Реакторы каталитического крекинга

Задачи нефтеперерабатывающей промышленности на современном этапе. Понятие процесса каталитического крекинга (КК), его целевое назначение, катализаторы и виды реакторов. Характеристика групп показателей качества сырья по степени их влияния на процесс КК.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 16.02.2016
Размер файла 723,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Уфимский государственный нефтяной технический университет

Кафедра технологии нефти и газа

Реферат

по дисциплине «Химические реакторы»

на тему: «Реакторы каталитического крекинга»

Выполнил: студ. гр. БТП-12-02 Молодцов И.И.

Проверил: доцент каф. ТНГ Гайсина А.Р.

УФА, 2015

Содержание

  • Введение
  • 1. Общие положения и назначение процесса
  • 2. Характеристика сырья процесса
  • 3. Физико - химические свойства каталитического крекинга
  • 4. Катализаторы каталитического крекинга
  • 5. Виды реакторов каталитического крекинга
  • 5.1 Аппараты установок с циркулирующим шариковым катализатором
  • 5.2 Аппараты установок с кипящим (псевдоожиженным) слоем пылевидного катализатора
  • Список использованных источников

Введение

Увеличение объема производства нефтепродуктов, расширение их ассортимента и улучшение качества - основные задачи, поставленные перед нефтеперерабатывающей промышленностью в настоящее время. Решение этих задач в условиях, когда непрерывно возрастает доля переработки сернистых и высокосернистых, а за последние годы и высокопарафинистых нефтей, потребовало изменения технологии переработки нефти. Большое значение приобрели вторичные и, особенно, каталитические процессы. Производство топлив, отвечающих современным требованиям, невозможно без применения каталитического крекинга

Каталитический крекинг представляет собой современный процесс превращения высококипящих нефтяных фракций в базовые компоненты высококачественных авиационных и автомобильных бензинов и в средние дистиллятные фракции - газойли. Промышленные процессы основаны на контактировании сырья с активным катализатором в соответствующих условиях, когда 40-50 вес % исходного сырья без рециркуляции превращается в бензин и другие легкие продукты. В процессе крекинга на катализаторе образуются углистые отложения, резко снижающие его активность, в данном случае крекирующую способность. Для восстановления активности катализатор регенерируют. Наибольшее распространение получили установки с циркулирующим катализатором в движущемся потоке и псевдоожиженном, или кипящем, слое.

1. Общие положения и назначение процесса

Основное целевое назначение КК - производство с максимально высоким выходом (до 50 % и более) ВО бензина и ценных сжиженных газов - сырья для послед. производств ВО компонентов бензинов изомерного строения: алкилата и МТБЭ, а также сырья для нефтехимических производств. Получающийся в процессе ЛГ используется обычно как компонент ДТ, а ТГ с высоким содержанием полициклических аренов - как сырье для производства технического углерода или высококачественного электродного кокса (напр., игольчатого). Процессы КК получили наиб. развитие в США, где уд. вес их в 2000 г. составил 35,9 % от первичной переработки нефти, причем на некоторых НПЗ этот показатель составляет более 50 %. Доля этого процесса на НПЗ др. развитых капиталистических стран составляет 10…38 % масс.

Термин «крекинг» (Cracking) применим в принципе ко всем эндотермическим (с поглощением тепла) реакциям химического превращения углеводородов (крекинг парафинов, олефинов и ароматических углеводородов). Наряду с этими основными реакциями протекают и другие, экзотермические (с выделением тепла), реакции полимеризации, алкилирования, ароматизации, изомеризации, деалкилирования и перераспределения водорода. Подбором состава катализаторов и технологического режима в реакторе регулируют образование тех или иных углеводородов из разного сырья. В нефтепереработке под крекингом обычно (но не всегда) подразумевают химическое превращение углеводородов тяжелых нефтяных фракций, выкипающих при температуре выше 200 °С. Термином «крекинг» называют также реакции превращения при высоких температурах углеводородных газов и легких нефтяных фракций с целью получения этилена, пропилена и других углеводородов - нефтехимического сырья. Но так как эта операция протекает в присутствии значительного количества водяного пара, то такие процессы называют крекингом в присутствии водяного пара (Steam Cracking) или пиролизом (в отечественной терминологии). Термин «риформинг» (Reforming) чаще применяется к химическим процессам превращения фракций прямогонных бензинов (naphtha), имеющих температуру выкипания 100-200 °С. Крекинг (равно и риформинг) может быть осуществлен лишь при нагреве сырья до высоких температур (это термический крекинг тяжелых фракций или риформинг бензинов) или также в присутствии разных катализаторов, которые при равных температурах и разных (обычно повышенных) давлениях позволяют увеличивать глубину превращения тех или иных групп углеводородов с целью опять же контролируемого получения определенных углеводородов, например ароматических или других высокооктановых соединений. Таким образом, на НПЗ широко применяют две большие группы химических, реакционных процессов - термических и каталитических (или термокаталитических). Термические реакционные процессы иногда осуществляют в присутствии водяного пара для снижения парциального давления углеводородов (эффект аналогичен снижению общего давления процесса). Каталитические процессы часто проводят в присутствии водорода (гидрогенизационные процессы) для осуществления определенных химических реакций гидроочистки, гидрообессеривания и гидрокрекинга нефтяных фракций и других реакционных процессов.

Во всем мире среди деструктивных процессов переработки нефтяных фракций и в настоящее время основным по мощности остается каталитический крекинг. В разных странах - в России от 6 и в США до 36 % объема переработки нефти приходится на технологические установки каталитического крекинга. Большинство современных установок каталитического крекинга относится к типу флюид (ККФ) с псевдоожиженным (кипящим) слоем пылевидного или чаще микросферического катализатора. В последние годы прогресс в области ККФ был связан с совершенствованием высокоактивных и селективных цеолитсодержащих катализаторов и радикальной модернизацией реакторного и регенераторного оборудования в целях его адаптации к новым катализаторам, т. е. в целях максимального использования преимуществ и достоинств новых катализаторов. Новые поколения катализаторов кардинально изменили дизайн установок, т. е. не только диаметр, высоту и другие размеры основного оборудования (реактора и регенератора), но даже и предназначение отдельных аппаратов, например, основной процесс - реакция протекает теперь не столько в реакторе как таковом, а преимущественно на 90-98 % в лифт-реакторе, являющемся также и подъемником катализатора с сырьем в реактор. Если раньше в регенераторе не допускался, например, до-жиг оксида углерода СО из-за опасности перегрева и разрушения катализатора, то теперь, наоборот, дожиг СО проводят именно в регенераторе, и дымовые газы из регенератора теперь практически не содержат экологически вредного оксида углерода. Высокоактивные катализаторы позволили уменьшить время реакции и циркулирующее количество катализатора, что повлекло существенное уменьшение размеров оборудования и всей установки.

2. Характеристика сырья процесса

В качестве сырья в процессе КК в течение мн. десятилетий традиционно использовали вакуумный дистиллят (газойль) широкого ФС (350…500 °С). В ряде случаев в сырье КК вовлекаются газойлевые фракции термодеструктивных процессов, ГК, рафинаты процессов ДА мазутов и гуд- ронов, полупродукты масляного производства и др. В последние годы в мировой нефтепереработке наблюдается тенденция к непрерывному утяжелению сырья. На современных зарубежных установках перешли к переработке ГВГ с t к.к. 540…620 °С. На специально запроектированных установках КК подвергают переработке остаточное сырье: мазуты и даже гудроны или их смеси с дистиллятом сырьем без или после пред- варительного облагораживания ГО.

Всю совокупность показателей, характеризующих качество сырья, по степ. влияния на процесс КК условно можно подразделить на след. 3 группы:

1) показатели, влияющие на выход (т. е. на мат. баланс) и качество продуктов крекинга: фракционный и групповой ХС и содержание ГОС;

2) показатели, влияющие на обратимую дезактивацию катализатора, такие как плотность, коксуемость и содержание серно - кислотных смол;

3) показатели, влияющие на необратимую дезактивацию катализатора: содержание металлов, пр. вс. ванадия и никеля.

По ФС к сырью процесса предъявляются следующие требования:

- практически полное отсутствие бензино-лигроиновых фракций, поскольку в условиях крекинга они претерпевают незначительные превращения, к тому же нерационально загружают реакционный аппарат и отрицательно влияют на ОЧ бензина;

- ограниченное (до 10 %) содержание фракций, выкипающих до 350 °С;

- ограниченная t к.к. (500…620 °С), что обуславливается концентрированием в высококипящих фракциях коксогенных компонентов сырья (смол и асфальтенов) и ГОС и металлов.

Групповой ХС сырья более значительно влияет на выход и качество продуктов КК. В большинстве ВГ, направляемых на КК, в зависимости от типа исходной нефти содержание в них групповых компонентов колеблется в довольно широких пределах: парафиновых 15…35, циклановых 20…40 и ароматических 15…60 %. Наилучшим для КК по выходу целевых продуктов (бензина и сжиженных газов) является сырье с преобладанием парафиновых и циклановых углеводородов. Полициклические арены и смолы сырья в условиях крекинга дают мало бензина и много тяжелых фракций и кокса. Сернистые и кислородные соединения однотипного по ХС сырья не оказывают существенного влияния на мат. баланс КК, но ухудшают качество продуктов. Однако следует указать, что с увеличением содержания ГОС в сырье, как правило, одновременно повышается содержание в нем полициклических углеводородов и смол. 171 К компонентам, обратимо дезактивирующим катализаторы крекинга, относят полициклические арены, смолы, асфальтены и азотистые соединения сырья. Об обратимой дезактивирующей способности сырья можно косвенно судить по плотности, а количественно - по коксуемости, определяемой по Конрадсону. Как правило, чем выше коксуемость сырья, тем больше выход кокса на кат-ре. Обычно на установках КК преим. перерабатывают типовое сырье (ВГ 350…500 °С) с коксуемостью не более 0,3…0,5 % масс. Если регенератор имеет запас мощности по массе сжигаемого кокса, то может быть использовано сырье с коксуемостью до 2…3 % масс. На специальных установках, предназначенных для крекинга остаточного сырья и имеющих системы отвода тепла из регенератора, допускается коксуемость сырья до 5 % мас. Обратимыми ядами для алюмосиликатных катализаров являются азотистые основания: они прочно адсорбируются на контактных активных центрах и блокируют их. При одинаковых основных свойствах большее дезактивирующее воздействие на катализатор оказывают азотистые соединения большей ММ. После выжига кокса активность отравленного азотистыми основаниями катализатора полностью восстанавливается. Цеолитсодержащие катализаторы, благодаря молекулярно-ситовым свойствам, отравляются азотом в знач. меньшей степени, чем аморфные алюмосиликатные. МОС, содержащиеся преимущественно в высококипящих и особенно остаточных фракциях нефти, относят к необратимо дезактивирующим компонентам сырья крекинга. Блокируя активные центры катализара, они отрицательно влияют не только на его активность, но и на селективность. Так, по мере увеличения содержания никеля и ванадия, являющихся дегидрирующими металлами, в продуктах крекинга интенсивно возрастает выход водорода и сухих газов, а выход бензина существенно снижается. На установках КК, на которых не предусмотрены спец. приемы по улавливанию или пассивации отравляющего действия металлов, содержание их в сырье нормируется не более 2 г/т. Для переработанного сырья с коксуемостью более 10 % масс. и содержанием металлов 10…30 г/т и более требуется обязательная его предварительная подготовка.

3. Физико - химические свойства каталитического крекинга

При каталитическом крекинге протекают реакции расщепления, алкилирования, изомеризации, ароматизации, полимеризации, гидрогенизации и деалкилирования. Некоторые из них являются первичными, но большинство - вторичными.

Крекинг парафинов. При крекинге парафиновых углеводородов нормального строения доминируют реакции разложения. Продукты крекинга состоят главным образом из парафиновых углеводородов более низкого молекулярного веса и олефинов. Выход олефинов увеличивается с повышением молекулярного веса сырья. Термическая стабильность парафиновых углеводородов понижается с увеличением молекулярного веса. Тяжелые фракции нефтепродуктов являются менее стабильными и крекируются значительно легче, чем легкие фракции. Наиболее часто разрыв молекул происходит в ее средней части.

Механизм каталитического крекинга - карбоний-ионный. Согласно этому механизму, часть молекул парафинов подвергается термическому расщеплению, а образующиеся олефины присоединяют протоны, находящиеся на катализаторе, и превращаются в карбоний-ионы. Карбоний-ионы являются агентами распространения цепной реакции. В результате целого ряда превращений образуются парафиновые углеводороды меньшего молекулярного веса, чем исходные, и новые большие карбоний-ионы, которые затем расщепляются. Реакции дегидрогенизации при крекинге высокомолекулярных парафинов играют незначительную роль. Однако процесс дегидрогенизации низкомолекулярных парафинов, особенно газообразных, имеет практическое значение для превращения малоценных газообразных продуктов в ценные - олефины.

При крекинге парафиновых углеводородов нормального строения протекают и вторичные реакции с образованием ароматических углеводородов и кокса. Много ароматических углеводородов при каталитической ароматизации получается из парафинов, структура которых допускает образование бензольного кольца.

Изопарафиновые углеводороды крекируются легче. Водорода и метана при этом получается больше, чем при крекинге нормальных парафинов, а углеводородов С3 и С4 (газа) - меньше. Фракции С4, С5 и С6 содержат меньше олефинов вследствие того, что насыщение сильно разветвленных молекул непредельных углеводородов достигается легче, чем для неразветвленных.

Крекинг нафтенов. При крекинге нафтенов одновременно может происходить отщепление боковых цепей. На первой стадии нафтеновые углеводороды с длинными алкильными цепями превращаются в алкилнафтеновые или алкилароматические углеводороды со сравнительно короткими боковыми цепями. Короткие алкильные цепи, особенно метильный и этильный радикалы, термически стабильны и в условиях промышленного каталитического крекинга уже не отщепляются.

Алкильные боковые цепи алкилнафтеновых углеводородов расщепляются с образованием парафинов и олефинов, которые вместе с низкомолекулярными моноциклическими нафтеновыми углеводородами и деалкилированными ароматическими углеводородами составляют конечные продукты крекинга.

Крекинг ароматических углеводородов сопровождается деалкилированием и конденсацией. При деалкилировании алкилароматических углеводородов получаются парафины, олефины и алкилароматические углеводороды с более короткими боковыми цепями. Разрыв связи углерод - углерод происходит непосредственно у кольца, но такое деалкилирование не протекает интенсивно, если алкильная цепь содержит менее трех углеродных атомов.

Реакционная способность углеводородов возрастает с увеличением молекулярного веса, но все же остается значительно меньшей, чем у изомерных моноалкилбензолов. Инициирование каталитического крекинга алкилароматических углеводородов, так же как и для парафиновых углеводородов, начинается с образования карбоний-иона в результате присоединения протона катализатора. Между молекулами ароматических углеводородов или между ними и олефинами (или другими непредельными углеводородами) происходит конденсация. В результате образуются полициклические ароматические углеводороды вплоть до асфальта и кокса, поэтому при переработке сырья со значительным содержанием полициклических углеводородов при одинаковой степени превращения образуется значительно больше кокса, чем при переработке сырья, содержащего преимущественно моноциклические ароматические углеводороды.

Крекинг олефинов, образующихся в результате расщепления парафиновых, нафтеновых и ароматических углеводородов, а также самих олефинов, является вторичной реакцией. Инициирование реакции крекинга, как и других реакций олефинов, происходит в результате образования карбоний-иона. Если этот ион достаточно велик (С6 или больше), то он может расщепляться в карбоний-иона, а вновь образовавшийся ион, если это возможно, изомеризуется во вторичный или третичный ион. Если же карбоний-ион невелик (С3 - С5), он превращается либо в олефин (в результате передачи протона катализатору или нейтральной молекуле олефина), либо в парафин (присоединяя гидрид-ион от нейтральной молекулы).

Изомеризация олефинов. При изомеризации олефинов могут происходить миграция двойной связи, скелетная и геометрическая V изомеризация. Возможность изомеризации является важным преимуществом каталитического крекинга перед термическим: в результате изомеризации повышается октановое число бензиновых фракций и увеличивается выход изобутана, имеющего большую ценность как сырье для алкилирования.

Полимеризация и деполимеризация. Полимеризация олефинов также является важной реакцией. В сочетании с последующим крекингом полимеризация приводит к образованию олефинов и парафинов. Однако глубокая полимеризация ведет к образованию тяжелых продуктов, которые адсорбируются на катализаторе и разлагаются на кокс и газ. При высоких температурах (600°С) и низких давлениях может протекать деполимеризация.

Циклизация и ароматизация. Вторичной реакцией олефинов, протекающей в более поздних стадиях процесса, является частичное их дегидрирование. В результате образуются диены или олефины расщепляются на диены и парафины. Вторичные реакции между олефинами и диенами могут привести к образованию циклопарафинов. Ароматические углеводороды получаются в результате дегидроциклизации циклоолефинов или нафтеновых углеводородов, образовавшихся в начальных стадиях процесса.

Прочие реакции. Реакцией, возможной в условиях каталитического крекинга, является алкилирование ароматических углеводородов. Оно нежелательно, так как образующиеся более тяжелые продукты способны алкилироваться дальше или конденсироваться с образованием кокса; при этом уменьшается выход бензина.

Крекинг сложных углеводородов может затрагивать какую-либо часть молекулы независимо от других ее частей. Например, длинные парафиновые цепи нафтеновых и ароматических углеводородов расщепляются так же, как если бы они были парафиновыми углеводородами с тем же числом атомов углерода в молекуле. Кольца нафтеновых или ароматических углеводородов не изменяются в том процессе деалкилирования или расщепления парафиновых боковых цепей. Дегидрогенизация нафтеновых колец обычно происходит после частичного деалкилирования.

Обычно одним из лучших критериев интенсивности побочных реакций является отношение выхода бензина и кокса. Высокое отношение указывает на преобладание желательных реакций, разумеется, при условии, что октановое число бензина высокое. Низкое отношение выходов бензина и кокса указывает на интенсивное протекание нежелательных побочных реакций. К желательным реакциям относятся изомеризация, гидрирование, циклизация и ароматизация (неглубокая) олефинов; эти реакции ведут к высокому выходу парафиновых, углеводородов изостроения и ароматических углеводородов, выкипающих в пределах температуры кипения бензина, и высокому отношению изо - и нормальных парафиновых углеводородов. Нежелательные реакции (крекинг, дегидрогенизация и полимеризация олефинов, алкилирование и конденсация ароматических углеводородов) приводят к высоким выходам водорода и кокса, низкому выходу олефинов и к получению сравнительно тяжелых газойлей, при этом выход бензина и его октанового числа снижаются.

нефтеперерабатывающий каталитический крекинг катализатор

4. Катализаторы каталитического крекинга

Реакции каталитического крекинга протекают на поверхности катализатора. Направление реакций зависит от свойств катализатора, сырья и условий крекинга. В результате крекинга на поверхности катализатора отлагается кокс, поэтому важной особенностью каталитического крекинга является необходимость частой регенерации катализатора (выжигание кокса). Для каталитического крекинга применяются алюмосиликатные катализаторы. Это природные или искусственно полученные твердые высокопористые вещества с сильно развитой внутренней поверхностью.

В заводской практике применяют алюмосиликатные активированные природные глины и синтетические алюмосиликатные катализаторы в виде порошков, микросферических частиц диаметром 0,04-0,06 мм или таблеток и шариков размером 3-6мм. В массе катализатор представляет собой сыпучий материал, который можно легко транспортировать Потоком воздуха или углеводородных паров.

На установках крекинга применяются следующие алюмосиликатные катализаторы:

1. Синтетические пылевидные катализаторы с частицами размеров 1-150 мк.

2. Природные микросферические или пылевидные катализаторы, приготовляемые из природных глин (бентониты, бокситы и некоторые другие) кислотной и термической обработкой или только термической обработкой.

3. Микросферический формованный синтетический катализатор с частицами размером 10-150 мк. По сравнению с пылевидным, микросферический катализатор при циркуляции меньше измельчается и в меньшей степени вызывает абразивный износ аппаратуры и катализаторопроводов. Удельный расход его ниже, чем расход пылевидного катализатора.

4. Синтетический катализатор в виде стекловидных шариков диаметром 3-6 мм.

5. Природные и синтетические катализаторы с частицами размером 3-4мм искаженной цилиндрической. формы. Их часто называют таблетированными, они характеризуются меньшей прочностью, чем шариковые, и используются преимущественно на установках с неподвижным катализатором.

Указанные выше 5 типов катализаторов являются аморфными.

6. Синтетические кристаллические цеолитсодержащие катализаторы, содержащие окись хрома (что способствует лучшей регенерации), а также окиси, редкоземельных металлов (улучшающие селективность катализатора и увеличивающие выход бензина с некоторым улучшением его свойств). Они вырабатываются гранулированными - для установок с нисходящим потоком катализатора - и микросферическими - для установок в кипящем слое.

5. Виды реакторов каталитического крекинга

Установки каталитического крекинга, эксплуатируемые на нефтеперерабатывающих заводах, могут быть с шариковым и порошкообразным катализатором.

На установках с шариковым катализатором крекинг сырья и регенерация катализатора осуществляются в сплошном слое его. Процесс проходит в аппаратах шахтного типа, через которые не прерывным потоком сверху вниз движутся шарики катализатора диаметром 3 - 5 мм. В прямоточных реакторах катализатор и сырье контактируют, двигаясь прямотоком. Реакторный блок каждой установки состоит из реактора, регенератора и системы транспорта катализатора.

На установках с порошкообразным или микросферическим алюмосиликатным катализатором крекинг и регенерация катализатора протекают в кипящем (псевдоожиженном) слое. Этот процесс получает широкое распространение вследствие того, что режим кипящего слоя позволяет упростить реакционные аппараты и систему транспорта катализатора, а также облегчает условия для соблюдения температурного режима в регенераторах.

5.1 Аппараты установок с циркулирующим шариковым катализатором

Пары сырья подаются в верхнюю часть реактора (рис. VII-1), где они равномерно распределяются по всему сечению аппарата в слое катализатора. Он поступает в реакционную зону из верхней камеры по переточным трубам, выравнивающим его поток. Процесс происходит при прямоточном движении слоя катализатора и паров сырья .

Объем реакционной зоны определяют, исходя из объемной скорости подачи сырья, т. е. часового объема сырья, который можно пропустить через единицу объема реакционного блока, чтобы достигнуть заданной степени превращения сырья. Эти данные находят из опыта эксплуатации однотипных аппаратов. Продукты каталитического крекинга в разделительной зоне отделяют от потока катализатора и отводят из реактора в ректификационную колонну. Отработанный катализатор после от парки поступает в загрузочное устройство пневмоподъемника, откуда горячими газами, образующимися под давлением в топках, подается в бункер регенератора. После осуществляемого в нем вы жига кокса регенерированный катализа тор направляют в дозатор пневмоподъемника и затем через бункер-сепаратор - в бункер реактора. Схемы реакторных блоков зависят от взаимного расположения реакторов и ре генераторов по высоте. На отечественных заводах получила распространение схема с однократным подъемом катали затора. При работе по этой схеме реактор размещают над регенератором или регенератор - над реактором. Примером системы однократного подъема может служить схема, приведенная на рис. VII-2, где реактор расположен над регенератором. Отличительной особенностью установок крекинга с однократным подъемом катализатора является большая высота реакторного блока (до 100 м).

Корпуса аппаратов. По конструктивному исполнению и размерам реакторы отличаются большим разнообразием, однако условия эксплуатации и порядок чередования зон в них одинаковы. Аппараты работают при высоких температурах, определяемых температурой катализатора, вводимого через верхний стояк (500 - 560° С). Поэтому корпуса реакторов изготовляют из легированной стали марки 1Х18Н9Т или биметалла 12МХ +08X13, а все внутренние устройства - из сталей марок 1Х18Н9Т или 08X13. Корпус реактора должен быть рассчитан на прочность с учетом рабочего давления и горизонтальной составляющей давления слоя катализатора на стенки аппарата. Вследствие небольшого избыточного давления в реакторе (0,7 ат) при определении толщины стенки корпуса учитывают ветровую нагрузку

Регенераторы.

I - катализатор,

II - дымовые газы;

III - воздух;

IV - пароводяная смесь;

1 - коллекторы ввода воздуха;

2 - коллекторы вывода дымовых газов;

3 - охлаждающие змеевики;

4,5 - коробы воздухораспределительные и газосборные;

6 - решетка;

7 - сборное выравнивающее устройство;

8 - футеровка;

9 - листовой асбест;

10 - распределительное устройство.

Отработанный катализатор восстанавливают (регенерируют) путем выжига с его поверхности кокса в регенераторах. О качестве восстановленного катализатора судят по остаточному содержанию на нем кокса, которое доводят до 0,2-0,5%. Регенерированный катализатор охлаждают в аппаратах до 500-560° С и снова подают в реакторы. Выжиг кокса производят посредством подачи в слой закоксованного катализатора горячего воздуха, нагреваемого под давлением в топках до 500° С. Количество и температура подаваемого воздуха определяют интенсивность выжига. Этот процесс сопровождается выделением большого количества тепла и увеличением температуры среды. Однако она должна быть не выше 650-700° С, поэтому избыточное тепло отнимают пароводяной смесью (в весовом соотношении пара и воды 1:5), циркулирующей в змеевике, который помещают в слое регенерируемого катализатора. При более высокой температуре резко снижается активность катализа тора и уменьшается прочность узлов и деталей аппарата. Количество тепла, выделяемого в регенераторе, зависит от мощности установки и полноты сгорания кокса. Содержание кокса на поверхности отработанного катализатора можно уменьшить, увеличив кратность его циркуляции. Чем она выше, тем больше тепла переносится катализатором из регенератора в реактор, где его используют, как уже было сказано, для нагрева, испарения и крекинга сырья. Регенерация катализатора осуществляется при движении его в аппарате сверху вниз в нескольких зонах, по конструкции и назначению не отличающихся одна от другой. Каждая зона имеет устройства для ввода воздуха и вывода дымовых газов, а также змеевик, по которому движется охлаждающая смесь. Число зон зависит от кратности циркуляции катализатора. В каждой зоне выжигают только часть кокса, после чего перед поступлением в следующую зону катализатор необходимо охлаждать. Увеличивая кратность его циркуляции до 4-7, можно уменьшить число зон до одной-трех, т. е. упростить конструкцию, облегчить регулирование режима работы и эксплуатации} аппарата. Поэтому новые установки, рассчитанные на большую кратность циркуляции катализатора, имеют аппараты с меньшим числом зон выжига, хотя при этом увеличивается расход энергии на транспорт катализатора и несколько возрастает сопротивление потоку воздуха через его слой. Повышенные скорости катализатора приводят к износу как самого катализатора, так и оборудования. Например, скорость слоя катализатора в регенераторе не должна превышать 0,25 м/сек, чтобы предотвратить значительный механический износ футеровки и внутренних устройств.

5.2 Аппараты установок с кипящим (псевдоожиженным) слоем пылевидного катализатора

Крекинг в кипящем слое Каталитический крекинг в кипящем слое пылевидного или микросферического катализатора находит широкое применение на нефтеперерабатывающих заводах. Установки работают на синтетическом или естественном активированном алюмосиликатном катализаторе с размерами частиц 20-80 мк. Выявлены следующие преимущества данного вида крекинга по сравнению с крекингом, в котором используют шариковый катали затор:

1) возможность простого регулирования в широких пределах степени превращения сырья и циркуляции катализатора;

2) интенсивное перемешивание в реакторе и регенераторе, исключающее местные перегревы и обеспечивающее высокие коэффициенты теплопередачи;

3) меньшие энергетические затраты на транспорт катализатора;

4) более простые конструкции реакторов и регенераторов и др. Особенностью процесса является то, что крекинг и регенерация протекают в кипящем слое катализатора, т. е. в слое взвешенных мелких частиц его, находящихся в постоянном движении. Кипящий слой образуется при пропускании газов через слой катализатора. Если скорость их достаточна, то частицы катализатора, отрываясь одна от другой, начинают хаотически перемещаться. Интенсивность движения частиц и, следовательно, размеры возникающих между ними пор определяются скоростью газов. Чем больше скорость, тем выше кипящий слой при одинаковом объеме спокойного катализатора. Пылевидный катализатор в таком слое получает подвижность подобно жидкости, поэтому данный слой называют также псевдоожиженным. Дальнейшее увеличение скорости может привести к режиму пневмотранспорта. При снижении скорости плотность кипящего слоя увеличивается, объем уменьшается, и катализатор может прийти в спокойное состояние, при котором пары или газы проходят через пустоты между его частицами, не перемещая их и не перемешивая слоя (такой режим создается, например, в стояках реакторов и регенераторов). Крекинг в псевдоожиженном слое протекает при температуре 460-510° С и избыточном давлении до 1,8 ат. Скорость потока катализатора в Кипящем слое составляет 0,3-0,75 м/сек. причем в 1 м 3 смеси содержится 400-560 кг катализатора.

Установки крекинга с кипящим слоем катализатора работают по следующей принципиальной, технологической схеме. Нагретое до 400° С сырье смешивают с горячим восстановленным катализа тором, ссыпающимся из регенератора через стояк, и направляют смесь в реактор. Поток катализатора, паров сырья и воды равно мерно распределяется по сечению аппарата, в котором поддерживают определенную высоту и температуру кипящего слоя. Смесь паров углеводородов, полученных в результате реакции водяных паров и уносимых с ними частиц катализатора, не осевших в отcтойной зоне реактора (пустотелой части аппарата), поступает в циклонные сепараторы. В циклонах улавливают катализаторную пыль, возвращаемую по стояку в кипящий слой. Пары из сепараторов направляют в ректификационную колонну. Закоксованный катализатор из реактора подают в регенератор, где также поддерживают кипящий слой соответствующей высоты. В этом слое происходит выжиг кокса воздухом при 580-650° С. Температуру регулируют путем отбора избыточного тепла, установленными в кипящем слое змеевиками пароперегревателя. Регенерированный катализатор снова направляют в реактор. Схема, реакторного блока определяется взаимным расположением реактора и регенератора, а также системой подачи (транспорта) в них катализатора. От выбранной схемы блока зависит давление в этих аппаратах.

Различают четыре основные схемы реакторного блока;

1. С двукратным подъемом катализатора, когда регенератор расположен выше реактора, а катализатор транспортируется в разбавленной фазе. Процесс осуществляется при избыточном давлении 0,15-0,3 ат в реакторе и 0,5-1 ат в регенераторе. Регенератор размещают на такой высоте по отношению к реактору, чтобы вес катализатора в пускном стояке обеспечивал преодоление давления в реакторе. При этом условии катализатор транспортируется непрерывно.

2. С двукратным подъемом катализатора при расположении реактора и регенератора на одном уровне. Реакторный блок работает при одинаковом давлении в обоих аппаратах, что приводит к увеличению расхода энергии на сжатие воздуха.

3. С расположением реактора и регенератора на одном уровне. Катализатор транспортируется в плотной фазе под действием разности весов в нисходящей и восходящей ветвях с учетом столба катализатора внутри аппаратов. Количество циркулирующего катализатора регулируют путем изменения плотности его в подъемных стояках, для чего варьируют количество подаваемого в стояки водяного пара или воздуха.

4. С соосным расположением реактора и регенератора и одно кратным подъемом катализатора в разбавленной фазе. Схема может иметь две разновидности: реактор размещен над регенератором, и наоборот. Недостаток крекинга в кипящем слое заключается в том, что вследствие интенсивного перемешивания сырье в реакторе смешивается с продуктами реакции, а восстановленный катализатор в регенераторе - с закоксованным катализатором, т. е. отсутствуют противоток и более полная регенерация и обработка катализатора. Поэтому в реакционных устройствах кипящий слой раз делен на несколько секций с ограничением смешения газовой фазы и катализатора в каждой секции.

1 - корпус;

2 - перегородка;

3 - распределительная решетка;

4 - опорный столик;

5 - циклоны;

6 - стояки;

7 - конус;

8 - опора;

I - ввод сырья и катализатора;

II - вывод продуктов реакции;

III - вывод катализатора;

IV - ввод водяного пара;

V - ввод остатка из колонны.

Регенераторы

Устройство. Регенераторы представляют собой вертикальные цилиндрические аппараты с коническими днищами. Кроме зон, перечисленных для реактора, каждый регенератор имеет еще зону, где обычно размещают погруженные в кипящий слой коллекторные трубные змеевики, при помощи которых отбирается избыточное тепло реакции. В некоторых случаях это устройство выполняют вне аппарата, а циркуляцию катализатора осуществляют по схеме: регенератор - теплообменник - регенератор.

Установка крекинга с микросферическим катализатором: 1 воздушный компрессор; 2 тонка; 3 регенератор; 4 лифт -реактор; 5 узел распыла (захвата) сырья, 6-десорбер; 7 ректификационная колонна.

Основные особенности установок каталитического крекинга с лифт-реакторами: большая единичная мощность (до 4-5 млн. т/год перерабатываемого сырья); высокотемпературная регенерация катализатора под повышенным давлением (до 0,4 МПа); применение эффективных циклонных сепараторов; длительность межремонтного пробега до 3-4 лет. Находят применение системы с двумя, а также с секционированными регенераторами, работающими по противоточной схеме (катализатор движется сверху вниз навстречу воздуху) для достижения большей глубины регенерации. Тенденция на переработку тяжелого сырья требует создания специальных устройств с целью более тщательного его распыливания для облегчения испарения в узле контакта с потоком катализатора, отвода из регенератора избытка теплоты и т.д. Установки Каталитический крекинг с движущимся слоем шарикового катализатора еще находятся в эксплуатации, но вследствие недостаточной экономической эффективности свое значение утратили.

Реактор с пылевидным катализатором установки Г-43-107

1 - корпус;

2 - двухступенчатые циклоны;

3 - баллистический сепаратор;

4 - стояки циклонов;

5 - подвижная опора;

6 - форсунка для шлама;

7 - десорбер;

8 - лифт-реактор;

9 - сопло с многочисленными форсунками;

10 - штуцер предохранительного клапана;

I - сырье;

II - регенерированный катализатор;

III - закоксованный катализатор;

IV - продукты крекинга;

V - водяной пар.

Узел ввода сырья

1 - корпус лифт-реактора;

2 - торкрет-бетон;

3 - экранирующая сетка;

4 - патрубок;

5 - штуцер термопары;

6 - колено;

7 - патрубок;

8 - выгрузка катализатора;

9 - корпус трубопровода регенерированного катализатора;

10 - ввод аэрирующего пара;

I - ввод регенерированного катализатора;

II - ввод сырья;

III - поток газокатализаторной смеси.

Список использованных источников

1. Ахметов С.А.Технология глубокой переработкинефти и газа .- Уфа.: Гилем, 2002.-611 с.

2. Ахметов С. А. Технология переработки нефти, газа и твердых горючих ископаемых: Учебное пособие / С.А. Ахметов, М. Х. Ишмияров, А. А. Кауфман. - СПб: Недра, 2009. - 832 с

3. Суханов В.П., Каталитические процессы в нефтепереработке, 3 изд., М., 1979;

4. Крекинг нефтяных фракций на цеолитсодержащих катализаторах, под ред. С.Н.Хаджиева, М., 1982;

5. Фарамазов С.А. Эксплуатация оборудования нефтехимических заводов изд. «Химия», М., 1969 . -304 с.

6. Магарил Р.З. Теоретические основы химических процессов переработки нефти: Учебное пособие для вузов. - Л.: Химия, 1985, 280с.

Размещено на Allbest.ru

...

Подобные документы

  • Процесс каталитического крекинга гидроочищенного сырья, описание технологической схемы. Физико-химические свойства веществ, участвующих в процессе. Количество циркулирующего катализатора, расход водяного пара. Расчет и выбор вспомогательного оборудования.

    курсовая работа [58,0 K], добавлен 18.02.2013

  • Описание технологической схемы установки каталитического крекинга Г-43-107 (в одном лифт-реакторе). Способы переработки нефтяных фракций. Устройство и принцип действия аппарата. Назначение реактора. Охрана окружающей среды на предприятиях нефтехимии.

    курсовая работа [2,3 M], добавлен 12.03.2015

  • Физико-химические основы процесса каталитического крекинга. Дистиллятное сырье для современных промышленных установок каталитического крекинга. Методы исследования низкотемпературных свойств дизельных фракций. Процесс удаления из топлива парафина.

    курсовая работа [375,4 K], добавлен 16.12.2015

  • Характеристика вакуумных дистилляторов и их применение. Выбор и обоснование поточной схемы глубокой переработки нефти. Расчет основных аппаратов (реактора, колонны разделения продуктов крекинга, емкости орошения) установки каталитического крекинга.

    курсовая работа [95,9 K], добавлен 07.11.2013

  • Основы процесса каталитического крекинга. Совершенствование катализаторов процесса каталитического крекинга. Соответствие качества отечественных и зарубежных моторных топлив требованиям европейских стандартов. Автомобильные бензины, дизельные топлива.

    курсовая работа [1,6 M], добавлен 11.12.2014

  • Анализ влияния технологических режимов на количество и качество продукции. Оптимальные режимы работы установок каталитического крекинга по критерию снижения себестоимости переработки. Управленческие промышленные технологии, технологии управления данными.

    дипломная работа [1,3 M], добавлен 07.10.2013

  • Технологическая схема каталитического крекинга. Выбор и описание конструкции аппарата реактора для получения высокооктановых компонентов автобензинов из вакуумных газойлей. Количество катализатора и расход водяного пара. Параметры реактора и циклонов.

    курсовая работа [57,8 K], добавлен 24.04.2015

  • Общая схема и этапы переработки нефти. Процесс атмосферно-вакуумной перегонки. Реакторный блок каталитического крекинга. Установка каталитического риформинга, ее назначение. Очистка и переработка нефти, этапы данного процесса, его автоматизация.

    презентация [6,1 M], добавлен 29.06.2015

  • Схема переработки нефти. Сущность атмосферно-вакуумной перегонки. Особенности каталитического крекинга. Установка каталитического риформинга с периодической регенерацией катализатора компании Shell. Определение качества бензина и дизельного топлива.

    презентация [6,1 M], добавлен 22.06.2012

  • История, состав, сырье и продукция завода. Промышленные процессы гидрооблагораживания дистиллятных фракций. Процессы гидрокрекинга нефтяного сырья. Гидроочистка дизельных топлив. Блок стабилизации и вторичной перегонки бензина установки ЭЛОУ-АВТ-6.

    отчет по практике [8,1 M], добавлен 07.09.2014

  • Гидрокрекинг: общее понятие, виды катализаторов, главные преимущества и недостатки, сырье. Легкий газойль каталитического крекинга. Прямогонная фракция дизельного топлива. Бензиновые и керосиновые фракции, моторные топлива и масла, вакуумный газойль.

    презентация [748,9 K], добавлен 29.01.2013

  • Переработка нефти и её фракций для получения моторных топлив, химического сырья. Общая характеристика процесса крекинга нефти и природного газа: история появления, оборудование. Виды нефтепеработки: каталитический и термический крекинг, катализаторы.

    курсовая работа [587,5 K], добавлен 05.01.2014

  • Назначение и область применения установки каталитического крекинга. Процессы, протекающие при переработке нефти. Технологический и конструктивный расчет реактора. Монтаж, ремонт и техническая эксплуатация изделия. Выбор приборов и средств автоматизации.

    дипломная работа [875,8 K], добавлен 19.03.2015

  • Каталитический крекинг как крупнотоннажный процесс углубленной переработки нефти. Количество катализатора и расход водяного пара, тепловой баланс. Расчет параметров реактора и его циклонов. Вычисление геометрических размеров распределительного устройства.

    курсовая работа [721,3 K], добавлен 16.05.2014

  • Кривая истинных температур кипения нефти и материальный баланс установки первичной переработки нефти. Потенциальное содержание фракций в Васильевской нефти. Характеристика бензина первичной переработки нефти, термического и каталитического крекинга.

    лабораторная работа [98,4 K], добавлен 14.11.2010

  • Технико-экономическая характеристика нефтехимического производства: сырье, продукты. Технологический процесс промышленной установки каталитического риформинга предприятия ОАО "Уфанефтехим". Информационные системы и экологическая политика организации.

    отчет по практике [284,6 K], добавлен 20.05.2014

  • Недостатки и достоинства аппаратов с неподвижным слоем катализатора. Основы использования каталитического крекинга, применяемого для переработки керосиновых и соляровых дистиллятов прямой перегонки нефти. Изучение схем установок с псевдоожиженным слоем.

    презентация [2,8 M], добавлен 17.03.2014

  • Висбрекинг как наиболее мягкая форма термического крекинга, процесс переработки мазутов и гудронов. Основные задачи висбрекинга на современных нефтеперерабатывающих заводах: сокращение производства тяжелого котельного топлива, расширение ресурсов сырья.

    курсовая работа [2,5 M], добавлен 04.04.2013

  • Понятие каталитического риформинга. Влияние замены катализатора на увеличение мощности блока каталитического риформинга секции 200 на установке ЛК-6У Павлодарского нефтехимического завода после модернизации производства. Технологическая схема установки.

    презентация [2,3 M], добавлен 24.05.2012

  • Аппаратура технологического процесса каталитического риформинга. Особенности рынка средств автоматизации. Выбор управляющего вычислительного комплекса и средств полевой автоматики. Расчет и выбор настроек регуляторов. Технические средства автоматизации.

    дипломная работа [1,6 M], добавлен 23.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.