Монометаллические формы плоской офсетной печати копированием с фотоформ

Разработка технологии изготовления монометаллических форм плоской офсетной печати копированием с фотоформ для издания рекламной листовки малым тиражом. Изготовление форм плоской офсетной печати поэлементной записью и прямым электрофотографированием.

Рубрика Журналистика, издательское дело и СМИ
Вид курсовая работа
Язык русский
Дата добавления 22.02.2020
Размер файла 77,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

КУРСОВАЯ РАБОТА

по дисциплине «Технология формных процессов»

Монометаллические формы плоской офсетной печати копированием с фотоформ

РЕФЕРАТ

Цель работы: разработка технологии изготовления монометаллических форм плоской офсетной печати копированием с фотоформ для издания рекламной листовки малым тиражом.

Работа содержит: 35 страницы, 7 иллюстраций, 2 схемы, 11 таблиц.

Ключевые слова: фотоформа, монтаж фотоформ, формная пластина, копировальная рама, проявочная машина, экспонирование, проявление, растр, разрешающая способность, шероховатость, тиражестойкость, копировальный слой.

Сокращения: КС - копировальный слой,

ОНХД - ортонафтохинондиазид,

ПВС+Д - поливиниловый спирт + диазид,

ФПК - фотополимерная композиция,

ФВУ - фотовыводное устройство,

РОМ - репродуцируемый оригинал-макет.

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ

1. Техническая характеристика изделия

2. Выбор технологии печати

2.1 Типографская (высокая) печать

2.2 Глубокая печать

2.3 Офсетная печать

2.3.1 Малоформатная офсетная печать

2.3.2 Листовой офсет

2.3.3 Рулонный офсет

2.4 Выбор технологии

3. Выбор технологии изготовления печатных форм

3.1 Изготовление форм плоской офсетной печати поэлементной записью

3.2 Изготовление форм плоской офсетной печати форматной записью прямым фотографированием и прямым электрофотографированием

3.3 Изготовление форм плоской офсетной печати форматной записью копированием с фотоформ

3.3.1 Негативное копирование

3.3.2 Позитивное копирование

3.4 Выбор технологии

4. Выбор технологии, материалов и оборудования для изготовления фотоформ

5. Выбор материалов и оборудования для изготовления печатных форм

5.1 Выбор формных пластин

5.2 Выбор копировального оборудования

5.3 Выбор оборудования для обработки копий

6. Сквозной контроль качества

6.1 Требования к оригиналам

6.2 Требования к фотоформам

6.2.1 Общие требования к штриховым и растровым фотоформам

6.2.2 Основные требования к растровым диапозитивам

6.2.3 Требования к цветоделенным фотоформам

6.2.4 Методы оценки качества

6.3 Требования к печатным формам

6.3.1 Контроль качества печатных формам

ВЫВОДЫ

СПИСОК ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Сегодня в России насчитывается около 6 тысяч полиграфических предприятий Данные приведены по «Пресс-Бюллетеню». Вып. № 46 от 23 ноября 1997 г.. По размерам их можно условно разделить на три группы:

1 группа - крупные предприятия мощностью свыше 500 млн. листов/оттисков и численностью персонала около 1 тыс. человек: издательско-полиграфические газетные и газетно-журнальные комплексы в Москве, Санкт-Петербурге, Нижнем Новгороде, Самаре, Екатеринбурге, Новосибирске и других крупных городах; полиграфические комбинаты в Чехове, Можайске, Твери, Ярославле, Смоленске, Саратове; книжные и книжно-журнальные предприятия - Первая Образцовая типография, «Красный Пролетарий», «Молодая Гвардия», «Детская книга» (в Москве), «Печатный Двор, «Техническая книга» им. Ив. Федорова (в Санкт-Петербурге). Всего таких предприятий около 50;

2 группа - предприятия мощностью от 50 до 500 млн. листов/оттисков и численностью персонала 100-500 человек: республиканские, краевые, областные и городские типографии универсального типа; специализированные предприятия по выпуску изобразительно-этикеточной, упаковочной, билетной, бланочной продукции; межрайонные типографии, осуществляющие централизованную печать районных газет. К этой группе относится около 200 предприятий;

3 группа - мелкие районные типографии, производственные участки, минитипографии, магазины-салоны полиграфических услуг - это самая многочисленная группа предприятий.

Объем производственных мощностей по выпуску полиграфической продукции распределяется следующим образом:

43-44% - мощности по выпуску книжно-журнальной продукции;

41-42% - по выпуску газет;

5-6% - по выпуску изобразительно-этикеточной продукции;

6-7% - по выпуску бланочной продукции.

И все-таки, какую продукцию выгодно производить? Инга Замуруева. Сколько в полиграфию ни вложи, все окупиться. Коммерсант № 48, 2000.

Самый эффективный бизнес - оперативная полиграфия. В основном ею занимаются частные типографии. Они печатают визитки, рекламные буклеты, листовки, открытки, этикетки и упаковку. Заимствованные на Западе методы работы позволяют выполнять любую прихоть заказчика. На современном оборудовании можно печатать любое количество экземпляров на любой бумаге. Сегодня средняя цена полиграфической продукции в Москве составляет от $0.2 до $2 за лист формата А3 с цветным односторонним изображением. Множительная техника позволяет за считанные минуты отпечатать несколько тысяч экземпляров. Сейчас наступает эпоха флексографии - печать фантиков и упаковки с помощью безвредных быстрозакрепляющихся красок. Любые вложения окупятся максимум за год. До кризиса 1998 года по некоторым видам продукции каждый вложенный рубль приносил 5-10 рублей прибыли. Например, визитка продавалась в 10 раз дороже себестоимости. Сейчас прибыльность по ним снизилась до 200%. Получается, что полиграфия прибыльнее торговли. Но на рынке периодической печати наблюдается обратный эффект.

Печать периодических изданий по экономическим показателям нерентабельна. Государственные полиграфкомбинаты большей частью убыточны, простаивают огромные цеха. При этом стоимость оборудования и расходных материалов постоянно растет, а газету дороже двух рублей продать трудно. Да и тиражи ниже 50 тысяч экземпляров для периодики неинтересны. Но отдача от газет и журналов вполне ощутима, даже если издание неэффективно с экономической точки зрения. Информация - товар дорогой. Любая напечатанная фраза, если она «попала в цель», имеет экономический эффект.

Могут ли типографии, печатающие периодику, получать доходы от другой полиграфической продукции? Могут. Но здесь в дело вступают технологии. Не всякая печатная машина может печатать и газету, и этикетку. Для оперативной печати газет лучший вариант - рулонное оборудование. Самая медленная ротационная машина может печатать 20 тысяч экземпляров в час. Но в районных и городских типографиях она может простаивать до 80% времени. Еще один минус - такая машина не может печатать и на офсетной, и на мелованной бумаге. Формат тоже нельзя менять. Можно, конечно, установить две рулонные машины: для простых газет и для печати на мелованной бумаге. Но за это придется выложить больше $1 млн. Компромиссный вариант - установка листовых машин, которые могут печатать прибыльную продукцию. У листового офсета меньшая скорость и незаконченный цикл, но печать дешевле даже с учетом затрат на финишную обработку.

Опираясь на приведенные выше данные, в совей работе я хочу рассмотреть технологию получения печатных форм для изготовления малоформатной рекламной листовки малым тиражом.

1. Техническая характеристика изделия

Название показателей

Выпускаемое изделие

1. Вид изделия

Рекламная листовка

2. Формат изделия

А4 (210х297) мм

3. Материал:

3.1. Бумага:

Плотность

130 г/м2

Толщина

100 мкм

Белизна

96% ISO

Пухлость

0,96 см3/г

3.2. Краски:

2525-35-1; 2525-24-1; 2525-58-1; 2525-01

3. Красочность

4+4

4. Информационное содержание

Иллюстрации - 60%.

Текст - 40%

5. Характер изображения

Растровое - 120 лин/см (300 lpi)

6. Тираж

2000 экз.

7. Варианты оригинала

Сверстанный и оцифрованный оригинал-макет

Иллюстрации - слайды, текст - набранный в цифровом виде

Иллюстрации - цветные на непрозрачной основе, текст - машинописный лист

2. Выбор технологии печати

2.1 Типографская (высокая) печать

В высоком способе печати используются формы с выступающими печатающими элементами и углубленными пробельными (рис. 1).

Данный способ служит для изготовления самой разнообразной продукции - от ежедневных газет до высокохудожественных изобразительных изданий. Характерными признаками типографской печати являются [1]:

красочный слой толщиной 2-3 мкм;

оборотный рельеф (деформация запечатываемого материала из-за избыточного давления при

печати);

заметный рельеф букв.

К достоинствам высокого способа печати относятся:

хорошая разрешающая способность (печать с линиатурой растра 60-80 лин/см);

достаточная графическая, градационная и колористическая точность воспроизведения различных по своему характеру изображений;

стабильность качества воспроизведения изображения во всем тираже, что обусловлено отсутствием таких нестабильных процессов, как увлажнение печатных форм (в офсетной печати) или удаление краски с пробельных элементов форм (в глубокой печати).

Поверхность печатной формы высокой печати химически нейтральна и может воспринимать любой раствор, т.е. эти формы можно использовать для печати с применением красок как на жировой основе, так и на базе водных и спиртовых растворителей.

Основными стимулами развития высокой печати стали внедрение гибких и легких форм с малой глубиной пробельных элементов (0,4-0,7 мм), изготовленных на микроцинке [2], а также создание и применение фотополимерных пластин.

Высокая печать с металлических печатных форм в настоящее время используется редко, а печать с гибких форм на ротационных печатных машинах очень часто используется для изданий с большим тиражом.

Главными причинами, сужающими применение типографской печати, являются большая трудоемкость подготовительных операций и практически полное отсутствие в ее арсенале такого печатного оборудования, которое позволяло бы одновременно повысить иллюстративность и в соответствии с этим красочность изданий.

2.2 Глубокая печать

Данный способ печати предполагает использование высокоскоростных ротационных машин (60-80 тыс. цикл/ч и более). Печатная форма представляет из себя цилиндр с углубленными печатными элементами, и возвышающимися пробельными (рис. 2).

Основными достоинствами способа глубокой печати являются [1]:

высокие скорости, достигаемые благодаря использованию красок на основе летучих растворителей;

возможность применения больших форматов (до 6 м);

простое регулирование толщины красочного слоя на запечатываемом материале;

возможность обеспечения выразительных цветовых (декоративных) и градационных (плотностных) эффектов (передача полутонов за счет изменения толщины красочного слоя и вследствие этого - отсутствие муара).

К недостаткам данного способа можно отнести:

использование вредных, токсичных и взрыво- и пожароопасных красок;

наличие пилообразного края штриховых элементов (это связано с тем, что растрирование происходит на стадии изготовления печатной формы - создание ячеек (печатающих элементов), при этом растр имеет квадратную, а не круглую или овальную форму).

Глубокая печать считается оптимальным технологическим вариантом изготовления в первую очередь массовой иллюстрированной одно- и многокрасочной печатной продукции. Она прочно удерживает свои позиции за рубежом благодаря применению электронно-механического и лазерного гравирования печатных форм непосредственно с оригинала [5]. В нашей стране она практически не используется.

2.3 Офсетная печать

В способе плоской офсетной печати используются печатные формы, на которых печатающие и пробельные элементы расположены практически в одной плоскости. Они обладают избирательными свойствами восприятия маслосодержащей краски и увлажняющего раствора - воды или водного раствора слабых кислот и спиртов [6]. Печатающие элементы формы - гидрофобные, пробельные - гидрофильные (рис. 3).

Основным отличием данного способа печати от высокой и глубокой печати является использование промежуточной поверхности (офсетного цилиндра) при переносе краски с печатной формы на запечатываемый материал.

На данный момент офсетная печать является наиболее развитым и часто используемым способом печати. За последние десятилетия она прогрессивно развивалась, что обусловлено рядом причин [1]:

универсальные возможности художественного оформления изданий;

возможность двухсторонней печати многокрасочной (в том числе и высокохудожественной) продукции в один прогон;

доступность изготовления крупноформатной продукции как на листовых, так и на рулонных машинах;

наличие высокопроизводительного и технологически гибкого печатного оборудования;

улучшение качества и появление новых основных и вспомогательных технологических материалов, прежде всего бумаг, красок, декельных пластин;

внедрение в практику достаточно гибких и эффективных вариантов формного производства.

Современное офсетное производство характеризуется интенсивным использованием электронной техники на всех стадиях подготовки издания к печати и проведения печатного процесса, а также достаточно широким внедрением элементов стандартизации и оптимизации [6].

Значительные изменения претерпело в последние десятилетия офсетное печатное оборудование - это многокрасочные машины, построенные по модульному принципу, обладающие широкими возможностями. К их важнейшим достоинствам относятся:

возможности изменения формата и красочности печатания;

широкая номенклатура запечатываемых материалов (от легких бумаг с толщиной до 0,05 мм и массой менее 40 г/м2 до картона толщиной до 1,0 мм и массой до 1000 г/м2);

достаточно высокая рабочая скорость (до 10 - 17 тыс. оттисков/час для листовых машин и более 45 тыс. оттисков/час для рулонных);

сравнительно небольшая величина отходов бумаги и высокая экологичность.

Хотя технические принципы офсетной печати остаются неизменными, используемое печатное оборудование можно разделить на три основные категории: малоформатное, листовое и рулонное. Для правильного выбора технологии рассмотрим особенности этих трех видов оборудования Пункты 2.3.1-2.3.3 - см. Пиккок Дж. Издательское дело: от замысла до упаковки шаг за шагом. М.: Эком, 1998, с. 250-251.

2.3.1 Малоформатная офсетная печать

Малые офсетные машины обычно предназначены для печати на листах формата А4 (297х210 мм), а также на листах A3 (397х420 мм) или чуть больших - до 320х450 мм включительно.

В книжном производстве такие машины используются для малотиражных изданий. Их применение эффективно при тиражах от 50 до 750 экз. Здесь обычно используются бумажные и пластиковые печатные формы, получаемые непосредственно с оригинал-макета с помощью автоматических систем изготовления форм (или с помощью определенных типов фотонаборных устройств).

Большинство оборудования этого типа предназначено для однокрасочной печати, но существуют также машины для двухкрасочной печати, используемые в основном для выполнения небольших коммерческих заказов.

2.3.2 Листовой офсет

Листовые офсетные машины составляют добрую половину от всего парка печатных машин. Формат листов для таких машин начинается с A3 и выше - от 320х450 мм до 1200х1600 мм или даже еще больше.

Для всех листовых машин задаются минимальные и максимальные размеры листа, что существенно увеличивает гибкость их использования и экономичность при работе с различными форматами. Для рулонных машин размеры задаются гораздо более жестко.

Одно-, двух- и четырехкрасочные машины, как правило, допускают больший размер листов, в то время как пяти- и шестикрасочные печатные машины работают с листами меньшего размера и чаще всего используются для печати обложек.

Листовые офсетные печатные машины хорошо подходят для однокрасочных или многокрасочных изданий при среднем тираже, их также следует выбирать для работы с книгами нестандартного формата.

2.3.3 Рулонный офсет

Рулонные офсетные машины, как правило, используются для печати изданий с большим тиражом и в особенности для многотиражной цветной печати. Здесь важно помнить, что они осуществляют не только печать, но и фальцовку листов: конечным продуктом для всех рулонных офсетных машин являются сфальцованные тетради, готовые к подборке и переплету.

Кроме двух основных преимуществ этих машин (по сравнению с листовыми офсетными машинами они гораздо более производительные, и в качестве готового продукта выдают сфальцованные тетради), у них есть и недостатки - форматы, предлагаемые основными типами рулонных машин, довольно строго ограничены по сравнению с возможностями гибкого задания форматов для листовых машин, в результате чего имеет место больший расход бумаги и большее количество бумажных отходов.

2.4 Выбор технологии

Исходя из вышесказанного можно сделать следующие выводы:

Способ высокой печати не подходит для издания рекламных листовк из-за ограничения при воспроизведении иллюстрационного материала, возможности возникновения оборотного рельефа, а также экономически невыгодно печатать на данном оборудовании малые тиражи;

Глубокая печать практически не используется в нашей стране, существующее оборудование высокоскоростное и не пригодно для печати малых тиражей;

Офсетный способ печати дает возможность выпускамалотиражной и малоформатной продукции, допускает использование различных бумаг, печати с двух сторон четырьмя красками (хотя для данной продукции это не является обязательным условием).

Следовательно, для печати рекламной листовки с приведенными выше характеристиками (см. п. 1), мы выбираем офсетный способ печати.

3. Выбор технологии изготовления печатных форм

Печатные формы для

офсетного способа печати

Полученные

форматной записью

Полученные

поэлементной записью

Копированием

Прямым

фотографированием

Прямым электрофото-графированием

Лазерным

воздействием

Позитивное копирование

Негативное копирование

Серебросодержащие

светочувствительные слои

Бессеребряные

светочувствительные слои

«Сухое» проявление

«Мокрое» проявление

с РОМ

с ТНИ или из ЭВМ

Фотохимическое

воздействие

Химическое

воздействие

Электрофотогра-

фическое

воздействие

Тепловое

воздействие

Металлические

Полимерные и бумажные

Пробные

Тиражные

Металлические

Полимерные

Бумажные

Запись в автономном устройстве

Запись в печатной машине

Металлические

Полимерные

Схема 1. Изготовление форм плоской офсетной печати

Формы плоской офсетной печати отличаются от форм высокой и глубокой печати по двум основным признакам [3]:

по отсутствию геометрической существенной разницы в высоте между печатающими и пробельными элементами (толщина КС: 2-4 мкм);

по наличию принципиального различия физико-химических свойств поверхности печатающих и пробельных элементов.

Для получения данных форм необходимо создать на поверхности формного материала устойчивые гидрофобные печатающие и гидрофильные пробельные элементы.

Два основных способа получения печатных форм - это форматная и поэлементная запись. Форматная запись - это запись изображения по всей площади одновременно (фотографирование, копирование). При поэлементной записи площадь изображения разбивается на некоторые дискретные элементы, которые записываются постепенно элемент за элементом (запись при помощи лазерного излучения).

3.1 Изготовление форм плоской офсетной печати поэлементной записью

Данный способ получения печатных форм подразумевает использование лазерного воздействия. Печатные формы изготавливают в системах прямого получения печатных форм или напрямую в печатной машине (системы Computer-to-Plate, Computer-to-Press). Используются различные свойства лазерного воздействия [5]:

тепловое воздействие - выжигание или термическое разложение тонких пленок на пробельных или печатающих элементах будущей печатной формы;

фотохимическое воздействие на светочувствительный слой формного материала;

электрофотографическое воздействие на фотополупроводниковый слой.

Страничные PostScript-файлы управляют устройством экспонирования, которое формирует форму подобно тому, как это делает фотонаборная машина. Однако в этом случае программное обеспечение еще и осуществляет размещение страниц на форме в соответствии с принятой схемой организации спусков [2].

Под технологией «компьютер - печатная машина» (Computer-to-Press) обычно подразумевается офсетная печать без увлажнения с вещественной формы. Получение печатных форм по данной технологии идентично их получению по технологии «компьютер -печатная форма» (Computer-to-Plate). Разница состоит в том, что изображение экспонируется на формную пластину, размещенную на формном цилиндре печатной машины, а не в специальном устройстве [4]. Эта технология применяется в электрофотографических, магнитофотографических и других подобных печатных устройствах, где изображение формируется при каждом обороте цилиндра.

Для технологии Computer-to-Press характерны тиражи от 1 до 500 экземпляров, большая страничность, возможность персонализации (т.е. на каждом новом оттиске будет полностью или частично обновлена информация). Для Computer-to-Plate -тиражи от 500 экземпляров при малой страничности.

В современном полиграфическом производстве данные технологии пока еще не заняли ведущее место. Их внедрение сдерживают дорогостоящие оборудование и формные материалы (импортного производства). Себестоимость оттисков, полученных данными способами, колеблется от 0,32$ до 1,6$ (без учета стоимости бумаги) [17].

3.2 Изготовление форм плоской офсетной печати форматной записью прямым фотографированием и прямым электрофотографированием

Технологический процесс изготовления печатных форм прямым фотографированием включает:

проекционное экспонирование (фотографирование РОМ на формную пластину);

физико-химическая обработка формной пластины (проявка, «стоп-вана», фиксироавние, промывка).

Особенность данного способа изготовления печатных форм - непосредственная запись информации на формную пластину, минуя стадию изготовления фотоформы. В качестве РОМ используется бумажный полосный оригинал-макет, содержащий текст, штриховые и растровые изображения. Технология основана на использовании различных типов формных пластин [13]:

с высокочувствительным КС, светочувствительность которого сравнима со светочувствительностью технических фотопленок (КС содержит галогенид серебра);

с серебросодержащим фотоприемным слоем.

Печатные формы, полученные данным способом, обладают максимальной линиатурой 80 лин/см. Для изготовления малых тиражей данная технология нерентабельна, так как используются материалы, содержащие драгоценный металл (серебро).

Электрофотографирование - это процесс получения текстовой и изобразительной информации на специальных слоях, электрические свойства которых изменяются в соответствии с количеством поглощенного слоем светового излучения [5]. Светочувствительным слоем служат неорганические или органические фотополупроводники. Данные вещества обладают в темноте хорошими диэлектрическими свойствами. Они удерживают некоторое время заряд, полученный при электризации их каким-либо истоником тока, но под действием света деполяризуются прямо пропорционально интенсивности светового потока.

При прямом электрофотографировании изображение и текст формируются непосредственно на фотополупроводниковом электрофотографическом слое. Этот процесс выполняется по следующей схеме:

электризация слоя;

экспонирование проявления (сухими или жидкими проявителями);

закрепление изображения при нагревании или в парах растворителя красящих частиц.

Электрофотография характеризуется простотой процесса, низкой его стоимостью, быстротой получения копий (от 3,5 до 1 мин) и пр. Но качество изображения невысокое [5]. В полиграфическом производстве эта технология нашла применение только в печатной машине фирмы Indigo. Но электрография широко используется в копировальных процессах, множительной технике - ксерокасах и принтерах.

3.3 Изготовление форм плоской офсетной печати

форматной записью копированием с фотоформ

В данном процессе изготовления печатных форм используются промежуточные фотоформы, которые должны обладать определенными свойствами (см. п. 5.2). Данные формы представляют собой прозрачную основу, на которой расположены полосы издания.

При использовании ЭВМ спуск полос осуществляется непосредственно в компьютере, а затем выводится на пленку (фотоформу) при помощи ФВУ. Если для каждой полосы изготавливается отдельная фотоформа, то затем надо провести монтаж (готовая фотоформа должна соответствовать печатной и содержать количество полос, равное доле листа издания).

3.3.1 Негативное копирование

При изготовлении форм плоской офсетной печати негативным копированием в качестве фотоформы используются негативы, а в качестве формных пластин либо монометаллические (алюминиевые) с нанесенным на них КС на основе ФПК, либо биметаллические (полиметаллические) пластины с КС основе ПВС.

Процесс получения печатной формы состоит из следующих стадий:

экспонирование через негатив, в результате чего проходящий через прозрачные участки свет вызывает дубление (фотополимеризацию) только на будущих печатающих элементах формы по всей толщине КС;

проявление копии (для слоев на основе ПВС - проявителем является вода, для солев на основе ОНХД - проявитель, имеющий щелочную среду);

финишинговая обработка копии.

Слои на основе ПВС сняты с производства, так как обладают таким вредным свойством, как темновое дубление. Пластины с фотополимерным КС на данный момент выпускаются только за рубежом, поэтому очень дороги.

Кроме монометаллических форм, негативным копированием изготавливаются и полиметаллические формы (чаще всего биметаллические), где печатающие и пробельные элементы находятся на разных металлах. Данные формы изначально предназначались для печати больших тиражей, но на данный момент они уже не используются.

монометаллический офсетный печать фотоформа

3.3.2 Позитивное копирование

Этот способ является основным для изготовления монометаллических форм. Он характеризуется простотой и малооперационностью, легко автоматизируется и позволяет получать формы с хорошими технологическими свойствами для печати разнообразной продукции тиражами от 100-150 тыс. оттисков и выше [5].

Для процесса изготовления монометаллических печатных форм используются пластины из зерненного алюминия с нанесенным на него светочувствительным слоем на основе ОНХД.

Процесс получения печатной формы содержит следующие стадии:

экспонирование Время экспонирования обычно составляет несколько минут. Оно зависит от светочувствительности КС. через диапозитив, в результате чего проходящий через прозрачные участки свет вызывает фотохимическое разложение диазосоединения только на будущих пробельных элементах формы по всей толщине КС;

проявление копии При проявлении фирменных пластин для получения качественно результата, обещаемого компанией, необходимо использовать проявители той же фирмы, иначе качество полученной формы не будет соответствовать заявленному.;

«стоп-ванна» - промывка проявленной копии водой для остановки процесса проявления;

гидрофилизация пробельных элементов - дання стадия необходима только при использовании пластин отечественного производства, она заключается в обработке пробельных элементов гиброфилизующимся раствором, который при высыхании образует устойчивую гидрофильную пленку;

нанесение защитного слоя (гуммирование) - данная стадия необходима для защиты поверхности печатной формы от загрязнения, окисления и повреждения при хранении и установки ее в печатную машину. В качестве защитного слоя используется растворимый в воде полимер (крахмал или декстрин).

Для повышения тиражестойкости монометаллических форм используют термическую обработку (сразу после «стоп-ванны») в течение 3-6 минут при 180-200 оС.

Заметим, что все стадии изготовления форм плоской офсетной печати позитивным копированием автоматизированы. На рынке в большом количестве представлены разнообразное оборудование и материалы отечественного и импортного производства, подобрать их не составит большой сложности.

3.4 Выбор технологии

Исходя из всего вышесказанного для изготовления печатной формы рекламной листовки выбираем способ позитивного копирования. Выбор основан на следующем:

технологический процесс изготовления печатных форм хорошо изучен и хорошо контролируем;

все стадии позитивного копирования с фотоформ автоматизированы;

существуют разнообразные материалы и оборудование как отечественного, так и импортного производства.

4. Выбор технологии, материалов и оборудования для изготовления фотоформ

Существует несколько способов изготовления фотоформ:

фотографирование оригинала, изготовленного на непрозрачной подложке (растрирование изображения), проявление и фиксирование копий, изготовление диапозитива, спуск полос, монтаж фотоформ;

вывод оцифрованного спускового оригинал-макета через RIP (Raster Imaging Processor) на фотовыводное устройство.

Первый вариант изготовления фотоформ трудоемок и долог, хотя большая часть операций в нем автоматизирована (имеются специальные проявочные процессоры, современные фотоаппараты и другое оборудование). Второй вариант, более современный, позволяет экономить время на изготовление фотоформ, что очень важно для оперативной полиграфии. Поэтому для изготовления рекламных листовок я выбираю второй вариант - изготовление фотоформ с оцифрованного спускового оригинал-макета на фотовыводное устройство.

Определим основные требования к получаемым фотоформам (см. рис. 5) Требования, предъявляемые к качеству фотоформ, см. п. 6.2. раздела «Сквозной контроль качества».:

должны быть растровыми;

комплект фотоформ должен состоять из 4 пленок - одна форма для одной краски - голубой, пурпурной, желтой, черной;

должны содержать приводочные метки и контрольные шкалы

должны быть зеркальными;

спуск фотоформы - «оборот - своя» (данный вид спуска позволит напечатать тираж без дополнительной смены печатных форм).

В данной работе я не буду выбирать компьютерное оборудование и программное обеспечение к нему, остановлюсь только на выборе фотовыводного устройства (фотонаборного автомата).

Практически все современные выводные системы являются PostScript-совместимыми и состоят из трех частей:

RIP (Raster Imaging Processor);

экспонирующее устройство;

проявочная машина.

Третья составная часть фотовыводного комплекса (проявочная машина) может как подсоединяться к записывающей секции (вариант On-line), так и устанавливаться отдельно (вариант Off-line). В последнем случае одна проявочная машина может с большим или меньшим успехом использоваться для обслуживания нескольких экспонирующих устройств. Некоторые выводные устройства являются универсальными, т. е. могут работать и с On-line, и с Off-line проявочными машинами. Другие поставляются в различных вариантах для разных способов стыковки с проявочной машиной или вообще допускают только один из вариантов [14].

Для обеспечения записи изображения необходимо взаимное перемещение источника света и фотоматериала в двух взаимно перпендикулярных направлениях.

На сегодняшний день известны три схемы построения выводных фотонаборных устройств:

пошаговая протяжка плоского фотоматериала с помощью системы валов и развертка лазерного луча в направлении, перпендикулярном движению пленки (способ построения «капстан»);

спиральная развертка лазерного луча по внутренней поверхности неподвижного барабана с закрепленной на ней пленкой ("внутренний барабан");

перемещение записывающей головки параллельно оси вращающегося барабана с закрепленной на его внешней поверхности пленкой ("внешний барабан").

Все три системы базируются на использовании монохроматических источников света - газовых или полупроводниковых лазеров, что обеспечивает малое рассеивание светового потока в оптическом тракте и достаточно точную фокусировку луча. Подсистема управления включает в себя несколько электронных блоков в записывающей секции и растровый процессор.

На данный момент на рынке допечатного оборудования представлены различные типы фотонаборных аппаратов как отечественного (устройство ФЛП300), так и зарубежного производства (Dolev 4press/V и 4press, Dolev 250 и 450).

Рассмотрим и сравним их технические характеристики:

Таблица 1

Сравнительная характеристика фотонаборных аппаратов

Наименование показателя

Наименование аппарата

Scitex Dolev 4press/V

Scitex Dolev 250

Scitex Dolev 450

ФЛП300

Тип аппарата

построен по схеме с внутренним барабаном

построен по схеме с внутренним барабаном

построен по схеме с внутренним барабаном

построен по схеме «капстан»

Источник излучения

лазерный диод с длиной волны 650 нм

HeNe лазер с длиной волны 632.8 нм

HeNe лазер с длиной волны 632.8 нм

Аргоновый лазер

Формат, мм

743x580без перфорации,

743х550 с перфорацией вдоль широкой стороны пленки

358x500

642x500

900х900

Скорость экспонирования

22.4 кв. см/сек при разрешении 2540 dpi,

42 кв. см/сек при разрешении 2032 dpi

20 кв. см/сек при разрешении 2540 dpi

20 кв. см/сек при разрешении 2540 dpi

22.4 кв. см/сек для формата А3

Ширина материала, мм

от 254 до 749 с шагом 25

380

660

до 300

Линиатура

625 lpi

до 250 lpi

до 250 lpi

до 80 lpi

Разрешение

1524-4064 dpi.

1524-3556 dpi

1524-3556 dpi

Размер пятна, мкм

10-25

10-25

10-25

Длина отреза материала, мм

А) с Оn-line проявочной машиной

от 254 до 620

от 250 до 534

от 250 до 534

Б) при выгрузке пленки в аккумулирующую кассету

100 до 2000

Стандартные компоненты

Экспонирующее устройство. TurboScreening. Кабель связи между RIP и Dolev. Приемная и подающая кассеты, интерфейс к проявочной машине. Растровый процессор

Экспонирующее устройство. Turbo Screening. Кабель связи между RIP и Dolev. Приемная и подающая кассеты, интерфейс к проявочной машине. Растровый процессор

Экспонирующее устройство. Turbo Screening. Кабель связи между RIP и Dolev. Приемная и подающая кассеты, интерфейс к проявочной машине. Растровый процессор

Для полной комплектации фотовыводного комплекса рассмотрим и сравним технические характеристики проявочных машин.

Таблица 2

Сравнительная характеристика проявочных машин

Наименование

показателя

Наименование машины

Glunz&Jensen MultiLine 720

Glunz&Jensen MultiLine 860

Norscreen MS 17D

Norscreen MS 33D

EchoGraphic Hope EG 750

Подключение к ФНА

Dolev 450

Dolev 4press

Dolev 250

Dolev 450

Dolev 450, 4press

Максимальная ширина материала, см

66

75

42

84

75

Минимальный размер проявляемой пленки, см

13x25

25x25

10x10

10x15

18х10

Длина транспортера в проявителе, см

32

Емкость ванн для проявителя и фиксажа, л

18.5

21.5

12

22

25

Объем циркуляции, л/мин

10

15

22

Скорость проявления при времени проявки

30 с, см/мин

64

Скорость проявления при времени проявки 20 с, см/мин

100

100

Потребление воды, л/мин

3.3

3.3

3.5

Мощность, Вт:

максимальная,

в режиме проявления,

в режиме ожидания

5500

~2400

~810

5500

~2500

~820

3500

5500

3700

600

550

Диаметр выходного отверстия встроенной системы вентиляции, см

10

10

10

10

10

Время проявления, с

от 15 до 60

от 15 до 60

от 10 до 60

от 10 до 60

от 15 до 90

Диапазон температур реактивов, °С

20-50

20-50

20-45

20-45

25-45

Подключение к воде

3/4”

3/4”

3/4”

3/4”

3/4”

Подключение для слива отработанных жидкостей

3х1”

3х1”

3х1”

3х1”

3х1”

Масса без учета массы реактивов, кг

130

189

108

160

233

Габаритные размеры, включая мост, ДхШхВ, мм

1680х1005х1070

1760х1150х1080

1600х600х1100

1600х1010х1100

2280х 1400

Питание,

1х230 В +/-10%, 50 Гц

Вариант 3х230 В

25 A

3x17.5 A

25 A

3x17.5 A

16 А

3х10 А

25 А

3х10 А

30 А

3х16 А

Дополнительные

сведения

Полностью автоматический рабочий процесс, 4 программы. Простота обслуживания, все контактирующие с реактивами части легкодоступны. Высокая гибкость.

Машины могут обрабатывать все типы RA пленки и бумаги. Доступны варианты для обработки полиэстровых пластин. Сертификация соответствия стандартам ISO 9001, CE, UL и c/UL. Высокая совместимость.

Конструкция адаптирована к фотонаборному автомату. Экономное использование рабочего пространства. Простота доступа к ФНА. Чрезвычайно надежный и простой в эксплуатации мост.

Двусторонняя связь с ФНА. Минимальная вероятность повреждения пленки. Доступны многочисленные опции

При отсутствии активной вентиляции на месте установки машины может быть использовано доступное как опция устройство вентилирования и фильтрации воздуха.

Все устройства оборудованы консолью оператора. Данные о температуре, режимах подкрепления и другие могут быть легко настроены.

Время проявления в секундах отображается на цифровом индикаторе.

Все функции контролируются электронной схемой для поддержания высокоточного процесса проявления. Микропроцессорное управление доступно как опция

Проявочные машины имеют низкий уровень шума и встроенную систему продувки воздуха, предотвращающую попадание паров реактивов в фотонаборный автомат.

Достаточный объем ванн и система циркуляции и обновления позволяют с высокой точностью поддерживать постоянную концентрацию и температуру реактивов, а значит постоянную плотность проявляемой пленки по полю.

Процессоры имеют индикацию и автоматическое поддержание уровней и температур реактивов.

Автоматика осуществляет защитное отключение при обнаружении низкого уровня.

При отсутствии протяжки материала проявочная машина информирует об этом оператора и посылает специальный сигнал фотонаборному автомату

Для изготовления фотоформ данного изделия (см. п. 1) выбираем фотонаборный автомат Dolev 450 в On-line комплектации с проявочной машиной Glunz&Jensen MultiLine 720.

Для правильного выбора ФТ-пленки необходимо знать соответствие марок и спецификаций пленки и фотонаборной техники (см. табл. 3)

Таблица 3

Совместимость пленки и ФНА

Производитель

Модель

Лазер

Cпецификация Kodak

Спецификация AGFA

Ширина, мм

Длина, мм

Scitex

Dolev 400, 450

HN

390

610CD

880

60

Dolev 100, PS/200, PS/M1

HN

390

610CD

380

80

Dolev 440, 440F9

HN

390

610CD

660

60

Dolev 800

HN/RLD

351, 390R

600C, 600CD

305, 508, 660, 838

60

Dolev 800V9

HN/RLD

351, 390R

600C, 600CD

305, 508, 660, 838

60

ELP

ARI

390

610CD

762, 914, 1066

60

ERAY

ARI

390

610CD

508, 609, 914,1016

60

RAYSTAR

ARI

390

610CD

457, 508

60

Выбираем пленку фирмы Agfa марки Alliance HN - HNm - HN7 - HN7m. Эта пленка предназначенна для использования в фотонаборных аппаратах с красным лазерным источником засветки широкого диапазона от 630 до 670 нм. Пленки с индексом 7 имеют толщину 0.18 мм; без индекса - 0.1 мм. Пленки HNm и NH7m имеют матовую поверхность и могут использоваться для изготовления флексографских форм и офсетных пластин с полимерным покрытием.

Пленка имеет следующие параметры:

высокая стабильность по экспонированию и обработке

широкий диапазон чувствительности к длине волны от 630 до 670 нм

высокая четкость границ черного и прозрачного

специально предназначена для процесса обработки Rapid Access

высокая практическая плотность применима для регулярного полутонового и стохастического растров антистатична до и после обработки

Проявление (в любом проявочном процессоре Rapid Access технологии Off- и

On-line).

Промывка (выполняется в течение 10 секунд).

Фиксирование. Условия зарядки. Допустимо применять темный зеленый свет при зарядке в кассету. Те конфигурации, которые имеют возможность зарядки на свету, не требуют темной комнаты.

Таблица 4

Обработка пленки

Проявитель

G101c / G101p / G4000c

Время проявления

25 сек

Диапазон времени

20 - 40 сек

Температура проявления

35°C

Восстановление проявит.

G101c/G101p

G4000cR

Расход при 15% растра

250 мл/м2

150 мл/м2

Расход при 50% растра

300 мл/м2

200 мл/м2

Расход при 85% растра

400 мл/м2

300 мл/м2

Фиксаж

G333c/G333p

Температура фиксир.

35°C

Расход фиксажа

без электролиза

фиксажа 500 мл/м2

с электролизом

фиксажа 125 мл/м2

5. Выбор материалов и оборудования для изготовления печатных форм

5.1 Выбор формных пластин

Технологические возможности современных монометаллических офсетных пластин позволяют изготавливать на них печатные формы, пригодные для печати практически всех видов высококачественной продукции (изобразительной, рекламной, газетной, журнальной, книжной и др.). Тиражестойкость таких форм в зависимости от типов пластин от 50 до 150 тыс. оттисков, а после их термообработки она возрастает в 3-4 раза [10].

Предварительно очувствленные офсетные пластины изготавливаются специализированными предприятиями на высокопроизводительных автоматизированных поточных линиях со строгим соблюдением режимов. Поэтому такие пластины от ведущих производителей имеют стабильное качество.

Монометаллическая офсетная формная пластина состоит из алюминиевой основы и нанесенного на нее светочувствительного (копировального) слоя. Наиболее часто используется алюминиевая основа толщиной 0,15 и 0,3 мм. Перед нанесением копировального слоя поверхность алюминиевой основы подвергается электрохимической обработке (электрохимическому зернению и анодному оксидированию), в результате которой она становится шероховатой и покрывается прочной пористой оксидной пленкой. Химическая операция наполнения оксидной пленки (например, гидрофильным коллоидом) создает на поверхности пластины устойчивую гидрофильную поверхность.

Поверхность копировального слоя является гидрофобной. В будущей офсетной печатной форме на ней будут образованы гидрофобные печатающие элементы, которые воспринимают печатную краску.

На данный момент на рынке представлены пластины различных фирм и стран производителей (Krone, ATHENA - Италия; Agfa - Бельгия; Kodak - Германия; DRANT - Корея; ДОЗАКЛ, Зарайский офсет - Россия и другие).

Требования, предъявляемые к формным пластинам:

шероховатость - от нее зависит адгезия копировального слоя к подложке и соответственно его устойчивость к механическому воздействию. Шероховатость определяется средним арифметическим отклонением профиля - Ra (мкм);

тиражестойкость - тысяч экземпляров;

цветовой контраст после обработки копии позволяет визуально оценить качество полученной формы;

светочувствительность (S) определяет время экспонирования пластины. Чем выше светочувствительность, тем меньше времени надо затратить на экспонирование;

разрешающая способность определяет процент воспроизводимой растровой точки и минимально возможную ширину штриха.

Таблица 5

Сравнительная характеристика формных пластин

Наименование показателя

Наименование пластины

Agfa

Ozazol P5S (Германия)

Зарайский офсет

(Россия)

Lastra Futura ORO

(Италия)

ДОЗАКЛ,

УПА

(Россия)

Horsell

Capiration 2000 (Англия)

Ra, мкм

0,4

0,45-0,80

0,55-0,65

0,20-0,06

Разрешающая способность

12 мкм;

2-99% (при L=60 лин/см)

12 мкм;

2-98%

2-99%

Светочувствительность

высокая

tэксп = 3 мин (источником света в 5 кВ)

высокая

высокая

Цветовой контраст после обработки копии

от тёмно-зелёного до голубого

есть

от тёмно-зелёного до голубого

есть

от тёмно-синего до бирюзово-зеленого

Тиражестойкость (тыс. оттисков)

А) Без термообработки

100-120

100

свыше 200

50

200-250

Б) После термообработки

до 500

200

свыше 400

150

800-850

Формат, мм

Определяется при заказе

Определяется при заказе

110-1160 1 х

740-1420 5

Толщина, мм

0,15; 0,20; 0,24; 0,30; 0,40

0,15-0,28

Определяется при заказе

0,15; 0,3; 0,4

Проявляющий раствор

EP 012

ПР-03, ПР-03М

Horsell Greenstar

Дополнительные сведения

Толщина КС (мкм): 2,0+0,5

Химический состав КС: эмульсия ароматический диазосоединений в смоле Novolac

Тощина КС (мкм): 3,01

Исходя из указанных характеристик выбираем пластины, изготавливаемые Зарайским офсетом (Россия), толщиной 0,15 мм, формата 352х485 мм

5.2 Выбор копировального оборудования

Для копирования изображения с фотоформы на формную пластину используются контактно-копировальные рамы. Данный тип оборудования применяется не только для изготовления офсетных печатных форм, но и для получения аналоговой цветопробы, при производстве матриц для трафаретной печати, при изготовлении растровых диапозитивов и т.д. [9].

По экспонируемым материалам рамы можно подразделить на устройства, предназначенные для получения только печатных форм, для получения только фотоформ и на универсальные копировальные рамы.

Универсальные копировальные рамы имеют, как правило, несколько источников света, в некоторых рамах имеется еще дополнительная система сменных фильтров. На сегодняшний день практически все рамы оснащаются системой обратной связи, позволяющей отслеживать суммарный световой поток и соответственно корректировать время экспонирования. Использование данной системы позволяет добиться идентичности условий экспонирования для материалов с одинаковым эмульсионным слоем. Особенно это важно при работах, требующих соблюдения точного цветового баланса.

Типовая рама состоит из следующих модулей:

источник света, который может располагаться над поверхностью экспонирования или (при использовании поворотного одно- или двустороннего стола) снизу;

вакуумная система, включающая в себя вакуумный насос, систему шлангов, вакуумметр, устройство регулирования разрежения. Некоторые производители с целью улучшения прижима применяют различные дополнительные устройства, такие как прикаточные коленчатые валы, предварительн...


Подобные документы

  • Офсетная печать как новый вид плоской печати, ее отличительные признаки от литографии, история разработок и развития, необходимое оборудование и материалы. Схемы изготовления офсетных печатных форм, их разновидности, основные показатели прочности сырья.

    контрольная работа [203,0 K], добавлен 09.03.2011

  • Процесс технического переоснащения предприятий полиграфической промышленности. Факторы создания современного оборудования для офсетной плоской печати в формном процессе. Использование фотоформ в полиграфии. Линиатура и конфигурация элементов растра.

    реферат [28,0 K], добавлен 06.03.2011

  • Выбор и обоснование способа печати. Способ высокой, глубокой и плоской офсетной печати. Выбор печатного оборудования. Основные и вспомогательные материалы для печатного процесса: бумага, краска. Подготовка бумаго-передающего и приемно-выводного устройств.

    курсовая работа [60,6 K], добавлен 20.11.2010

  • Изготовление книжно-журнальной продукции. Применение флексографской печати в упаковочной, этикеточной и газетной печати. Развитие офсетной технологии. Выбор бумаги и красок. Определение количества оборудования и загрузки с учетом отходов в печатном цехе.

    курсовая работа [401,8 K], добавлен 16.01.2014

  • Представление технологической схемы допечатного процесса изготовления издания. Характеристика особенностей глубокой, высокой, офсетной и цифровой печати. Выбор технологии изготовления печатных форм. Подбор необходимого оборудования и формных пластин.

    курсовая работа [318,2 K], добавлен 25.05.2014

  • Современное состояние офсетной печати. Параметры качества тиражных оттисков. Синтез цвета при многокрасочном печатании. Определение оптимальных зональных оптических плотностей для различных печатных пар краска-бумага. Профилирование печатного процесса.

    дипломная работа [3,3 M], добавлен 06.07.2010

  • Современное состояние офсетной печати. Анализ используемых компьютерных систем в печатных процессах. Параметры качества тиражных оттисков. Печатный треппинг. Определение оптимальных зональных оптических плотностей для различных печатных пар краска-бумага.

    дипломная работа [1013,6 K], добавлен 06.07.2010

  • Оценка эффективности применения 4-красочной машины офсетной печати 2ПОЛ 71- 4П2 для производства печатной продукции. Определение себестоимости учетной единицы продукции. Анализ показателей экономической эффективности использования данного оборудования.

    курсовая работа [227,9 K], добавлен 26.01.2014

  • Полиграфическая промышленность, основные новинки. Технология изготовления печатных форм на основе пластин Agfa Meridian и Technova. Цифровые формные материалы. Печатные формы для офсетной печати. Строение щёточного и бесконтактного увлажняющего аппарата.

    дипломная работа [1,4 M], добавлен 02.03.2012

  • Флексографская печать - способ высокой прямой ротационной печати с эластичных рельефных печатных форм. Процесс изготовления полимерных форм флексографской печати. Основные принципы, используемые при выборе технологии и материалов для изготовления образца.

    курсовая работа [323,5 K], добавлен 09.05.2011

  • Технические показатели издания для фармацевтической промышленности. Обоснование офсетного способа печати. Компьютерные технологии, используемые при изготовлении фотоформ. Показатели печатного оборудования. Подготовка картона к печати и его акклиматизация.

    дипломная работа [120,0 K], добавлен 28.04.2010

  • Общая характеристика мирового рынка полиграфических услуг, современные инновации в области печатных технологий. Преимущества и недостатки офсетной печати, ее основные технологические этапы. Отличительные особенности флексопечати и флексографии.

    презентация [2,7 M], добавлен 20.02.2011

  • Офсетная печать как наиболее распространенный способ коммерческой печати, объективные причины доминирования данного метода перед другими. История зарождения и развития офсетной печати, ее специфика и этапы технологического процесса, главные принципы.

    реферат [20,3 K], добавлен 26.10.2010

  • Принцип работы и условия применения листовой ротационной машины для офсетной печати. Печатный аппарат многоцветной машины непрямой орловской печати с ирисовым эффектом. Способ восстановления отработанных пластин и оценка эффективности его применения.

    реферат [46,8 K], добавлен 10.04.2019

  • Современные способы печати полиграфической продукции. Виды трафаретной печати: шелкография и ризография. Плоская офсетная печать. Технология цифровой и глубокой печати. Флексография - высокая ротационная печать красками с применением эластичных форм.

    контрольная работа [28,9 K], добавлен 15.01.2011

  • Исследование технологии флексографской печати с аналоговым способом изготовления печатных форм. Подготовка оригинал-макета. Выбор печатного оборудования, краски, металлизированной пленки. Технологическая карта изготовления упаковки для конфет "Лещина".

    курсовая работа [241,3 K], добавлен 07.03.2015

  • Разработка технологического процесса изготовления форм цифровым способом. Современное состояние и тенденции развития техники и технологии полиграфического производства, особенности применения цифрового способа в сравнении с другими видами печати.

    курсовая работа [53,0 K], добавлен 24.03.2011

  • Оценка качества полиграфического исполнения издания-образца. Выбор и обоснование способа печати и печатного оборудования, загрузки и трудоемкости печати издания. Разработка технологической карты прохождения и графика движения заказа в печатном цехе.

    курсовая работа [315,4 K], добавлен 09.05.2011

  • Основные особенности флексографической и офсетной печати металлизированными красками на полиграфическом оборудовании дукторной и ракельной системы. Характеристики анилоксов, понятие краскопереноса и линатуры растровых валов, фотополимерного клише.

    курсовая работа [690,9 K], добавлен 10.05.2011

  • Сущность флексографии (или флексографской печати), история развития и сфера ее применения. Особенности технологии флексопечати. Процесс цифровой записи фотополимерных форм. Растрирование цветоделенных изображений. Практика проведения цветоделения.

    курсовая работа [844,9 K], добавлен 15.05.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.