работа [136,7 K], добавлен 08.04.2015

  • Анализ петрофизических уравнений при оценке фильтрационно-емкостных свойств. Характер насыщения коллектора, запасы углеводородов на месторождении. Геофизическая, петрофизическая и литологическая характеристики песчаных пород-коллекторов разных типов.

    курсовая работа [2,0 M], добавлен 27.08.2010

  • Значение нефтегазовой промышленности в экономике Алжира. Динамика добычи, экспорта и доходов от реализации углеводородов. Характерные черты стратиграфии, тектоники страны. Структурно-тектонические этажи, выделяемые в строении плиты. Нефтегазоносность.

    реферат [34,0 K], добавлен 05.06.2012

  • Характеристика трех зон в толще осадочных образований по Соколову. Закономерности расположения месторождений нефти и газа в земной коре. Структура осадочных пород. Влияние тектоно-сейсмических процессов на генерацию углеводородов органическим веществом.

    реферат [27,7 K], добавлен 22.11.2012

  • Поиск нефти и газа на больших глубинах. Исследование геофизических полей в жестких термодинамических условиях с большей анизотропией среды. Зоны фазовых переходов (очаги возбуждения). Методы картирования источников углеводородов. Геофизический мониторинг.

    презентация [9,4 M], добавлен 28.11.2014

  • Геолого-промысловая характеристика ГКМ Медвежье, физико-химические свойства природных углеводородов и пластовой воды, оценка запасов газа. Техника и технология добычи газа, конденсата и воды. Этапы обработки результатов газодинамических исследований.

    курсовая работа [430,1 K], добавлен 06.08.2013

  • Полевые сейсморазведочные работы МОГТ2D, с обеспечением качественного прослеживания опорных и целевых отражающих горизонтов осадочного чехла и поверхности кристаллического фундамента. Обзор комплекса работ по определению новых залежей углеводородов.

    дипломная работа [12,9 M], добавлен 18.06.2022

  • Исследование методов вскрытия нефтяных залежей. Освоение скважин. Характеристика процесса технологических операций воздействия на призабойную зону пласта. Измерение давления и дебита скважин. Повышение эффективности извлечения углеводородов из недр.

    контрольная работа [53,2 K], добавлен 21.08.2016

  • Образование нефти и газа в недрах Земли. Физические свойства пластовых вод, залежей нефти, газа и вмещающих пород. Геофизические методы поисков и разведки углеводорода. Гравиразведка, магниторазведка, электроразведка, сейсморазведка, радиометрия.

    курсовая работа [3,3 M], добавлен 07.05.2014

  • Понятие главной фазы нефтеобразования. Космическая, минералогическая, флюидодинамическая и вулканическая гипотезы. Современные гипотезы минеральной концепции. Синтез углеводородов по методу Фишера-Тропша. Осадочно-миграционная теория образования нефти.

    курсовая работа [1,5 M], добавлен 27.10.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.