Магистральные газонефтепроводы

Основные положения строительных норм и правил технологического проектирования нефте- и газопроводов. Анализ методов и алгоритмов расчета пропускной способности магистральных трубопроводов, реализации заданной производительности и оптимизации их работы.

Рубрика Производство и технологии
Вид учебное пособие
Язык русский
Дата добавления 04.03.2013
Размер файла 1,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

. (3.80)

Реализуется работа правого участка с производительностью аналогично 3.10.

Возможность повышения производительности левого участка ограничивается поставщиком нефти и вероятен вариант работы МН с производительностью левого участка меньше его пропускной способности, что и должно быть учтено при регулировании работы НПС.

При подкачке картина изменения режима работы МН противоположна случаю сброса нефти: производительность левого участка снижается и развиваемый НПС напор увеличивается, производительность правого участка увеличивается, и развиваемый НПС напор уменьшается. В результате напоры на НПС возрастают от станции к станции на левом участке и снижаются на правом. Режим работы нефтепровода ограничивается прочностью труб на выходе станции, где производится подкачка, следовательно, правый участок теперь заканчивается выходом из этой НПС. Определяя пропускную способность левого участка по формуле (3.78), следует принимать напор в конце участка равным HD и остальные параметры соответствующими этому участку. При определении пропускной способности правого участка принимается hH=HD. Критическая величина подкачки определится зависимостью

. (3.81)

При фактической подкачке, превышающей критическую, определяется допустимая величина левой части МН и производится регулирование НПС.

3.12 Работа МН при изменении вязкости нефти

В процессе эксплуатации МН вязкость нефти может меняться в связи с изменением ее температуры или компонентного состава, что приводит к изменению пропускной способности нефтепровода и напоров на НПС. Характер изменения напоров зависит от положения НПС на трассе. Если положение станции соответствует равномерной расстановке НПС, то напоры на ней не зависят от вязкости нефти. Условие постоянства напоров на станции можно представить в следующем виде:

, (3.82)

где L - длина всего МН;

LX - длина участка от начала нефтепровода до НПС, на которой определяются напоры;

n - число НПС, установленных на всем МН;

nx - число НПС на участке LX.

При повышении вязкости нефти пропускная способность МН снижается, развиваемые НПС напоры возрастают, и напоры на станциях возрастают при (LX/nx) < (L/n) и снижаются при (LX/nx) > (L/n). Таким образом, если НПС перемещены ближе к концу нефтепровода, то одна из них будет лимитировать работу нефтепровода по условиям обеспечения бескавитационного режима работы насосов. На станциях, перемещенных к началу нефтепровода, повышение давления может привести к нарушению условия прочности труб.

Снижение вязкости нефти приводит к противоположным результатам: пропускная способность увеличивается, развиваемые напоры НПС снижаются, напоры на станциях, перемещенных к началу МН, уменьшаются, и напоры на станциях, смещенных к концу нефтепровода, возрастают.

Таким образом, проанализировав расстановку НПС, можно выделить критические точки и произвести по ним проверку вероятности реализации заданной производительности МН или оценку пропускной способности нефтепровода и, при необходимости, выполнить регулирование работы НПС.

4. Анализ работы газопроводов

Эффективная работа магистральных трубопроводов может реализоваться только при наличии объективной информации о состоянии установленного оборудования и эффективности его использования. В процессе эксплуатации техническое состояние оборудования и условия его эксплуатации постоянно меняются, что вызывает необходимость периодического отслеживания основных показателей работы оборудования и эффективности его использования.

Работа магистральных трубопроводов анализируется в следующих направлениях:

1) использование линейной части и оборудования по времени (показатели экстенсивного использования);

2) использование линейной части и оборудования по пропускной способности, располагаемой мощности, теплосъему (показатели интенсивности использования);

3) исследование технического состояния и надежности работы линейной части и оборудования;

4) оценка эффективности использования энергии.

Результаты анализа позволяют наметить пути повышения эффективности работы магистрального трубопровода.

4.1 Исходная информация

Глубина проведения анализа и достоверность результатов во многом предопределяются полнотой и достоверностью исходной информации. Для проведения анализа требуется информация по физическим свойствам транспортируемого продукта, характеристике линейной части трубопровода, характеристике используемого оборудования, параметрам работы линейной части и оборудования и данные об использовании оборудования.

Технологические параметры работы трубопровода предпочтительно получать в ходе специальных контрольных замеров с использованием приборов повышенной точности. Для получения необходимой достоверности результатов замеры следует производить сериями с последующей статистической обработкой результатов.

При отсутствии возможности проведения контрольных замеров анализ производится на основе диспетчерских данных и данных по эксплуатации оборудования. Необходимую выборку режимов производят из периода (2-3 суток) стабильной работы трубопровода с производительностью, приблизительно равной средней производительности за анализируемый период (неделя, месяц, год).

1) Физические свойства: состав, плотность, относительная плотность, вязкость, содержание воды, низшая теплота сгорания.

2) Характеристика линейной части: длина, диаметр, толщины стенок труб и их раскладка, длины резервных ниток и лупингов и их положение на трассе, наличие и расположение перемычек и отводов или подключений, профиль трассы, положение запорной арматуры и ее состояние (открыто, закрыто), отказы и их причины, периодичность очистки и дата проведения последней, характеристика очистных устройств.

3) Характеристика оборудования: тип, техническая характеристика, время начала эксплуатации, наработка, отказы и их причины, наработка после капитального ремонта, техническая характеристика технологий и техники для утилизации энергии.

4) Параметры работы линейной части: производительность, температура и давление в начале и в конце анализируемого участка, температура грунта и воздуха.

5) Параметры работы КС: схема работы ГПА, АВО и пылеуловителей, производительность КС и ЦН, давление и температура газа на входе и выходе КС, давление и температура газа на входе и выходе ЦН, давление и температура газа на входе и выходе АВО, потери давления во входных и в выходных коллекторах КС, потери давления в пылеуловителях и в АВО, частота вращения роторов ЦН, температура и давление атмосферного воздуха, температура воздуха на входе осевых компрессоров ГТУ, давление воздуха до и после осевых компрессоров, температура продуктов сгорания до и после силовых турбин, расход топливного и пускового газа, расход электроэнергии на технологические нужды, количество утилизируемой энергии на КС.

6) Использование оборудования: длины отключаемых участков и время и причины их простоя, наработка оборудования, время нахождения оборудования в резерве, время нахождения оборудования в плановом техническом обслуживании, время и причины нахождения оборудования в вынужденном простое, количество отказов и их причины.

7) Характеристика измерительных приборов: пределы измерения, класс точности, относительная ошибка измерений, цена деления шкалы прибора.

4.2 Оценка использования оборудования

Использование оборудования по времени оценивается коэффициентом экстенсивного использования .

Для линейной части

, (4.1)

где li - длина i-го участка;

- время работы i-го участка в анализируемом периоде работы трубопровода;

L - длина анализируемого участка;

- продолжительность анализируемого периода.

Для оборудования

, (4.2)

где - время работы оборудования в анализируемом периоде.

Проектная величина kЭП определяется соотношением

, (4.3)

где - количество рабочего и установленного оборудования.

Высокое значение kЭ не всегда свидетельствует о рациональности использования оборудования. Большое значение имеет степень его загрузки. Интенсивность использования оборудования оценивается соотношением фактических значений производительности, потребляемой мощности или теплосъема к проектным, располагаемым или номинальным их значениям.

Возможность эффективного использования оборудования во многом зависит от производительности трубопровода. Для оценки степени загруженности трубопровода анализируются значения коэффициентов использования проектной производительности и пропускной способности :

, (4.4)

, (4.5)

где Q - фактическая производительность;

- проектная производительность;

qТВ - технически возможная (максимальная) пропускная способность.

Интенсивность использования перекачивающих агрегатов характеризуется коэффициентом загрузки :

, (4.6)

где - потребляемая и располагаемая мощность агрегата при условиях эксплуатации.

Потребляемая агрегатами мощность определяется из уравнения (2.11) или (3.72).

Располагаемая мощность ГТУ зависит от давления и температуры воздуха:

, (4.7)

где - номинальная мощность ГТУ (приложение 4);

- коэффициент технического состояния ГТУ, принимаемый по данным исследования технического состояния агрегата (при отсутствии таких данных принимается равным 0,95);

- коэффициент, учитывающий влияние противооблединительной системы;

- коэффициент, учитывающий влияние системы утилизации тепла выхлопных газов, =0,985;

- коэффициент, учитывающий влияние температуры наружного воздуха (приложение 4);

- фактическая и расчетная температура воздуха перед осевым компрессором (приложение 4);

- фактическое и расчетное давление воздуха.

Коэффициент принимается равным 1 при отсутствии противообледенительной системы и при температуре на входе осевого компрессора выше 50С. При прочих условиях можно принять =0,9.

Располагаемая мощность синхронного электродвигателя принимается равной номинальной мощности при номинальных параметрах системы охлаждения. Номинальные температуры охлаждения составляют 300 С при охлаждении воздухом и 400 при охлаждении водой. Повышение температуры воды или воздуха приводит к снижению располагаемой мощности (приложение 6).

Интенсивность использования АВО характеризуется средним коэффициентом тепловой эффективности kСР (2.44).

Качество очистки газа циклонными пылеуловителями зависит от производительности. При малых производительностях скорости течения газа в циклонах получаются ниже оптимальных, что снижает качество очистки, а при больших производительностях возрастает унос газом жидкости. Нормальной работе пылеуловителя соответствует условие

. (4.8)

Максимальная производительность Qmax и минимальная Qmin определяются по характеристикам пылеуловителей в зависимости от давления газа на входе в КС и его плотности.

4.3 Анализ надежности и технического состояния оборудования

Надежность работы оборудования принято оценивать тремя основными показателями: коэффициентом готовности , коэффициентом технического использования и наработкой на отказ To:

, (4.9)

, (4.10)

, (4.11)

где - время работы оборудования за анализируемый период;

- время вынужденного простоя;

- время технического обслуживания и плановых ремонтов;

n - количество отказов оборудования за анализируемый период.

Техническое состояние перекачивающих агрегатов характеризуется следующими коэффициентами:

коэффициентом технического состояния нагнетателя (насоса) :

, (4.12)

где - фактический и паспортный кпд нагнетателя (насоса);

коэффициентом технического состояния двигателя по мощности :

, (4.13)

где - фактическая и паспортная мощность двигателя при одинаковых условиях работы;

коэффициентом технического состояния двигателя по кпд :

, (4.14)

где - фактический и номинальный кпд двигателя.

Техническое состояние ГТУ сказывается на расходе топливного газа, и в этом случае оно оценивается коэффициентом технического состояния по топливному газа :

, (4.15)

где - фактический и паспортный расход топливного газа.

Паспортные показатели ГТУ при фактических условиях работы определяются следующими зависимостями [7]:

паспортная мощность (кВт)

, (4.16)

где T3, - фактическая и номинальная температура перед турбиной высокого давления; теплота сгорания топлива BQH (кВт)

, (4.17)

где - номинальный кпд ГТУ;

расход топливного газа (м3/с)

; (4.18)

эффективный кпд

. (4.19)

Между коэффициентами технического состояния ГТУ существует следующая связь:

. (4.20)

4.4 Оценка результатов анализа

Результаты анализа работы магистрального трубопровода используются для принятия решения по повышению эффективности его эксплуатации. Это могут быть варианты как по совершенствованию технологической схемы работы, так и по необходимости проведения реконструкции трубопровода. В общем случае проведенный анализ может дать два основных результата.

1) Трубопровод работает с производительностью ниже проектной или ниже его пропускной способности.

В этом случае, прежде всего, необходимо выяснить причины низкого использования пропускной способности. Возможными причинами могут быть:

низкая добыча нефти или газа;

недостаточная потребность в нефти или газе;

ошибки проектирования или строительства трубопровода;

низкая гидравлическая эффективность работы;

неудовлетворительное техническое состояние перекачивающих агрегатов;

низкое давление поступающего с промысла газа;

большие внутристанционные потери давления;

пониженная надежность линейной части.

2) Низкая эффективность работы.

В данном случае причины могут быть следующие:

трубопровод работает не в оптимальной области;

внутренняя полость трубопровода сильно загрязнена;

неудовлетворительное техническое состояние перекачивающих агрегатов;

характеристика насосов или компрессоров не соответствует условиям работы трубопровода;

перекачивающие агрегаты используются неэффективно;

большие внутристанционные потери давления;

низкое давление газа в газопроводе;

высокая температура газа в газопроводе.

Признаками экономичности работы трубопровода при заданной производительности являются высокое значение коэффициента гидравлической эффективности линейной части, близкое к номинальному значению кпд перекачивающих агрегатов, и минимальное значение потерь давления на регулирование работы перекачивающих станций.

Для МГ экономичность работы в значительной степени зависит от величины давления на выходе КС. Снижение давления по отношению к допустимому для данного газопровода приводит к повышению затрат энергии. Пониженное давление на выходе станции может быть целесообразным на последней КС МГ и в случае, когда станции оборудованы агрегатами без средств регулирования производительность. В последнем случае затраты с учетом регулирования работы КС могут превысить затраты при работе газопровода с пониженным давлением. В остальных случаях пониженное давление может быть связано только с техническим состоянием перекачивающих агрегатов и их несоответствием условиям работы МГ.

В определенной степени экономичность работы зависит от оптимальности температурного режима трубопровода и периодичности его очистки.

При невозможности повышения эффективности работы трубопровода до желаемого значения возникает вопрос его реконструкции. При реконструкции станций могут выполняться:

сооружение укрупненных цехов, взамен нескольких ликвидируемых, с использованием современного оборудования укрупненной единичной мощности;

замена перекачивающих агрегатов и другого оборудования в старых зданиях;

модернизация действующих перекачивающих агрегатов и другого оборудования.

При реконструкции линейной части выполняются:

замена дефектных труб;

лупингование отдельных участков;

вынос трасс из зон застройки, прохождения железных и автомобильных дорог и пр.

Целесообразность и объем мероприятий по повышению экономичности работы трубопровода обосновываются экономическими расчетами. Наибольший экономический эффект дают мероприятия, проводимые на головных участках МГ.

Как правило, проводимые в целях повышения экономичности работы мероприятия должны сопровождаться благоприятным экологическим эффектом. В ряде случаев работы по реконструкции трубопровода должны быть связаны с повышением общей и экологической безопасности его работы.

Приложения

Приложение 1

Температура грунта/воздуха в некоторых пунктах России, 0 C

Приложение 2

Приложение 3

Приложение 4

При отсутствии данных о характеристиках ГТУ допускается принимать усредненные значения показателей: kN = 0,95,

Приложение 5

Приложение 6

Влияние температуры охлаждающей среды а располагаемую мощность синхронного электродвигателя, % [2]

При отсутствии данных по кпд электродвигателя и трансформатора допускается принимать =0,975 и =0,99.

Приложение 7

Зависимость температурного показателя политропического процесса сжатия от значений комплекса k/ (k-1) и средней температуры газа в нагнетателе Тср

Приложение 8

Приложение 9

сложные условия прокладки МН.

Приложение 10

* - сложные условия прокладки МН.

Приложение 11

Приложение 12

Приложение 13

Принята шероховатость труб: 0,125мм - для труб до 377мм включительно; 0,100 - для труб большего диаметра.

Размещено на Allbest.ru

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.