Атмосферная перегонка нефти и первичная обработка нефти и газа

Нефть как сложная смесь парафиновых, нафтеновых, ароматических и других углеводородов с различными молекулярными массами и температурами кипения, принципы ее обработки, используемые методы и материалы. Методы атмосферной перегонки, очистка от примесей.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 07.09.2015
Размер файла 722,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Реферат

Атмосферная перегонка нефти и первичная обработка нефти и газа

Введение

Нефть представляет собой сложную смесь парафиновых, нафтеновых, ароматических и других углеводородов с различными молекулярными массами и температурами кипения. Так же в нефти содержаться сернистые, кислород и азотсодержащие органические соединения. И поэтому, для получения из нефти товарных продуктов различного назначения, применяют методы разделения нефти на фракции или группы углеводородов. И при необходимости, изменяют их химический состав, дальнейшим проведением каталитических и термических процессов.

Нефтяная промышленность сегодня - это крупный народнохозяйственный комплекс, который живет и развивается по своим закономерностям. Что значит нефть сегодня для народного хозяйства страны? Это: сырье для нефтехимии в производстве синтетического каучука, спиртов, полиэтилена, полипропилена, широкой гаммы различных пластмасс и готовых изделий из них, искусственных тканей; источник для выработки моторных топлив (бензина, керосина, дизельного и реактивных топлив), масел и смазок, а также котельно-печного топлива (мазут), строительных материалов (битумы, гудрон, асфальт); сырье для получения ряда белковых препаратов, используемых в качестве добавок в корм скоту для стимуляции его роста.

В настоящее время нефтяная промышленность Российской Федерации занимает 3 место в мире. Нефтяной комплекс России включает 148 тыс. нефтяных скважин, 48,3 тыс. км магистральных нефтепроводов, 28 нефтеперерабатывающих заводов общей мощностью более 300 млн. т/год нефти, а также большое количество других производственных объектов.

На предприятиях нефтяной промышленности и обслуживающих ее отраслей занято около 900 тыс. работников, в том числе в сфере науки и научного обслуживания - около 20 тыс. человек.

Промышленная органическая химии прошла длинный и сложный путь развития, в ходе которого ее сырьевая база изменилась кардинальным образом. Начав с переработки растительного и животного сырья, она затем трансформировалась в угле- или коксохимию (утилизирующую отходы коксования угля), чтобы в конечном итоге превратиться в современную нефтехимию, которая уже давно не довольствуется только отходами нефтепереработки. Для успешного и независимого функционирования ее основной отрасли - тяжелого, то есть крупномасштабного, органического синтеза был разработан процесс пиролиза, вокруг которого и базируются современные олефиновые нефтехимические комплексы. В основном они получают, а затем и перерабатывают низшие олефины и диолефины. Сырьевая база пиролиза может меняться от попутных газов до нафты, газойля и даже сырой нефти. Предназначавшийся вначале лишь для производства этилена, этот процесс теперь является также крупнотоннажным поставщиком пропилена, бутадиена, бензола и других продуктов.

1. Атмосферная перегонка нефти

Для осуществления процесса перегонки используют ректификационные колонны. Различают колонны простые, для разделения сырья на два компонента (дистиллят и кубовый остаток) и сложные. В среднюю часть простой колонны вводится разделяемое сырьё, нагретое до необходимой температуры, в виде паров, жидкости или их смеси. Зона, в которую вводят сырье, называется эвопарационной, т.к. в ней происходит однократное испарение. Через каждую тарелку проходит четыре потока:

1. Жидкость - флегма, стекающая с верхней тарелки

2. Пары, поступающие с ниже лежащей тарелки

3. Жидкость - флегма, уходящая на ниже лежащую тарелку

4. Пары, поднимающиеся на выше лежащую тарелку

Жидкость с верхней тарелки стекает на ниже лежащую тарелку, поступает в зону относительно высокой температуры и из неё испаряется часть низкокипящего компонента. С другой стороны, контактирующий на ней пар с ниже лежащей тарелки несколько охлаждается и из него конденсируется высоко кипящий компонент. Парциальный состав паров и жидкости по высоте колонны непрерывно изменяется. Часть расположенная выше ввода сырья называется концентрационной, а ниже - отгонной. С верха концентрационной зоны выводят готовый продукт в виде пара (ректификат), а с низа, обогащённую низко кипящим компонентом жидкость. В отгонной зоне окончательно отгоняется низко кипящий компонент. С низа колонны отбирается второй продукт ректификации - кубовый остаток. Для нормальной работы колонны необходимо непрерывное её орошение жидким продуктом, поэтому часть ректификата, после его охлаждения и конденсации в виде флегмы направляют на верхнюю тарелку колонны. С другой стороны, чтобы отогнать низко кипящий компонент необходимо в нижнюю часть колонны подавать тепло. Для этого часть остатка после подогрева подают на одну из нижних тарелок.

В случае, когда необходимо отбирать не одну, а несколько фракций с достаточно чёткими границами раздела по температурам кипения, прибегают к сложным колоннам. Она представляет собой сочетание простых колонн. Сырьё поступает в среднюю часть колонны и разделяется на паровую и жидкую часть. Жидкость стекает по тарелкам в низ колонны, а пары поднимаются вверх, причём обе части подвергаются ректификации.

a) С различных по высоте колонны тарелок отбираются боковые погоны, которые отводятся на верхнюю тарелку боковых отпарных (стриппинг колонн). Под нижнюю тарелку стриппинг колонны подаётся навстречу потоку жидкости водяной пар, с температурой чуть выше кипения данной фракции. С низа каждой секции отбирается нужная фракция. А водяной пар вместе с легкокипящим компонентом возвращается в основную колонну. Таким образом, отпарные колонны служат отгонными частями, выделенные в самостоятельные колонны. Необходимость их использования заключатся и в том, что в целевом продукте, в результате недостаточно чёткого разделения, могут находиться более легкокипящие фракции, т.е. происходит наложение фракции. Это значит, например, что в отбираемой фракции может находиться некоторое количество другой фракции. Поэтому без дополнительной ректификации качество не будет соответствовать заданным нормам.

Обычно наверх атмосферной колонны в качестве острого орошения подают верхний дистиллят, а в различные точки по высоте колонны - несколько промежуточных циркуляционных орошений. Для осуществления циркуляционного орошения часть флегмы забирается с тарелки, проходит через теплообменник, отдаёт своё тепло, и охладившись до заданной температуры, поступает на тарелку выше той, с которой забиралась флегма на охлаждение. При этом поддерживается определённый температурный режим на тарелке отбора флегмы, и создаются условия, необходимые для поддержания потока флегмы на нижележащих тарелках. Циркуляционных орошений может быть вплоть до трёх.

Промежуточное орошение чаще всего отводят с одной из тарелок, расположенных непосредственно ниже точки вывода бокового дистиллята (погона) в выносную отпарную колонну. По другому варианту в качестве промежуточного орошения используют сам боковой погон, который после охлаждения возвращают в колонну выше или ниже точки ввода в неё паров из отпарной выносной колонны.

Применение промежуточного циркуляционного орошения позволяет рационально использовать избыточное тепло колонны для подогрева нефти в теплообменниках, при этом выравниваются нагрузки по высоте колонны, что обеспечивает оптимальные условия её работы. Верхним боковым потоком отбирают керосиновую фракцию, затем лёгкую дизельную фракцию и ещё ниже более тяжёлую дизельную.

Чёткость и эффективность ректификации зависит от способа контактирования паров и жидкости. Контакт паров и жидкости в вертикальных цилиндрических аппаратах - колоннах, снабжённых специальными ректификационными тарелками или насадками, обеспечивающих тесный контакт поднимающихся вверх по колонне паров и стекающим им навстречу жидкостям.

Увеличение отбора светлых и качества дистиллятов.

Увеличение глубины отбора светлых из нефти является важнейшей задачей первичной перегонки нефти. Повышение чёткости погоноразделения является также одной из важных задач перегонки, поскольку основные показатели качества дистиллятных фракций существенным образом зависят от их фракционного состава. В атмосферной колонне осуществляется основное разделение нефти на дистиллятные фракции и мазут. По мере утяжеления фракции чёткость разделения ухудшается вследствие уменьшения относительной летучести разделяемых фракций и флегмового числа. По результатам перегонки большое влияние оказывает давление. При увеличении давления отбор дистиллятов уменьшается, при этом значительно ухудшается качество продуктов, т.е. чёткость ректификации. При повышенном давлении не удаётся полностью отобрать светлые дистилляты, их выход составляет примерно 70-80% от потенциала; не достигается и ожидаемое увеличение производительности колонны. В тоже время использование пониженного давления, близкое к атмосферному, и умеренный вакуум даёт возможность не только повысить качество получаемых продуктов, но и улучшить технико-экономические показатели процесса. Пониженное давление позволяет отказаться от применения водяного пара и даёт возможность сэкономить тепла до 5%.

В настоящее время разрабатываются перспективные схемы замены водяного пара потоком нефтепродуктов. Довольно эффективно также ступенчатое понижение давления перегонки раздельно в зонах питания и отпаривания. Наибольшее понижение давление в отпарных секциях достигается при полной конденсации отгона. Охлаждённый отгон рекомендуется подавать в линию горячей струи первой колонны, в качестве испаряющего агента; в печь основной колонны; в качестве орошения основной колонны, ниже или выше отбора бокового погона. Поскольку отгон представляет собой легкокипящие фракции соответствующего потока, то использование их в качестве орошения выше лежащих секций колонны является предпочтительным.

Однократное и двукратное испарение нефти

По числу ступеней испарения (количеству ректификационных колон) различают трубчатые установки:

a) однократного испарения - на одной ректификационной колонне получает все дистилляты - от бензина до вязкого цилиндрового. Остатком перегонки является гудрон.

b) двукратного испарения - сначала при атмосферном давлении нефть перегоняется до мазута, который потом перегоняется в вакууме до получения в остатке гудрона. Эти процессы идут в двух колоннах.

c) трехкратного испарения - используются две атмосферные колонны и одна вакуумная. В первой колоне из нефти отбирают только бензин, во второй - отбензиненая нефть перегоняется до мазута, в третей - мазут перегоняется до гудрона.

d) четырехкратного испарения - установка с доиспарительной вакуумной колонной для гудрона в концевой части.

Выбор технологической схемы и режим перегонки зависит от качества нефти.

Перегонку нефтей с большим количеством растворённых газов (0,5-1,2%), с относительно не высоким содержанием бензина (12-15% фракций до 1800С) и выходом фракций до 3500С, не более 45%, выгодно осуществлять на установках АТ с однократным испарением и последующим фракционированием образовавшихся паровой и жидкой фаз в сложной ректификационной колонне.

Для перегонки лёгких нефтей с высоким выходом фракций до 3500С (50-65%), повышенным содержанием растворённых газов (1,5-2,2%) и бензиновых фракций (20-30%) целесообразно применять установки АТ двукратного испарения. Предпочтительной является схема с предварительной ректификационной колонной частичного отбензинивания нефти и последующей перегонкой остатка в сложной атмосферной колонне. В первой колонне из нефти отбирают большую часть газа и низкокипящих бензиновых фракций. Чтобы более полно сконденсировать их, поддерживают повышенное давление. Благодаря этому становится возможным понизить давление в атмосферной колонне и тем самым реализовать условия перегонки (а именно температуру питания и расход водяного пара в отгонную часть атмосферной колонны), обеспечивающие высокий отбор от потенциала в нефти суммы светлых нефтепродуктов. Схема перегонки нефти, с колонной предварительного частичного отбензинивания и сложной основной ректификационной колонной, получила наиболее широкое применение в нефтепереработке. Она обладает достаточной гибкостью и универсальностью.

Разновидностью перегонки нефти с двукратным испарением является схема с предварительным испарителем и атмосферной колонной. Пары из испарителя и остаток после нагрева в печи направляются в атмосферную колонну. Основными достоинствами такой схемы являются: сокращение затрат на перегонку, за счёт снижения гидравлического сопротивления змеевика печи; и уменьшения металлоёмкости колонн и конденсаторов. Схема применима для перегонки нефтей со средним уровнем содержания растворённого газа (1%) и бензина (18-20%) в нефтепереработке встречается редко.

Технологическая схема ЭЛОУ-АВТ и её возможные варианты

Рассмотрим установку ЭЛОУ-АВТ с двукратным испарением нефти. Атмосферная перегонка на таких установках осуществляется в одной колонне. Предпочтительным сырьём для них являются нефти с относительно невысоким содержанием бензиновых фракций и растворённых газообразных углеводородов. Принципиальная технологическая схема установки представлена на рис. 1.

Рисунок 1 - Установка ЭЛОУ-АВТ с двукратным испарением нефти

Нефть, нагретая в теплообменниках 2, поступает четырьмя параллельными потоками в электродегидраторы 3. Обессоливание проводится в две ступени с применением деэмульгатора. Солёная вода из электродегидраторов второй ступени вторично используется для промывки нефти на первой ступени. Кроме того, в качестве промывочной воды на второй ступени используют водные конденсаты, образующиеся в процессе конденсации пара на установках атмосферно-вакуумной перегонки. Обессоленная нефть насосом прокачивается через группу регенеративных теплообменников 2 и после нагрева двенадцатью параллельными потоками в трубчатой печи 4 поступает на перегонку в атмосферную колонну 5. Отводимые с верха колонны пары конденсируются в две ступени. На первой обеспечивается более низкое содержание газообразных углеводородов в составе орошения, чем в дистилляте. Несконденсированная газовая и жидкая фаза бензина совместно дополнительно охлаждаются и поступают в сырьевую ёмкость 9 дебутанизатора 10. Из атмосферной колонны 5 через отпарные колонны 6 одновременно отбирают три боковых погона: фракцию 140-2500С и два компонента дизельного топлива - фракцию 250-3500С и фракцию 320-3800С. Остатком атмосферной колонны является мазут. В низ атмосферной колонны и отпарных колонн 6 подаётся перегретый водяной пар. Стабилизация бензина проводится в дебутанизаторе 10.

Вторичной перегонке в колонне 11 подвергается примерно 62% стабильного бензина, что связано с ограниченной потребностью во фракции 90-1400С. Мазут после нагрева в печи 4 поступает на перегонку в вакуумную колонну 12. Верхним боковым погоном из вакуумной колонны отводится лёгкий вакуумный газойль, средним - фракция 380-5300С и нижним - затемневшая фракция. Остатком колонны является гудрон. В змеевик печи и низ колонны подаётся водяной пар. Через верх вакуумной колонны 12 отводятся несконденсированный газ, водяные пары и пары нефтяных фракций. После их охлаждения в газосепараторе 8 конденсат отделяется от газа и несконденсированных водяных паров. Смесь последних отсасывается трёхступенчатым пароэжекторным вакуумным насосом 13. Газы разложения поступают на сжигание в вакуумную печь 4. Смесь конденсата и нефтяных фракций из вакуумсоздающей системы поступает на разделение в отстойник 14. Ловушечный нефтепродукт откачивается в лёгкий вакуумный газойль, а конденсат - на ЭЛОУ.

Принцип метода элекрообессоливания заключается в том, что полярные молекулы воды в электрическом поле стремятся двигаться к электродам, в результате капли воды приобретают грушевидную форму, остриём обращённую к положительно заряженному электроду. В процессе движения капли сталкиваются, сливаются и по мере увеличения массы оседают в нижнюю часть электродегидратора. Увеличить эффективность можно с увеличением температуры, т.к. в этом случае вязкость нефти значительно падает.

2. Первичная переработка нефти

Подготовка нефти к переработке

Добываемая на промыслах нефть, помимо растворенных в ней газов, содержит некоторое количество примесей - частицы песка, глины, кристаллы солей и воду. Содержание твердых частиц в неочищенной нефти обычно не превышает 1,5%, а количество воды может изменяться в широких пределах. С увеличением продолжительности эксплуатации месторождения возрастает обводнение нефтяного пласта и содержание воды в добываемой нефти. В некоторых старых скважинах жидкость, получаемая из пласта, содержит 90% воды. В нефти, поступающей на переработку, должно быть не более 0,3% воды. Присутствие в нефти механических примесей затрудняет ее транспортирование по трубопроводам и переработку, вызывает эрозию внутренних поверхностей труб нефтепроводов и образование отложений в теплообменниках, печах и холодильниках, что приводит к снижению коэффициента теплопередачи, повышает зольность остатков от перегонки нефти, содействует образованию стойких эмульсий. Кроме того, в процессе добычи и транспортировки нефти происходит весомая потеря легких компонентов нефти - примерно до 5% от фракций, выкипающих до 100°С.

С целью понижения затрат на переработку нефти, вызванных потерей легких компонентов и чрезмерный износ нефтепроводов и аппаратов переработки, добываемая нефть подвергается предварительной обработке.

Для сокращения потерь легких компонентов осуществляют стабилизацию нефти, а также применяют специальные герметические резервуары хранения нефти. От основного количества воды и твердых частиц нефть освобождают путем отстаивания в резервуарах. Разрушение нефтяных эмульсий осуществляют механическими, химическими и электрическими способами. Важным моментом является процесс сортировки и смешения нефти.

Очистка нефти от примесей

От основного количества воды и твердых частиц нефти освобождают путем отстаивания в резервуарах на холоде или при подогреве. Окончательно их обезвоживают и обессоливают на специальных установках.

Однако вода и нефть часто образуют трудно разделимую эмульсию, что сильно замедляет или даже препятствует обезвоживанию нефти. В общем случае эмульсия есть система из двух взаимно нерастворимых жидкостей, в которых одна распределена в другой во взвешенном состоянии в виде мельчайших капель. Существуют два типа нефтяных эмульсий: нефть в воде, и вода в нефти. Чаще встречается гидрофобный тип нефтяных эмульсий. Образованию стойкой эмульсии предшествуют понижение поверхностного натяжения на границе раздела фаз и создание вокруг частиц дисперсной фазы прочного адсорбционного слоя. Такие слои образуют третьи вещества - эмульгаторы. К гидрофильным эмульгаторам относятся щелочные мыла, желатин, крахмал. Гидрофобными являются хорошо растворимые в нефтепродуктах щелочноземельные соли органических кислот, смолы, а также мелкодисперсные частицы сажи, глины, окислов металлов и т.п., легче смачиваемые нефтью чем водой.

Существуют три метода разрушения нефтяных эмульсий:

механический:

отстаивание - применяется к свежим, легко разрушимым эмульсиям. Расслаивание воды и нефти происходит вследствие разности плотностей компонентов эмульсии. Процесс ускоряется нагреванием до 120-160°С под давлением 8-15 ат. в течение 2-3 ч, не допуская испарения воды.

Центрифугирование - отделение механических примесей нефти под воздействием центробежных сил. В промышленности применяется редко, обычно сериями центрифуг с числом оборотов от 3500 до 50000 в мин., при производительности 15 - 45 м3 смесь и не образовывалось двух жидких фаз на тарелке. При экстрактивной ректификации моноциклических ароматических углеводородов в качестве растворителя применяют фенол, крезолы, фурфурол, анилин и алкилфталаты.

Если добавляемое вещество более летуче, чем исходные компоненты, то его вводят в ректификационную колонну вместе с сырьем и выводят из нее вместе с парами верхнего продукта. Такую ректификацию называют азеотропной. В этом случае вводимое вещество образует азеотропную смесь с одним из компонентов сырья. Это вещество называют уводителем.

Последний должен обеспечивать образование постоянно кипящей смеси с одним или несколькими компонентами разгоняемой смеси. Уводитель образует азеотропную смесь вследствие молекулярных различий между компонентами смеси.

При азеотропной ректификации моноциклических ароматических углеводородов в качестве уводителей применяют метиловый и этиловый спирты, метилэтилкетон и другие вещества, образующие азеотропную смесь с парафино-нафтеновыми углеводородами разделяемой смеси.

Уводитель должен иметь температуру кипения близкую к температуре кипения отгоняемого вещества. Это позволяет получить заметную разницу между температурой кипения азеотропа и других компонентов смеси. Уводитель должен также легко выделяться из азеотропной смеси. Весьма часто разделение бывает более полным, чем этого можно ожидать на основании лишь температурной разницы. Это объясняется большим отклонением системы от идеальной.

Важное значение в осуществлении экстрактивной и азеотропной ректификаций имеет подготовка сырья, которое должно выкипать в весьма узких пределах, т.е. установке по перегонке с третьим компонентом должна предшествовать установка предварительного разделения смеси посредством обычной ректификации.

Устройство и действие ректификационных колонн, их типы

Ректификация простых и сложных смесей осуществляется в колоннах периодического или непрерывного действия.

Колонны периодического действия применяют на установках малой производительности при необходимости отбора большого числа фракций и высокой четкости разделения. Классическая схема такой установки указана на рис. 2. Сырье поступает в перегонный куб 1 на высоту около 2 мин. Флегма спускается сверху - 5 по неподвижной тарелке и у центра переливается на нижележащую вращающуюся тарелку. Под влиянием центробежной силы флегма перемещается по вращающейся тарелке вверх до ее периферии и в виде сплошной кольцевой пленки переходит на стенки корпуса колонны и дальше - на низлежащую тарелку. Далее процесс повторяется. Пары движутся сквозь флегму противотоком. К тому же большое количество флегмы постоянно находится во взвешенном состоянии, что приводит к высокой испаряемости самой флегмы. Расстояние между тарелками всего 8 - 10 мм, что позволяет строить очень компактную колонну с высоким КПД. В колонну вводится подогретое сырье, необходимая температура которого поддерживается нагревателем - 6. Указанная конструкция очень удобна в использовании, практически не требует ремонта и профилактических работ, долговечна и не столь чувствительна к изменениям температур и давления исходных компонентов.

Комплексы ректификационных колонн, виды их подключения

В промышленности наиболее часто применяются сложные установки ректификационных колонн, комбинирующих разные виды колонн и разные типы их подключения. Это позволяет корректировать технологический процесс для разных условий переработки нефти и получения необходимых дистиллятов.

В зависимости от направления переработки нефти в процессе ректификации могут участвовать разные установки ректификационных колонн. Достигается это сменой потоков сырья и промежуточных продуктов, что требует высокой магистральности сообщений коллон и установок и возможности компактного и ресурсосберегающего перенаправления потоков.

Подключение колонн возможно:

последовательное, где с каждой последующей колоны снимают более тяжелый продукт, который одновременно служит флегмой для предыдущей колонны (рис.;

навесной, где к основной колонне пристроены вспомогательные, куда поступают дистилляторы отобранные с разных уровней основной колонны и проходят дополнительную очистку. Остаток вспомогательных колонн сбрасывают назад в основную. Возможно взаимное подключение вспомогательных колонн, использование выходного продукта одной вспомогательной колонны в качестве флегмы для другой и др. Вспомогательные колонны могут также иметь различную конструкцию - использовать различный тип тарелок, различные нагревательные агенты, технологические условия и др.; и размещение - объединяться конструктивно в одну, надстраиваться над основной, располагаться вокруг основной колонны, помещаться внутри основной колонны;

с комбинированием последовательных и навесных подключений.

Промышленные установки по первичной переработке нефти

Процесс первичной переработки нефти, с целью получения нефтяных фракций, различающихся по температуре кипения без термического распада, осуществляют в кубовых или трубчатых установках при атмосферном и повышенном давлениях или в вакууме. Трубчатые установки отличаются более низкой достаточной температурой перегоняемого сырья, меньшим крекингом сырья, и большим КПД. Поэтому на современном этапе нефтепереработки трубчатые установки входят в состав всех нефтеперерабатывающих заводов и служат поставщиками как товарных нефтепродуктов, так и сырья для вторичных процессов.

В зависимости от давления в ректификационных колоннах трубчатые установки подразделяются на атмосферные. Вакуумные и атмосферно-вакуумные.

По числу ступеней испарения различают трубчатые установки

однократного испарения - на одной ректификационной колонне получает все дистилляты - от бензина до вязкого цилиндрового. Остатком перегонки является гудрон.

двукратного испарения - сначала при атмосферном давлении нефть перегоняется до мазута, который потом перегоняется в вакууме до получения в остатке гудрона. Эти процессы идут в двух колоннах.

трехкратного испарения - используются две атмосферные колонны и одна вакуумная. В первой колоне из нефти отбирают только бензин, во второй - отбензиненая нефть перегоняется до мазута, в третей - мазут до гудрона.

четырехкратного испарения - установка с доиспарительной вакуумной колонной для гудрона в концевой части.

Широкое распространение нашла комбинация ЭЛОУ-АВТ-комплекс вторичной переработки. Технологическая схема комбинированной установки ЭЛОУ-АВТ приведена на рис. 9. Подогретая в теплообменниках - 1 нефть с температурой 120-140°С поступает в комплекс дегидраторов - 2, где подвергается термохимическому и электрообезвоживанию и обессоливанию в присутствии воды, деэмульгатора и щелочи. Подготовленная таким образом нефть снова дополнительно подогревается в теплообменниках и с температурой 220°С поступает в колонну - 3. Сверху этой колонны отбирается фракция легкого бензина и выводится через теплообменник и сепаратор - 4, откуда частично изымается для орошения колонны. Остаток снизу колонны подается в печь - 5, где нагревается до 330°С, и поступает в качестве дополнительной горячей струи в колонну - 3 и как сырье в колонну - 6. Сверху колонны - 6 отбирается тяжелый бензин и выводится через теплообменник и газосепаратор - 8, частично возвращаясь в качестве оросителя назад в колонну. Сбоку колонны отбираются промежуточные фракции, для чего служат корректоры температуры и отпарные колонны - 7, где отбираются фракции 140-240°С, 240-300°С, 300-350°С. Мазут снизу колонны - 6 подается в печь -9, где нагревается до температуры 420°С, и поступает в вакуумную колонну -10, работающую при остаточном давлении 40 мм рт. ст. Водяные пары, газообразные продукты разложения и легкие пары сверху колонны поступают в барометрический конденсатор -12, несконденсировавшиеся газы отсасываются эжектором -11. Сбоку колонны отбирают боковые продукты вакуумной колонны, остаток снизу - гудрон. Бензины получаемые в колоннах -3 и 6 поступают в стабилизатор -13. Газ из газосепараторов -4, 8 и 14 подается в абсорбер -15, орошаемый стабильным бензином из колонны -13. А получаемый сверху колонны -15 сухой газ сбрасывается к форсункам печей.

перегонка нефть углеводород

3. Первичная переработка газа

На начальных этапах эксплуатации газоконденсатных месторождений давление на входе на установки комплексной подготовки газа значительно превышает давление, необходимое для подачи в магистральные трубопроводы. Избыточное давление газа используется для получения низких температур, необходимых для отделения конденсата методом низкотемпературной сепарации (ИТС).

Низкотемпературной сепарацией называют процесс извлечения жидких углеводородов из газов путем однократной конденсации при пониженных температурах с разделением равновесных газовой и жидкой фаз.

Температуру можно понизить за счет изоэнтальпийного или изоэнтропийного расширения газа. Изоэнтальпийное расширение газа осуществляется с использованием дроссельных устройств, а изоэнтропийное - с применением турбодетандеров.

Типичная схема установки низкотемпературной сепарации (УНТС) представлена на рис. 2. Сырой газ со скважин поступает на первую ступень сепарации 1, где отделяется жидкая фаза (пластовая вода с растворенными ингибиторами и сконденсировавшийся углеводородный конденсат). Отсепарированный газ направляется в рекуперативные теплообменники 2 и 3 для рекуперации холода с дросселированных потоков газа и конденсата. Для предупреждения гидратообразования в поток газа перед теплообменниками впрыскивают монодиэтиленгликоль (ЛЕГ) или метанол. При наличии свободного перепада давления (избыточного давления промыслового газа) охлажденный газ из теплообменников поступает в расширительное устройство - дроссель или детандер. При отсутствии свободного перепада давления газ направляют в испаритель холодильного цикла, где используется внешний хладагент, например сжиженный пропан. После охлаждения в расширительном устройстве или испарителе газ поступает в низкотемпературный сепаратор 5. где из потока газа отделяются сконденсировавшиеся жидкие углеводороды и водный раствор ингибитора гидратообразования. Газ из сепаратора 5 через теплообменник 2 подается в магистральный газопровод. Жидкая фаза через дроссель 4 поступает в трехфазный сепаратор в. откуда газ выветривания эжектором возвращается в основной поток. Водный раствор ингибитора, выводимый снизу сепаратора в. направляется на регенерацию, а выветренный конденсат через теплообменник 3 - на стабилизацию на установку стабилизации конденсата (УСК).

Рисунок 2 - Схема установки низкотемпературной сепарации (УНТС)

Основные факторы, влияющие на процесс НТС

На эффективность работы установок НТС большое влияние оказывают состав сырьевого газа, температура, давление, эффективность оборудования и число ступеней сепарации.

Состав сырьевого газа. Чем тяжелее состав исходной смеси (чем больше средняя молекулярная масса газа), тем выше степень извлечения жидких углеводородов. Однако, начиная с некоторого состава (средняя молярная температура кипения около минус 133'С. молекулярная масса примерно 22), утяжеление состава исходной смеси практически не оказывает влияния на степень извлечения компонентов С.

Для тощих исходных смесей для повышения степени извлечения жидких углеводородов иногда используют метод сорбции в потоке, т.е. осуществляют впрыск в поток исходной смеси стабильного конденсата или других углеводородных жидкостей на некотором расстоянии от сепаратора. Таким образом производится утяжеление смеси, а следовательно, и повышается степень извлечения компонентов С.

Влияние температуры. Температуру на установках НТС выбирают исходя из необходимой точки росы для транспортировки газа по трубопроводу в однофазном состоянии.

Для легких газов (средняя молекулярная масса не более 22, средняя молекулярная температура кипения минус 156-133*С) снижение температуры сепарации от 0 до минус 40 0С обеспечивает существенный рост степени извлечения конденсатообразующих компонентов.

Для жирных газов (средняя молекулярная масса более 22, средняя молекулярная температура кипения больше минус 133 0С) влияние температуры на степень извлечения жидких углеводородов мало.

Таким образом, чем легче состав исходной смеси, тем более низкая температура требуется для выделения жидких углеводородов на установках НТС для достижения заданной точки росы.

Влияние давления. Давление сепарации определяется давлением магистрального трубопровода и в пределах обычно используемых давлений (5-7.5 МПа) мало влияет на степень извлечения компонентов С. и выше. Более важен свободный перепад давления, позволяющий достигать низких температур сепарации.

В период снижения пластового давления эффективность работы установок НТС поддерживается на прежнем уровне за счет ввода дожи много компрессора и внешнего холодильного цикла.

Эффективность оборудования. На эффективность работы установок НТС влияет используемый источник холода. В процессе длительной эксплуатации скважин и при снижении пластового давления замена изо энтальпий но го расширения (дросселирование) на изоэнтропное (расширение в детандерах) позволяет эффективнее использовать свободный перепад давления и при одном и том же перепаде давления при детандировании потока достигать более низких температур сепарации.

На более поздних стадиях эксплуатации скважин, когда свободный перепад давления практически отсутствует, на эффективность работы установок ИТ С будет оказывать влияние выбранный хладагент, его расход в испарителе и поверхность теплообмена.

Число ступеней сепарации. На газоконденсатных месторождениях при подготовке к транспортировке используют двух- и трехступенчатые схемы НТС.

При одинаковых параметрах (давление и температура) последней ступени охлаждения чем меньше число ступеней сепарации. тем больше выход жидкой фазы и тем меньше содержание углеводородов С в товарном газе. Но при одноступенчатой сепарации чрезмерно высоки потери компонентов газа с углеводородным конденсатом. Увеличение ступеней сепарации повышает четкость разделения газовой и жидкой фаз.

Но мере длительной эксплуатации скважин эффективность работы установок НТС снижается по двум причинам:

уменьшение свободного перепада давления вследствие снижения пластового давления: облегчение состава газа.

Следовательно, при длительной эксплуатации месторождений сепарация газа должна осуществляться при более низких температурах. На практике, наоборот, при длительной эксплуатации установок НТС температура сепарации постоянно повышается при одновременном облегчении состава.

Таким образом, установки НТС имеют следующие недостатки:

снижение эффективности процесса вследствие облегчения состава газа и повышения температуры НТС:

- необходимость реконструкции установки с заменой источника холода после исчерпания свободного перепада давления:

- необходимость применения ингибитора гидратообразования, что усложняет и удорожает схему процесса по причине введения в схему блока отделения и регенерации ингибитора: высокие потери целевых компонентов с товарным газом: относительно низкие степени извлечения газового конденсата для тощих газов.

К достоинствам установок НТС можно отнести следующие: низкие капитальные вложения и эксплуатационные затраты при наличии свободного перепада давления: одновременно с сепарацией имеет место осушка газа до точек росы, необходимых для транспортировки газа по магистральным газопроводам.

Жалюзийные сепараторы снабжены жалюзийными насадками, представляющими собой шкет криволинейных листов, уложенных на некотором расстоянии друг от друга на образующих криволинейные каналы. Двухфазный поток проходит через криволинейные каналы, где за счет инерционных сил осаждается тяжелая фаза. Эффективность сепарации в значительной степени зависит от равномерности укладки жалюзи в пакете. Для более равномерного распределения газа в сечении отбойной насадки рекомендуется располагать плоскость отбойного пакета на расстоянии, равном не менее половины максимальной ширины отбойного пакета от входного и выходного штуцеров.

В центробежных сепараторах: на осаждение жидкой фазы большое влияние оказывают следующие факторы: неравномерность распределения поля скоростей газа по сечению аппарата, зависимость траектории частиц тяжелой фазы от их дисперсности и плотности, влияние вторичного уноса осажденной дисперсной фазы и влияние турбулентных пульсаций на процесс осаждения и вторичного уноса. Влияние всех этих факторов чрезвычайно сложно, и поэтому на сегодняшний день не существует общего метода расчета всех этих процессов. 11а практике для центробежного сепаратора каждого типа экспериментальным путем определяют его эффективность и пропускную способность.

Сетчатые сепараторы для отделения капельной жидкости снабжены сетчатыми насадками, выполненными из ратных материалов - металлическими и синтетическими - с разными плетениями проволочных рукавов и размерами петель. Обычно сетчатая насадка (мат) выполняется из вязаных рукавных сеток, уложенных друг на друга или свернутых в круглый моток.

Число слоев сеток в мате 50-70, диаметр проволоки сетки 0.1 - 0.5 мм. толщина матов (высота насадки) 70-300 мм. удельная поверхность (отношение поверхности проволоки к занимаемому матом объему) 120-1900 м23, свободный межпроваточный объем 91-99%. масса насадки на единицу объема 50-530 кг/м3. Сетчатые маты обеспечивают сепарацию частиц жидкости диаметром более 5 мкм. а при двухслойном расположении - и более мелких частиц.

Фильтры-сепараторы обычно применяют в процессах двух- или многоступенчатой сепарации. В волокнистых фильтрующих материалах происходит диффузионная или инерционная коалесценция капельной жидкости. Фильтры такого типа используют обычно после отделения пленочной и крупнодисперсной жидкости - на второй ступени очистки для отделения тонкодисперсной туманообразной жидкости.

В трехступенчатом фильтрационно-сетчатом сепараторе пленочная жидкость отделяется после входного патрубка I в гравитационной секции 9 (первая ступень), 11а второй фильтрующей ступени происходит коалесценция мелкодисперсной жидкости, которая сепарируется от газового потока в третьей ступени - сетчатом отбойнике, установленном выше. Основной недостаток этих сепараторов заключается в том, что диаметр волокон и плотность упаковки существенно влияют на характеристики фильтра. Компоненты, полученные после первичной переработки, обычно не используются как готовый продукт. Легкие фракции проходят дополнительно крекинг, риформинг, гидрогенизационное облагораживание, целью которых является получение невысокой ценой наибольшего объема конечных продуктов с наиболее точными удовлетворительными качественными показателями. Тяжелые фракции после перегонки перерабатывают дополнительно на битумных, коксующих и других установках.

Заключение

Технологические установки перегонки нефти предназначены для разделения нефти на фракции и последующей переработки или использования их как компоненты товарных нефтепродуктов. Они составляют основу всех НПЗ. На них вырабатываются практически все компоненты моторных топлив, смазочных масел, сырье для вторичных процессов и для нефтехимических производств. От их работы зависят ассортимент и качество получаемых компонентов и технико-экономические показатели последующих процессов переработки нефтяного сырья.

Компоненты, полученные после первичной переработки обычно не используются как готовый продукт. Легкие фракции проходят дополнительно крекинг, реформинг, гидрогенизационное облагораживание, целью которых является получение невысокой ценой наибольшего объема конечных продуктов с наиболее точными удовлетворительными качественными показателями. Тяжелые фракции после перегонки перерабатывают дополнительно на битумных, коксующих и других установках.

В результате первичной перегонки нефти при атмосферном давлении получаются следующие продукты:

Сжиженный углеводородный газ, состоящий в основном из пропана и бутана: бензиновая фракция, керосиновая фракция, дизельная фракция, мазут.

Также в данной работе рассмотрены вопросы первичной переработки нефти и газа.

Список литературы

1. Гуревич И.Л. Технология переработки нефти и газа. - М: Химия, 1979.

2. Александров И.А. Перегонка и ректификация в нефтепереработке. - М: Химия, 1981.

3. Баннов П.Г. Процессы переработки нефти. - Ч. 1, М: ЦНИИТ, Энефтехим, 2000.

4. Баннов П.Г. Процессы переработки нефти. - Ч. 3, М: ЦНИИТ, Энефтехим, 2003.

5. Справочник нефтепереработчика. Нефтяная промышленность. - М: ВНИИОЭНГ, №1, 1994.

6. Гуревич И.Л. «Технология переработки нефти и газа», Гуревич И.Л., М: «Химия», 1979 г.

7. Александров И.А. «Перегонка и ректификация в нефтепереработке»: Александров И.А., М: «Химия», 1981 г.

8. Коршак А.А., Шаммазов А.М.: «Основы нефтегазового дела», издательство «Дизайнполиграфсервис», 2005. - 544 с.

9. Шаммазов А.М. и др.: «История нефтегазового дела России», Москва, «Химия», 2001. - 316 с.

10. Ахметов С.А. Технология глубокой переработки нефти и газа. Уфа: «ГИЛЕМ», 2002. - 671 с.;

11. Ахметов С.А. и др. Технология и оборудование процессов переработки нефти и газа: Учебное пособие / С.А. Ахметов, Т.П. Сериков, И.Р. Кузеев, М.И. Баязитов; Под ред С.А. Ахметова. - СПб.: Недра, 2006. - 868 с.

12. Капустин В.М. Основные каталитические процессы переработки нефти /В.М. Капустин, Е.А. Чернышева. - М.: Калвис, 2006. - 116 с.

13. Мановян А.К. Технология переработки природных энергоносителей. - М.: Химия, КолосС, 2004. - 456 с.

Размещено на Allbest.ru

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.