Характеристики ионизирующих излучений, а также методы их обнаружения и средства защиты

Виды ионизирующих излучений (ИИ) и их действие. Единицы измерений радиоактивных излучений. Обеспечение безопасности при работе с источниками ИИ. Основные методы обнаружения ИИ. Классификация и краткая характеристика основных дозиметрических приборов.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид реферат
Язык русский
Дата добавления 22.09.2016
Размер файла 455,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Виды ионизирующих излучений

2. Единицы измерений радиоактивных излучений

3. Биологическое действие ионизирующих излучений

4. Обеспечение безопасности при работе с источниками ионизирующих излучений

5. Методы обнаружения ионизирующих излучений

6. Классификация и краткая характеристика основных дозиметрических приборов

Заключение

Список используемой литературы

Введение

Развитие ядерной энергетики во многих странах мира в последние годы сделало угрозу радиоактивного заражения больших территорий реальной не только в случае применения ядерного оружия, но и в случае разрушения объектов ядерно-топливного цикла, находящихся в районе ведения боевых действий, обычным оружием или при их аварии в ходе промышленной эксплуатации. Поэтому защита от ионизирующих излучений (радиационная безопасность) -- одна из важнейших задач по обеспечению безопасности жизнедеятельности человека.

Сама по себе радиоактивность -- явление не новое. Некоторые связывают ее с появлением ядерного оружия и со строительством АЭС. Но она существовала на Земле задолго до зарождения жизни. Известно, что в природе существуют химические элементы, устойчивые и неустойчивые (уран, торий, радий и др.). Внутриядерных сил для сохранения прочности ядра у последних недостаточно, и ядра атомов неустойчивого элемента превращаются в ядра атомов другого элемента. Такой процесс самопроизвольных превращений ядер атомов неустойчивых элементов называют радиоактивным распадом или радиоактивностью. Акт распада сопровождается испусканием излучений в виде гамма-лучей, альфа и бета-частиц и нейтронов.

Ионизирующие излучения характеризуются различной проникающей и ионизирующей (повреждающей) способностью.

Явление естественной радиоактивности, открытое в 1986 г. Анри Беккерелем, состоит в самопроизвольном превращении неустойчивых атомов ядер в ядра других элементов с испусканием ионизирующих излучений. Последние представляют собой потоки частиц и квантов электромагнитного излучения (ЭМИ), которые, проходя через вещество, вызывают ионизацию и возбуждение атомов и молекул среды.

В данной работе рассмотрены характеристики ионизирующих излучений, а также методы их обнаружения и средства защиты.

ионизирующий излучение радиоактивный дозиметрический

1. Виды ионизирующих излучений

Встречаются следующие виды ионизирующих излучений:

корпускулярное (-, - и нейтронное излучение) -- потоки частиц;

фотонное (- и рентгеновское излучение) -- электромагнитные волны высокой частоты.

-излучение представляет собой поток ядер гелия, испускаемых при радиоактивном распаде ядер некоторых химических элементов. Атомы таких химических элементов называют радионуклидами. Энергия -частиц лежит в диапазоне 3...9 МэВ. Длина пробега -частицы в воздухе составляет 2... 12 см, а с повышением плотности материала проникающая способность излучения резко уменьшается. В твердых веществах длина пробега частицы не превышает нескольких микрон, а в мягкой биологической ткани -- нескольких десятков микрометров, задерживаются листом бумаги. -частицы обладают высокой ионизирующей способностью.

-излучение состоит из потока электронов или позитронов ядерного происхождения, возникающих при радиоактивном распаде ядер. Масса частиц в несколько тысяч раз меньше -частиц. Максимальная энергия -частиц, испускаемых различны ми радионуклидами, составляет 0,1...3,5 МэВ. Длина пробега электрона в воздухе -- 0,2...1,6 м, а в биологических тканях -- 2,5 см, свинце -- 0,04 см. Ионизирующая способность - частиц низка, а проникающая выше, чем - частиц. Поток - частиц задерживается металлической фольгой.

Нейтронное излучение является потоком электронейтральных частиц ядра. Масса нейтрона примерно в 4 раза меньше массы - частицы.

В зависимости от энергии различают медленные нейтроны (с энергией менее 1 кэВ), нейтроны промежуточных энергий (от 1 до 500 кэВ) и быстрые нейтроны (от 500 кэВ до 20 МэВ). Среди медленных нейтронов различают тепловые нейтроны с энергией менее 0,2 эВ. Проникающая способность нейтронов зависит от их энергии, но она существенно выше, чем у - и -частиц. Так, длина пробега нейтронов промежуточной энергии составляет около 15 м в воздушной среде и 3 см в биологической ткани, аналогичные показатели для быстрых нейтронов -- соответственно 120 м и 10 см. Таким образом, нейтронное излучение обладает высокой проникающей способностью и представляет для человека наибольшую опасность из всех видов корпускулярного излучения.

Так называемое вторичное излучение нейтрона, когда он сталкивается с каким-либо ядром или электроном, оказывает сильное ионизирующее воздействие. Ослабление нейтронного излучения эффективно осуществляется на ядрах легких элементов, особенно водорода, а также на материалах, содержащих такие ядра: воде, парафине, полиэтилене и др.

-излучение представляет собой электромагнитное излучение частотой около 1020 Гц и с длиной волн приблизительно 10-12 м с высокой энергией. Оно испускается при ядерных превращениях или взаимодействии частиц. Высокая энергия (0,01...3 МэВ) и малая длина волны обусловливают большую проникающую способность -излучения. Это излучение обладает меньшей ионизирующей способностью, чем - и -излучения.

Рентгеновское излучение возникает в среде, окружающей источник излучения, в рентгеновских трубках, в ускорителях электронов и т.п. и представляет собой совокупность тормозного и характеристического излучений, энергия фотонов которых составляет не более 1 МэВ. Характеристическое излучение -- это фотонное излучение с дискретным спектром, испускаемое при изменении энергетического состояния атома. Тормозное излучение -- это фотонное излучение с непрерывным спектром, испускаемое при изменении кинетической энергии заряженных частиц. Ионизирующая способность рентгеновского излучения примерно как - излучения, но в то же время обладает большей проникающей способностью. Замедление рентгеновского излучения наиболее интенсивно происходит на тяжелых элементах, например, свинце (пробег 20...25 см.) железе, тяжелом бетоне и др.

Размещено на http://www.allbest.ru/

2. Единицы измерений радиоактивных излучений

Степень опасности поражения людей определяется значением экспозиционной дозы (X) гамма-излучения. Это количественная характеристика ионизирующих излучений, основанная на их ионизирующем действии в сухом атмосферном воздухе и выраженная отношением суммарного электрического заряда ионов одного знака, образованного излучением, поглощенным в некоторой массе воздуха, к этой массе.

Единицы измерения экспозиционной дозы (X):

в системе СИ-- кулон на килограмм (Кл/кг -- равен экспозиционной дозе, при которой в 1 кг воздуха образуется в результате ионизации суммарный электрический заряд всех ионов одного знака, равный кулону, т.е. электрическому заряду, проходящему через поперечное сечение проводника при постоянном токе силой в 1 а за время 1 сек);

внесистемная единица -- рентген (Р -- это такая доза гамма-излучения, при которой в 1см3 воздуха при нормальных физических условиях (t = 0°С и давление 760 мм рт.ст.) образуется 2,08·109 пар ионов, несущих одну электростатическую единицу количества электричества).

1 Кл/кг = 3880 Р; 1 Р = 2,58·10-4 Кл/кг.

При оценке последствий облучения людей ИИ используется поглощенная доза (Д), т.е. количество энергии ИИ, поглощенное тканями организма человека. Единицы измерения поглощенной дозы (Д): в системе СИ--грей (Гр);

внесистемная единица -- рад (radiation absorbed dose -- поглощенная доза излучения).

1 Гр = 1 Дж/кг = 100 рад; 1 рад = 100 эрг = 0,01 Дж/кг = 0,01 Гр.

Соотношение между Р и рад: 1Р = 0,88рад (воздуха) и 0,93рад для (биоткани): 1 рад =1,14 Р.

Учитывая погрешность дозиметрических приборов, принимают 1 Р 1 рад.

Для количественного учета биологического воздействия различных видов излучений (рентгеновских, - и -излучений, протонов и нейтронов, -излучений), а также при попадании РВ внутрь организма человека применяется эквивалентная доза (Н), т.е. поглощенная доза в органе или ткани, умноженная на соответствующий взвешивающий коэффициент качества для данного излучения WR (для -излучений = 1):

H = Д·WR.

Для различных видов излучения приняты следующие значения WR:

нейтроны с энергией менее 10 кэВ -- 5, от 10 кэВ до 100 кэВ-- 10, от 100 кэВ до 2 МэВ -- 20, от 2 МэВ до 20 МэВ -- 10, более 20 МэВ -- 5;

протоны, кроме протонов отдачи, с энергией более 2 МэВ -- 5;

-частицы, осколки деления, тяжелые ядра -- 20.

Из приведенных данных видно, что нейтронное излучение при одной и той же поглощенной дозе вызывает поражающий эффект от 5 до 20 раз больший, чем -излучение.

Единицы измерения эквивалентной дозы (Н):

в системе СИ -- джоуль на килограмм (Дж/кг), имеющий специальное наименование зиверт (Зв);

внесистемная единица -- биологический эквивалент рада (бэр).

1 Зв=100бэр=100рад·WR

В НРБ-99, в соответствии с рекомендациями Международной комиссии по радиационным единицам (МКРЕ), введена к использованию эффективная доза (Е). Это величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных органов с учетом их радиочувствительности. Она представляет сумму произведений эквивалентной дозы в органе НТ на соответствующий взвешивающий коэффициент для данного органа или ткани (WT).

E =

Эта величина измеряется в зивертах (Зв).

Для различных органов и тканей приняты следующие значения WT:

гонады (половые органы) 0,20;

костный мозг, толстый кишечник, легкие, желудок 0,12;

мочевой пузырь, грудная железа, печень, пищевод, щитовидная железа 0,05;

кожа, клетки костных поверхностей 0,01.

Например, доза облучения легких в 1 мЗв (100 мбэр) соответствует Е = 0,12 мЭв (12 мбэр), т.е. показывает, что при равномерном облучении всего тела дозой 0,12 мЗв вероятность риска такая же, что и при облучении дозой 1 мЗв только легких.

Интенсивность радиоактивных излучений оценивается мощностью дозы излучения, т.е. скоростью накопления дозы. Единицы измерения мощностей дозы:

экспозиционной -- Кл/(кг-с), Р/ч и мР/ч;

поглощенной -- Гр/с, рад/ч и мрад/ч;

эквивалентной -- Зв/с.

Основной характеристикой источника ИИ является активность (А).

Это мера радиоактивности радионуклидов в источнике. Она равна отношению числа самопроизвольных ядерных превращений в этом источнике за малый интервал времени к этому интервалу времени.

Известно, что наиболее распространенным видом ИИ является внешнее фотонное (рентгеновское и гамма) излучение. Необходимость в контроле частиц и нейтронного излучения возникает реже. Это видно из соотношения А: А: A = 100 : 10 : 1.

В качестве единицы активности в системе СИ используется беккерель (Бк), равный одному распаду в секунду (расп/с). Внесистемная единица активности -- Кюри (Ки)

1 Ки = 3,7 * 1010расп/с = 3,7 * 1010Бк.

Степень радиоактивного загрязнения местности и объектов оценивается по мощности дозы -излучения вблизи зараженных поверхностей, определяемой в миллирадах в час (мрад/ч), а также по числу распадов ядер за единицу времени на определенной площади или в определенном объеме и обозначают соответственно: расп/(мин·см2), расп/(мин·л) и расп/(мин·т)

Предельно допустимые значения степени заражения различных объектов

Наименование

Мощность дозы, мрад/ч

Поверхность тела человека и нательное белье

20

Лицевая часть противогаза

10

Одежда, обувь, СИЗ

30

Продовольственная тара, кухонный инвентарь

50

Поверхность тела животных

50

Автотранспорт и техническое имущество

200

При оценке степени заражения поверхностей объектов обычно исходят из связи между плотностью заражения местности QM, расп/(мин·см2), и мощностью дозы радиации Р (рад/ч) на высоте 1 м от ее поверхности:

QM=2·107·P.

Для оборудования ОЭ и техники плотность заражения 25 000 расп/(мин·см2) на их поверхности соответствует мощности дозы излучения равной 1 мрад/ч.

3. Биологическое действие ионизирующих излучений

Ионизирующее излучение вызывает в организме человека цепочку обратимых и необратимых изменений. Пусковым механизмом воздействия являются процессы ионизации и возбуждения атомов и молекул в тканях. Чем больше происходит в веществе актов ионизации под воздействием излучения, тем больше биологический эффект. Ионизация живой ткани приводит к разрыву молекулярных связей и изменению химической структуры различных соединений. Изменения в химическом составе значительного числа молекул приводят к гибели клеток. Существенную роль в формировании биологических эффектов играют радиационно-химические изменения, обусловленные продуктами радиолиза воды.

Под влиянием излучений в живой ткани происходит расщепление воды на атомарный водород Н и гидроксильную группу ОН, которые, обладая высокой химической активностью, вступают в химические реакции с молекулами белка, ферментов и других элементов биологической ткани, что приводит к нарушению биохимических процессов в организме. В результате нарушаются обменные процессы, замедляется и прекращается рост тканей, возникают новые химические соединения, не свойственные организму, приводящее к нарушению отдельных функций и систем организма.

Индуцированные свободными радикалами Н и ОН химические реакции развиваются с большим выходом, вовлекая в процесс сотни и тысячи молекул, не задействованных излучением. В этом состоит специфика действия ионизирующего излучения на биологические объекты. Эффекты развиваются в течение различных промежутков времени: от нескольких секунд до многих часов, дней, лет. Ионизирующее излучение при воздействии на организм человека может вызвать два вида эффекта, которые клинической медициной относятся к болезням: детерминированные пороговые эффекты (лучевая болезнь, лучевое бесплодие, аномалии в развитии плода и др.) и стохастические (вероятностные) беспороговые эффекты (злокачественные опухоли, лейкозы, наследственные болезни).

Различают три степени лучевой болезни: первая (легкая), вторая и третья (тяжелая). Симптомами лучевой болезни первой степени служат слабость, головные боли, нарушение сна и аппетита, усиливающиеся на второй стадии заболевания, но здесь они дополняются нарушениями в деятельности сердечно-сосудистой системы, изменением обмена веществ и состава крови, расстройством пищеварительных органов. На третьей стадии болезни наблюдаются кровоизлияния и выпадение волос, нарушается деятельность центральной нервной системы и половых желез. У людей, перенесших лучевую болезнь, повышается вероятность развития злокачественных опухолей и заболеваний кроветворных органов.

Лучевая болезнь в острой (тяжелой) форме развивается в результате облучения организма большими дозами ионизирующих излучений за короткий промежуток времени. Однако воздействие на организм человека и малых доз радиации также опасно, поскольку может привести к нарушению наследственной информации человеческого организма, мутации. Нижний уровень развития легкой формы лучевой болезни возникает при дозе облучения, эквивалентной приблизительно 1 Зв; тяжелая форма лучевой болезни, при которой погибает половина всех облученных, наступает при дозе облучения, эквивалентной 4,5 Зв. 100%-ный смертельный исход лучевой болезни соответствует дозе облучения, эквивалентной 5,5...7 Зв.

В настоящее время разработан ряд химических препаратов (протекторов), существенно снижающих негативный эффект воздействия ионизирующего излучения на организм человека. Степень воздействия ионизирующего излучения зависит от того, является ли облучение внешним или внутренним. Внутреннее облучение осуществляется радиоактивными веществами, попавшими внутрь организма через дыхательные органы, желудочно-кишечный тракт, через кожные покровы. Внутреннее облучение организма длится до тех пор, пока радиоактивное вещество не распадется или не будет выведено из организма в результате процессов физиологического обмена; оно опасно тем, что вызывает длительно не заживающие язвы различных органов и злокачественные опухоли.

4. Обеспечение безопасности при работе с источниками ионизирующих излучений

Все работы с источниками ионизирующих излучений санитарные правила подразделяют на два вида: на работу с закрытыми источниками излучений и устройствами, генерирующими ионизирующее излучение и работу с открытыми источниками излучений (радиоактивными веществами).

Закрытый источник излучения -- источник излучения, устройство которого исключает поступление содержащихся в нем радионуклидов в окружающую среду в условиях применения и износа, на которые он рассчитан.

Открытый источник излучения -- источник излучения, при использовании которого возможно поступление содержащихся в нем радионуклидов в окружающую среду.

В связи с этим разработаны требования к безопасной работе с закрытыми и открытыми источниками ионизирующих излучений на npoизводстве. Устройства, в которые помещен закрытый источник излучения, должно быть устойчивым к механическим, химическим,

температурным и другим воздействиям, иметь знак радиационной опасности.

На рисунке при необходимости допускается размещать подписи, разъясняющие или дополнительно предупреждающие об опасности, например, «Радиоактивность!», «Гамма-излучение!», «I класс работ», «И класс работ», «III класс работ» и др.

Главной опасностью закрытых источников ионизирующих излучений является внешнее облучение, определяемое видом излучения, активностью источника, плотностью потока излучения и создаваемой им дозой облучения и поглощенной дозой.

Защита от внешнего облучения предусматривает разработку таких методов, которые бы снижали дозу внешнего облучения до предельно допустимых значений.

Основные принципы обеспечения радиационной безопасности при применении закрытых источников:

¦ уменьшение мощности источника до минимальной величины (защита количеством);

¦ сокращение времени работы с источниками (защита временем);

¦ увеличение расстояния от источника до работающих (защита расстоянием) и экранирование источников излучения материалами, поглощающими ионизирующее излучение (защита экранами).

Защита экранами -- наиболее эффективный способ защиты от излучений. В зависимости от вида излучений для изготовления экранов применяют различные материалы, а их толщина определяется мощностью излучения. По назначению защитные экраны условно разделяют на пять групп:

1) защитные экраны -- контейнеры, в которые помещаются радиоактивные препараты. Они используются при транспортировке радиоактивных веществ и источников излучений;

2) защитные экраны для оборудования. В этом случае экранами полностью окружают все рабочее оборудование при положении радиоактивного препарата в рабочем положении или при включении высокого напряжения на источнике ионизирующего излучения;

1) передвижные защитные экраны. Этот тип защитных экранов применяется для защиты рабочего места на различных участках рабочей зоны;

2) защитные экраны, монтируемые как части строительных конструкций (стены, перекрытия полов и потолков, специальные двери и т.д.);

3) экраны индивидуальных средств защиты (щиток из оргстекла, просвинцовые перчатки и др.).

Лучшими экранами для защиты от рентгеновского и -излучения являются материалы с большим атомным номером, например свинец. Более дешевые экраны делаются из просвинцованного стекла, железа, бетона, барритобетона, железобетона и воды.

Для защиты от -излучения применяют защитные конструкцй из плексигласа, алюминия или стекла толщиной, превышающей максимальный пробег -частиц.

Для защиты от нейтронного излучения обычно используют воду или полиэтилен. Передвижные экраны для защиты от -излучения устраиваются из обычного или органического стекла толщиной несколько миллиметров.

Защитные сейфы применяются для хранения источников злучения. Они изготовляются из свинца и стали.

Все виды работ с открытыми источниками излучений разделены на три класса. Класс работ устанавливается в зависимости от группы радиационной опасности радионуклида и его активности на рабочем месте.

Помещения для работ I класса должны размещаться в отдельных зданиях или изолированной части зданий, имеющей отдельный вход. Помещения для работ II класса должны размещаться изолированно от других помещений; работы III класса могут проводиться в отдельных помещениях, соответствующих требованиям, предъявляемым к химическим лабораториям.

При работах I класса и отдельных работах II класса работники обеспечиваются комбинезонами или костюмами, тапочками, спецбельем, носками, легкой обувью или ботинками, перчатками, бумажными полотенцами и носовыми платками разового пользования, а также средствами защиты органов дыхания; при работах II и III класса работники снабжаются халатами, тапочками, легкой обувью и при необходимости средствами защиты органов дыхания -- фильтрующими респираторами.

Выполнение правил личной гигиены предусматривают личностные требования к работающим с источниками ионизирующих излучений: запрещение курения в рабочей зоне, тщательная очистка (дезактивация) кожных покровов после окончания работы, проведение дозиметрического контроля загрязненной спецодежды, спецобуви и кожных покровов. Все эти меры предполагают исключение возможности проникновения радиоактивных веществ внутрь организма.

Размещено на http://www.allbest.ru/

Безопасность работы с источниками ионизирующих излучений на предприятиях контролируют службы радиационной безопасности.

5. Методы обнаружения ионизирующих излучений

Ионизирующие излучения (ИИ), вследствие их специфики (невидимы, неосязаемы), практически очень трудно обнаружить. С достаточной точностью для практических целей регистрируются и измеряются физико-химические

изменения, происходящие в веществах под воздействием ИИ.

Некоторые вещества изменяют свою электропроводность (воздух, инертные газы, германий, кремний и др.), другие изменяют окраску, третьи -- флюоресцируют (дают вспышки), фотоматериалы -- засвечиваются и т.д. Эти процессы положены в основу методов обнаружения ИИ.

В дозиметрии наиболее широко применяются следующие методы:

ионизационный;

сцинтилляционный;

химический;

фотографический.

Основным методом является ионизационный. Его сущность заключается в том, что газовая среда, помещенная между электродами, к которым приложено напряжение, под воздействием ИИ ионизируется и, как следствие, изменяет свою электропроводность, В электрической цепи начинает протекать ток, который называют ионизационным.

Устройство, в котором под воздействием ИИ возникает ионизационный ток, называют детектором (воспринимающим устройством) излучений. В дозиметрических приборах в качестве детекторов ИИ используются ионизационные камеры (ИК) и газоразрядные счетчики (ГС). Они представляют собой устройства, заполненные воздухом или газом, с двумя электродами, к которым подведено напряжение.

Принципиальное отличие ИК от ГС состоит в том, что на электроды ГС подается напряжение приблизительно в два раза большее (380--400 В), чем на ИК (190--200 В), а это приводит к усилению ионизационного тока за счет явления ударной ионизации в газе (газовым разрядам).

6. Классификация и краткая характеристика основных дозиметрических приборов

Все дозиметрические приборы (средства измерения ИИ) подразделяются на четыре группы:

индикаторы-сигнализаторы (ДП-64);

измерители мощности дозы (ДП-5В, ИМД-1, СРП-68-01, «Белла», «Сосна», «Ратон», «Юпитер», ИМД-70);

измерители дозы (ИД-1, ДП-22В, ДП-24, ИД-11, ДП-70МП, ДК-02);

¦ радиометрические пересчетные установки, счетчики (ДП-100, ИМД-12).

Индикаторы-сигнализаторы

Индикатор-сигнализатор ДП-64 предназначен для подачи звуковой и световой сигнализации о наличии -излучения. Прибор работает в следящем режиме и обеспечивает сигнализацию по достижении мощности дозы у-излучения 0,2 Р/ч. Он состоит из пульта сигнализации и датчика с кабелем. Пульт устанавливается у дежурных ОЭ, а датчик -- на территории объекта. Вспышки неоновой лампочки и синхронные щелчки динамика указывают на наличие -излучения в месте установки датчика.

Измерители мощности дозы

Измеритель мощности дозы ДП-5В предназначен для измерения мощности экспозиционной дозы над радиоактивно зараженной местностью, а также для измерения заражения поверхностей различных предметов по -излучению. Он позволяет измерять мощности дозы в диапазоне от 0,5 до 200 Р/ч и степень радиоактивного заражения по -излучению от 0,05 до 5000 мР/ч. Диапазон измерений разбит на 6 поддиапазонов.

Прибор состоит из измерительного пульта и блока детектирования (зонда), соединенных гибким кабелем.

Измеритель мощности дозы ИМД-1 предназначен для измерения мощности экспозиционной дозы -излучения, а также обнаружения -излучения.Диапазон измерений прибора от 0,01 мР/ч до 999 Р/ч, который разбит на 2 поддиапазона -- в мР/ч и Р/ч.

Сцинтилляционный разведочный прибор СРП-68-01 предназначен для определения активности пород при геологоразведочных работах.

Диапазон измерений прибора от 0 до 3000 мкР/ч. Он разбит на 5 поддиапазонов: 0--30; 0--100; 0--300; 0--1000; 0--3000 мкР/ч.

Учитывая высокую чувствительность прибора, он может быть использован для поиска источников ИИ при радиационных авариях.

Измерители мощности дозы, используемые населением для оценки радиационной обстановки на местности, а также загрязнения РВ продуктов питания и воды.

Для решения этих задач населением используются приборы:

дозиметр ДРГ-01Т с диапазоном измерений от 10 мкР/ч до 10 Р/ч;

индикаторы внешнего у-излучения «Белла», «Сосна», «Юпитер» с диапазоном измерений от 10 до 10000 мкР/ч;

измеритель-индикатор мощности дозы ИМД-70 с диапазоном измерений от 20 до 105 мкР/ч;

измеритель-индикатор мощности дозьт ИМД-100 с диапазоном измерений от ЮмкР/ч до 100мР/ч;

дозиметр-радиометр бытовой ИРД-02Б с диапазоном измерений: по мощности дозы от 10 до 1999 мкР/ч; по оценке загрязнения бета-гамма нуклидами от 1-Ю4 до 2-106 Бк/л (кг).

Оценка радиоактивного загрязнения продуктов питания и воды проводится методом прямого измерения на расстоянии 1--5 см от исследуемого объекта массой не менее 1 кг или объемом не менее 1 л по разности результатов измерений излучения от объекта и радиационного фона.

Измерители дозы

Комплект индивидуальных дозиметров ДП-22В предназначен для измерения индивидуальных доз -излучения с помощью дозиметров карманных прямопоказывающих ДКП-50А. Диапазон измерений ДКП-50А от 2 до 50 Р.В комплект ДП-22В входят 50 индивидуальных дозиметров ДКП-50А и зарядное устройство ЗД-5.

ДКП-50А состоит из ионизационной камеры, микроскопа со шкалой, электроскопа и конденсатора. Ионизационный ток уменьшает заряд электроскопа и конденсатора на величину, пропорциональную дозе излучения. Нить (ее тень) электроскопа, перемещаясь по шкале, показывает величину дозы излучения.

Комплект индивидуальных дозиметров ДП-24 отличается от ДП-22В тем, что в его состав входит 5 дозиметров ДКП-50А.

Измеритель дозы ИД-1 предназначен для измерения поглощенных доз гамма- и смешанного гамма-нейтронного излучения. Диапазон измерения поглощенных доз от 20 до 500 рад.

В состав комплекта входят: 10 дозиметров ИД-1 и зарядное устройство ЗД-6. Конструкция дозиметров ИД-1 в основном аналогична конструкции ДКП-50А.

Измеритель дозы ИД-11 предназначен для измерения поглощенных доз гамма- и смешанного гамма-нейтронного излучения с целью первичной диагностики степени радиационных поражений. Диапазон измерений поглощенной дозы ИД-11 -- от 10 до 1500 рад.

В состав комплекта входят 500 индивидуальных измерителей дозы ИД-11 и измерительное устройство ГО-32.

Принцип работы ИД-11. При воздействии ИИ на детектор в нем образуются центры люминесценции, количество которых пропорционально поглощенной дозе. При освещении детектора ультрафиолетовым светом центры люминесцируют оранжевым светом с интенсивностью, пропорциональной поглощенной дозе, что и фиксируется в измерительном устройстве.

Измеритель дозы ДК-02 предназначен для измерения экспозиционной дозы гамма излучения. Диапазон измерений -- от 10 до 200 мР. В состав комплекта входят 10 индивидуальных дозиметров ДК-02. Установка на «ноль» дозиметра осуществляется с помощью устройства ЗД-5 или ЗД-6. Принцип действия аналогичен ДКП-50.

Индивидуальный химический измеритель дозы ДП-70МП предназначен для регистрации поглощенной дозы гамма-нейтронного излучения.

ДП-70МП представляет собой стеклянную ампулу с бесцветным раствором, помещенную в металлический футляр. При воздействии на измеритель дозы гамма-нейтронного излучения первоначально бесцветный раствор в ампуле меняет свою окраску до пурпурной, интенсивность которой пропорциональна поглощенной дозе.

Диапазон измерений ДП-70МП -- от 50 до 600 рад.

Измерение дозы облучения производится с помощью полевого колориметра ПК-56М, который состоит из корпуса, диска с 11 светофильтрами, ампулодержателя, призмы с окуляром и отсчетного окна. При совпадении интенсивности окраски раствора ампулы с каким-либо светофильтром судят о полученной дозе (величина которой показывается в отсчетном окне).

Индивидуальные измерители дозы носят, как правило, в нагрудном кармане и их показания учитывают облучение и накопление излучения в теле человека.

Заключение

Ионизирующее излучение, это излучение, которое создается при радио-активном распаде, ядерных превращениях, торможении заряженных частиц в веществе и образует при взаимодействии со средой ионы разных знаков.

Радиоактивное вещество или устройство, испускающее или способное испускать ионизирующее излучение, называют источником ионизирующего излучения. Источник ионизирующего излучения природного происхождения называется природным источником излучения. Природные источники излучения -- космические лучи, естественные радиоактивные источники, находящиеся в атмосфере, воде, почве, продуктах питания, строительных материалах. Источник ионизирующего излучения, специально созданный для его полезного применения или являющийся побочным продуктом деятельности, называется техногенным источником излучения. Техногенные источники излучения -- источники альфа-, бета-, гамма-, рентгеновского и нейтронного излучений, используемые в технике и медицине, ускорители заряженных частиц, ядерные реакторы, захороненные радиоактивные отходы, радиоактивные осадки после ядерных испытаний. Источники ионизирующих излучений используются в различных отраслях промышленности, строительстве и других областях. В машиностроении и приборостроении ионизирующее излучение применяют для определения износа деталей, качества сварных швов, структуры металла и т.д. Радиоактивные изотопы применяют в строительстве и промышленности строительных материалов при дефектоскопии, в контрольно-измерительных и регулирующих приборах. Радиоактивные вещества в металлургии применяют для технологических целей и при проведении исследований. Источники ионизирующих излучений представляют потенциальную угрозу здоровью и жизни людей. Предельно допустимые уровни ионизирующих излучений устанавливаются «Нормами радиационной безопасности» (НРБ - 99) и гигиеническими нормативами ГН 2.6.1.054 - 96. Эти документы являются основными правовыми нормативными актами в области радиационной безопасности.

Список используемой литературы

1. Куклев Ю.И. Физическая экология: Учебное пособие: М. «Высшая школа». 2008г., 392с.

2. Сидоров А.И. Безопасность жизнедеятельности: Учебное пособие. М. КНОРУС. 2009г., 496с.

3. Топорков И.К. Основы безопасности жизнедеятельности:Учебник для общеобразовательных учреждений.М. «Просвещение». 2008г., 255с.

4. Юртушкин В.И. Чрезвычайные ситуации: защита населения и территорий: Учебное пособие. М. КНОРУС. 2009г., 364с.

Размещено на Allbest.ru

...

Подобные документы

  • Воздействие ионизирующих излучений на неживое и живое вещество, необходимость метрологического контроля радиации. Экспозиционная и поглощенная дозы, единицы размерности дозиметрических величин. Физико-технические основы контроля ионизирующих излучений.

    контрольная работа [54,3 K], добавлен 14.12.2012

  • Прямое и косвенное действие ионизирующего излучения. Действие больших доз ионизирующих излучений на биологические объекты. Генетические последствия радиации. Внутреннее облучение населения. Основные методы и средства защиты от ионизирующих излучений.

    презентация [1,1 M], добавлен 25.12.2014

  • Природа ионизирующего излучения. Генерация ионизирующего излучения в природе обычно происходит в результате спонтанного радиоактивного распада радионуклидов. Биологическое действие ионизирующих излучений. Гигиеническое нормирование ионизирующих излучений.

    реферат [4,6 M], добавлен 19.11.2010

  • Основные типы радиоактивных излучений, их негативное воздействие на человека. Радионуклиды как потенциальные источники внутреннего облучения. Способы защиты от источников ионизирующих излучений. Пути поступления радитоксичных веществ в организм.

    реферат [516,1 K], добавлен 24.09.2013

  • Основные виды ионизирующих излучений. Основные правовые нормативы в области радиационной безопасности. Обеспечение радиационной безопасности. Радиационное воздействие и биологические эффекты. Последствия облучения людей ионизирующим излучением.

    реферат [28,0 K], добавлен 10.04.2016

  • Основные характеристики ионизирующих излучений. Принципы и нормы радиационной безопасности. Защита от действия ионизирующих излучений. Основные значения дозовых пределов внешнего и внутреннего облучений. Отечественные приборы дозиметрического контроля.

    реферат [24,6 K], добавлен 13.09.2009

  • Источники внешнего облучения. Воздействие ионизирующих излучений. Генетические последствия радиации. Методы и средства защиты от ионизирующих излучений. Особенности внутреннего облучения населения. Формулы эквивалентной и поглощенной доз излучения.

    презентация [981,6 K], добавлен 18.02.2015

  • Экологическая экспертиза техники и технологий. Опасность включения человека в электрические сети. Виды ионизирующих излучений. Действие ионизирующих излучений на людей. Пожарная опасности. Обучение охране труда. Лица, подлежащих обязательному обучению.

    контрольная работа [601,0 K], добавлен 27.05.2008

  • Радиоактивность и ионизирующие излучения. Источники и пути поступления радионуклидов в организм человека. Действие ионизирующих излучений на человека. Дозы радиационного облучения. Средства защиты от радиоактивных излучений, профилактические мероприятия.

    курсовая работа [40,8 K], добавлен 14.05.2012

  • Радиация: дозы, единицы измерения. Ряд особенностей, характерных для биологического действия радиоактивных излучений. Виды эффектов радиации, большие и малые дозы. Мероприятия по защита от воздействия ионизирующих излучений и внешнего облучения.

    реферат [34,3 K], добавлен 23.05.2013

  • Виды ионизирующих излучений. Механизм их действия на живую клетку. Характеристика повреждения человеческого организма в зависимости от дозы. Использование индивидуальных средств защиты. Дозиметрический контроль внешней среды и продуктов питания.

    презентация [1,0 M], добавлен 17.12.2016

  • Источники и характеристики тепловых излучений в горячих цехах с терморадиационным режимом. Воздействие на организм тепловых излучений, облученность от стационарных и подвижных источников. Меры и средства индивидуальной защиты от тепловых излучений.

    реферат [129,1 K], добавлен 19.11.2014

  • Особенности аварий на радиационно-опасный объектах, приводящих к выходу или выбросу радиоактивных веществ или ионизирующих излучений в количествах, превышающих установленные пределы безопасности его эксплуатации. Виды радиационного воздействия на людей.

    презентация [738,4 K], добавлен 19.06.2019

  • Виды электромагнитных излучений. Влияние излучений монитора компьютера и экрана телевизора на человека. Биологическое действие электромагнитных излучений на организм человека. Санитарно-гигиенические требования при работе с компьютером и телевизором.

    реферат [161,4 K], добавлен 28.05.2012

  • Качественные и количественные характеристики света, производственное освещение, основные требования. Классификация электромагнитных полей, действие ионизирующих излучений на организм. Организация службы государственного надзора за состоянием охраны труда.

    контрольная работа [30,9 K], добавлен 16.02.2010

  • Обзор сенсорных систем организма человека с точки зрения безопасности. Меры защиты от ионизирующих излучений. Индивидуальные средства, применяемые для защиты от пыли, вредных паров, газов. Принципы прекращения горения и их реализация при тушении пожаров.

    контрольная работа [530,9 K], добавлен 05.06.2013

  • Зоны радиоактивного загрязнения местности. Источники ионизирующих излучений. Дозиметрические величины и единицы их измерения. Закон спада уровня радиации. Поражающее воздействие радиоактивных веществ на людей, растения, технику, постройки и животных.

    курсовая работа [39,8 K], добавлен 12.01.2014

  • История исследования биологического действия радиоактивных излучений. Лучевое повреждение организма. Влияние радиоактивного излучения на живые организмы, индивидуальная чувствительность людей. Роль человека в создании источников радиоактивного излучения.

    реферат [16,9 K], добавлен 26.03.2010

  • Особенности радиоактивности и ионизирующих излучений. Характеристика источников и путей поступления радионуклидов в организм человека: естественная, искусственная радиация. Реакция организма на различные дозы радиационного облучения и средства защиты.

    реферат [42,6 K], добавлен 25.02.2010

  • Источники ионизирующих излучений. Предельно допустимые дозы облучения. Классификация биологических защит. Представление спектрального состава гамма-излучения в ядерном реакторе. Основные стадии проектирования радиационной защиты от гамма-излучения.

    презентация [812,1 K], добавлен 17.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.