Методы и средства измерений и виды погрешностей

Определение методов измерений видом измеряемых величин, их размерами, требуемой точностью результата, быстротой процесса измерения. Выражение погрешности результата измерения. Абсолютные и относительные, случайные и грубые погрешности измерений.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 11.04.2016
Размер файла 62,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГБОУ ВПО Чувашский государственный университет имени И.Н.Ульянова

Кафедра радиотехники и радиотехнических систем

Реферат на тему

«Методы и средства измерений и виды погрешностей»

Выполнил: студент гр. РЭА-41-14 Шигаев Виктор

Принял: доцент кафедры РРСКазаков В. Д.

Чебоксары 2016

Введение

В наиболее широком смысле к "измерениям" относят обнаружение наличия или отсутствия каких-либо свойств, качественную оценку любого свойства, сопоставление величин с нормами, оценку свойства по косвенным показателям и ряд других действий. В отличие от геометрии, социометрии, антропометрии, и квалиметрии, имеющей наиболее широкий набор объектов оценки, метрология занимается измерениями физических величин. Потому мы не будем рассматривать получение экспертных оценок, а сосредоточимся только на измерениях тех параметров, которые подлежат объективной оценке с использованием средств измерений. Такие параметры в большинстве представляют собой физические величины, а их экспериментальные оценки называют аппаратурными или инструментальными в отличие от экспертных (органолептических) оценок, при получении которых инструментарием являются чувства человека.

1. Виды измерений

Вид измерений - часть области измерений, имеющая свои особенности и отличающаяся однородностью измеряемых величин. Например, в области электрических и магнитных измерений могут быть выделены как виды измерения электрического сопротивления, электродвижущей силы, электрического напряжения, магнитной индукции и др.

1.1 Методы и средства измерений

Под понятием метод измерения подразумевается совокупность процессов использования принципов и средств измерений.

Принцип измерений - это совокупность физических явлений, на которых основаны измерения. Например, измерение температуры с использованием термоэлектрического эффекта; измерение расхода газа по перепаду давления в сужающем устройстве.

Конкретные методы измерений определяются видом измеряемых величин, их размерами, требуемой точностью результата, быстротой процесса измерения, условиями, при которых проводятся измерения, и рядом других признаков.

Каждую физическую величину можно измерить несколькими методами, которые могут отличаться друг от друга особенностями как технического, так и методического характера. В отношении технических особенностей можно сказать, что существует множество методов измерения и по мере развития науки и техники число их все увеличивается. С методической стороны все методы измерений поддаются систематизации и обобщению по общим характерным признакам. Рассмотрение и изучение этих признаков не только помогает правильному выбору метода и его сопоставлению с другими, но и существенно облегчает разработку новых методов измерения.

Для прямых измерений, при которых искомое значение величины находят непосредственно из опытных данных, можно выделить несколько основных методов: метод непосредственной оценки, дифференциальный метод, нулевой метод, метод совпадений и метод замещений.

При косвенных измерениях, при которых искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям, широко применяется измерительное преобразование измеряемой величины в процессе измерений.

Средства измерений - это технические средства, используемые при измерениях и имеющие нормированные метрологические свойства. От средств измерений непосредственно зависит правильное определение значения измеряемой величины в процессе измерения. В число средств измерений входят меры, измерительные приборы, измерительные установки, измерительные системы и измерительные преобразователи; к ним относятся также измерительные принадлежности, которые, однако, не могут применяться самостоятельно, а служат для расширения диапазона измерений, повышения точности измерений, передачи результатов измерений на расстояние и обеспечения техники безопасности в процессе измерения. К средствам измерения не следует относить устройства, служащие для создания заданных условий измерений (различные регулирующие устройства, реостаты, термостаты, барокамеры и т. п.) [4].

1.2 Меры

Мера - средство измерений, предназначенное для воспроизведения физической величины заданного размера.

Некоторые меры являются телами определенной формы, изготовленными с необходимой тщательностью. Например, концевые меры длины, гири, измерительные колбы. Другие меры представляют совокупность многих деталей с определенной взаимосвязью (нормальный элемент, измерительный конденсатор, генератор стандартных сигналов), но не это является характерным для мер и их роли в измерениях. Вспомним любой процесс измерения. Относительно редко сравнивают измеряемую величину с мерой, значение которой равно единице. На рычажных весах сравнивают массу взвешиваемого тела с массой гирь 0,1; 0,2; 0,5; 1; 2; 5 кг. Следовательно, любая из этих гирь или их комбинация в процессе измерения может стать исходной для определения измеряемой массы. Таким образом, мера воспроизводит величины, значения которых связаны с принятой единицей этой величины определенным, известным соотношением.

Мера - это, как правило, основа измерений.

2. Погрешность измерений

Под погрешностью измерения понимается алгебраическая разность между полученным при измерении значением измеряемой величины и значением, выражающим истинный размер этой величины. Практически мы всегда заменяем значение, соответствующее истинному размеру измеряемой величины (сокращенно истинное значение измеряемой величины), значением, наиболее близким к истинному. По крайней мере, настолько близким, насколько это может удовлетворить нас в каждом данном конкретном случае. Таким образом, результат измерения дает нам только приближенное значение измеряемой величины. И оценить степень этого приближения мы можем тоже только приближенно. Можно ли погрешность измерения назвать ошибкой измерения? Видимо, нет, так как мы не умеем измерять лучше, точнее. Ошибкой измерения можно назвать ошибку, допущенную экспериментатором и обнаруженную при контрольных измерениях. В этих случаях мы говорим, что экспериментатор ошибся.

Выше было сказано, что на практике истинное значение измеряемой величины мы заменяем более близким к нему значением, более точным, чем полученное при измерении. Это значение, более близкое к истинному, мы называем «действительным» значением измеряемой величины.

Действительное значение измеряемой величины - это значение, найденное экспериментальным путем и настолько приближающееся к истинному значению, что для данной цели может быть использовано вместо него. Оно необходимо нам для оценки погрешности измерения, определение которой приобретает теперь несколько другой характер. Погрешность результата измерения - это алгебраическая разность между полученным при измерении и действительным значением измеряемой величины. Это уже реальная величина, доступная для определения.

Погрешность результата измерения может быть выражена в единицах измеряемой величины или в долях (или в процентах) ее значения. Погрешности измерения, выраженные в долях или в процентах от значения измеряемой величины, называют относительными. В отличие от них погрешности, выраженные в единицах измеряемой величины, называют абсолютными [4].

2.1 Погрешности измерений

При практическом осуществлении процесса измерений независимо от точности средств измерений, правильности методики и тщательности выполнения измерений результаты измерений отличаются от истинного значения измеряемой величины, т.е. неизбежны погрешности измерений. При оценке погрешности вместо истинного значения принимают действительное; следовательно, можно дать лишь приближенную оценку погрешности измерений. Оценка достоверности результата измерений, т.е. определение погрешности измерений - одна из основных задач метрологии [1].

Погрешность -- это отклонение результата измерения от истинного значения измеряемой величины. Погрешности условно можно разделить на погрешности средств измерения и погрешности результата. измерений.

Погрешности средств измерения были рассмотрены в главе 3.

Погрешность результата измерения -- это число, указывающее возможные границы неопределенности значения измеряемой величины.

Ниже будет дана классификация и рассмотрены погрешности результата. измерений.

По способу числового выражения различают абсолютные и относительные погрешности.

В зависимости от источника возникновения погрешности бывают инструментальные, методические, отсчитывания и установки.

По закономерностям проявления погрешности измерений делят на систематические, прогрессирующие, случайные и грубые.

2.2 Абсолютные и относительные погрешности

Абсолютная погрешность D - это разность между измеренным X и истинным Xи значениями измеряемой величины. Абсолютная погрешность выражается в единицах измеряемой величины: D = Х - Хи.

Поскольку истинное значение измеряемой величины определить невозможно, вместо него на практике используют действительное значение измеряемой величины Хд. Действительное значение находят экспериментально, путем применения достаточно точных методов и средств измерений. Оно мало отличается от истинного значения и для решения поставленной задачи может использоваться вместо него. При поверке за действительное значение обычно принимают показания образцовых средств измерений. Таким образом, на практике абсолютную погрешность находят по формуле D » Х - Хд. Относительная погрешность d -- это отношение абсолютной погрешности измерения к истинному (действительному) значению измеряемой величины (она обычно выражается в процентах):

2.3 Погрешности инструментальные и методические, отсчитывания и установки

Инструментальными (приборными или аппаратурными) погрешностями называются такие, которые принадлежат данному средству измерений, могут быть определены при его испытаниях и занесены в его паспорт.

Эти погрешности обусловлены конструктивными и технологическими недостатками средств измерений, а также следствием их износа, старения или неисправности. Инструментальные погрешности, обусловленные погрешностями применяемых средств измерений, были рассмотрены в главе 3.

Однако, кроме инструментальных погрешностей, при измерениях возникают еще и такие погрешности, которые не могут быть приписаны данному прибору, не могут быть указаны в его паспорте и называются методическими, т.е. связанными не с самим прибором, а с методом его использования.

Методические погрешности могут возникать из-за несовершенства разработки теории явлений, положенных в основу метода измерений, неточности соотношений, используемых для нахождения оценки измеряемой величины, а также из-за несоответствия измеряемой величины и ее модели.

Рассмотрим примеры, иллюстрирующие методическую погрешность измерения.

Объектом исследования является источник переменного напряжения, амплитудное значение которого Um нужно измерить. На основании предварительного изучения объекта исследования за его модель принят генератор напряжения синусоидальной формы. Используя вольтметр, предназначенный для измерений действующих значений переменных напряжений, и зная соотношение между действующим и амплитудным значениями синусоидального напряжения, получаем результат измерения в виде Um =ЧUv, где Uv - показание вольтметра. Более тщательное изучение объекта могло бы выявить, что форма измеряемого напряжения отличается от синусоидальной и более правильное соотношение между значением измеряемой величины и показанием вольтметра Um =kЧUv, где k . Таким образом, несовершенство принятой модели объекта исследования приводит к методической погрешности измерения DU = ЧUv - kЧUv.

Эту погрешность можно уменьшить, либо рассчитав значение k на основе анализа формы кривой измеряемого напряжения, либо заменив средство измерений, взяв вольтметр, предназначенный для измерений амплитудных значений переменных напряжений [11].

Очень часто встречающейся причиной возникновения методических погрешностей является то обстоятельство, что, организуя измерения, мы вынуждены измерять (или сознательно измеряем) не ту величину, которая должна быть измерена, а некоторую другую, близкую, но не равную ей [6].

Примером такой методической погрешности может служить погрешность измерения напряжения вольтметром с конечным сопротивлением (рис. 4.1).

Вследствие шунтирования вольтмет-ром того участка цепи, на котором измеряется напряжение, оно оказывается меньшим, чем было до присоединения вольтметра. И действительно, напряжение, которое покажет вольтметр определится выражением U = IЧRv. Если учесть, что ток в цепи I = E/(Ri + Rv), то

< .

Поэтому для одного и того же вольтметра, присоединяемого поочередно к разным участкам исследуемой цепи, эта погрешность различна: на низкоомных участках она ничтожна, а на высокоомных может быть очень большой. Эта погрешность могла бы быть устранена, если бы вольтметр был постоянно подключен к данному участку цепи на все время работы устройства (как на щите электростанции), но это невыгодно по многим причинам.

Нередки случаи, когда вообще трудно указать способ измерения, исключающий методическую погрешность. Пусть, например, измерению подлежит температура раскаленных болванок, поступающих из печи на прокатный стан. Спрашивается, где разместить датчик температуры (например, термопару): под болванкой, сбоку или над болванкой? Где бы мы его ни поместили, мы не измерим внутренней температуры тела болванки, т.е. будем иметь существенную методическую погрешность, так как измеряем не то, что нужно, а то, что проще (не сверлить же в каждой болванке канал, чтобы поместить термопару в её центре).

Таким образом, основной отличительной особенностью методических погрешностей является то обстоятельство, что они не могут быть указаны в паспорте прибора, а должны оцениваться самим экспериментатором при организации выбранной методики измерений, поэтому он обязан четко различать фактически измеряемую им величину от подлежащей измерению.

Погрешность отсчитывания происходит от недостаточно точного отсчитывания показаний. Она обусловлена субъективными особенностями наблюдателя (например, погрешность интерполирования, т.е. неточного отсчета долей деления по шкале прибора) и вида отсчетного устройства (например, погрешность от параллакса). Погрешности отсчитывания отсутствуют при использовании цифровых измерительных приборов, что является одной из причин перспективности последних.

Погрешность установки вызывается отклонением условий измерения от нормальных, т.е. условий, при которых производилась градуировка и поверка средств измерений. Сюда относится, например, погрешность от неправильной установки прибора в пространстве или его указателя на нулевую отметку, от изменения температуры, напряжения питания и других влияющих величин.

Рассмотренные виды погрешностей в равной степени пригодны для характеристики точности как отдельных результатов измерений, так и средств измерений.

2.4 Систематические, прогрессирующие, случайные и грубые погрешности

погрешность измерение точность результат

Систематическая погрешность измерений Dс -- составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же величины.

Причины возникновения систематических погрешностей обычно могут быть установлены при подготовке и проведении измерений. Эти причины весьма разнообразны: несовершенство используемых средств и методов измерений, неправильная установка средства измерений, влияние внешних факторов (влияющих величин) на параметры средств измерений и на сам объект измерения, недостатки метода измерения (методические погрешности), индивидуальные особенности оператора (субъективные погрешности) и др. [7]. По характеру проявления систематические погрешности делятся на постоянные и переменные. К постоянным относятся, например, погрешности, обусловленные неточностью подгонки значения меры, неправильной градуировкой шкалы прибора, неправильной установкой прибора относительно направления магнитных полей и т.д. Переменные систематические погрешности обусловлены воздействием на процесс измерения влияющих величин и могут возникнуть, например, при изменении напряжения источника питания прибора, внешних магнитных полей, частоты измеряемого переменного напряжения и пр. Основная особенность систематических погрешностей состоит в том, что зависимость их от влияющих величин подчиняется определенному закону. Этот закон может быть изучен, а результат измерения - уточнен путем внесения поправок, если числовые значения этих погрешностей определены. Другим способом уменьшения влияния систематический погрешностей является применение таких методов измерения, которые дают возможность исключить влияние систематических погрешностей без определения их значений (например, метод замещения).

Результат измерений тем ближе к истинному значению измеряемой величины, чем меньше оставшиеся неисключенные систематические погрешности. Наличие исключенных систематических погрешностей определяет правильность измерений, качество, отражающее близость к нулю систематических погрешностей [2, 7]. Результат измерения будет настолько правильным, насколько он неискажен систематическими погрешностями и тем правильнее, чем меньше эти погрешности.

Прогрессирующими (или дрейфовыми) называются непредсказуемые погрешности, медленно изменяющиеся во времени. Эти погрешности, как правило, вызываются процессами старения тех или иных деталей аппаратуры (разрядка источников питания, старение резисторов, конденсаторов, деформация механических деталей, усадка бумажной ленты в самопишущих приборах и т. п.). Особенностью прогрессирующих погрешностей является то, что они могут быть скорректированы путем введения поправки лишь в заданный момент времени, а далее вновь непредсказуемо возрастают. Поэтому в отличие от систематических погрешностей, которые могут быть скорректированы поправкой, найденной один раз на весь срок службы прибора, прогрессирующие погрешности требуют непрерывного повторения коррекции и тем чаще, чем меньше должно быть их остаточное значение. Другая особенность прогрессирующих погрешностей состоит в том, что их изменение во времени представляет собой нестационарный случайный процесс и поэтому в рамках хорошо разработанной теории стационарных случайных процессов они могут быть описаны лишь с оговорками.

Случайная погрешность измерения -- составляющая погрешности измерений, изменяющаяся случайным образом при повторных измерениях одной и той же величины. Значение и знак случайных погрешностей определить невозможно, они не поддаются непосредственному учету вследствие их хаотического изменения, обусловленного одновременным воздействием на результат измерения различных независимых друг от друга факторов. Обнаруживаются случайные погрешности при многократных измерениях одной и той же величины (отдельные измерения в этом случае называются наблюдением) одними и теми же средствами измерения в одинаковых условиях одним и тем же наблюдателем, т.е. при равноточных (равнорассеянных) измерениях. Влияние случайных погрешностей на результат измерения учитывается методами математической статистики и теории вероятности.

Грубые погрешности измерений - случайные погрешности измерений, существенно превышающие ожидаемые при данных условиях погрешности.

Грубые погрешности (промахи) обычно обусловлены неправильным отсчетом по прибору, ошибкой при записи наблюдений, наличием сильно влияющей величины, неисправностью средств измерений и другими причинами. Как правило, результаты измерений, содержащие грубые погрешности, не принимаются во внимание, поэтому грубые погрешности мало влияют на точность измерения. Обнаружить промах бывает не всегда легко, особенно при единичном измерении; часто трудно бывает отличить грубую погрешность от большой по значению случайной погрешности. Если грубые погрешности встречаются часто, мы поставим под сомнение все результаты измерений. Поэтому грубые погрешности влияют на годность измерений.

В заключение описанного деления погрешностей средств и результатов измерений на случайную, прогрессирующую и систематическую составляющие необходимо обратить внимание на то, что такое деление является весьма упрощенным приемом их анализа. Поэтому всегда следует помнить, что в реальной действительности эти составляющие погрешности проявляются совместно и образуют единый нестационарный случайный процесс. Погрешность результата измерений при этом можно представить в виде суммы случайных и систематических Dс погрешностей: D = Dс +. В погрешности измерений входит случайная составляющая, поэтому её следует считать случайной величиной.

Рассмотрение характера проявления погрешностей измерений показывает, нам, что единственно правильный путь оценки погрешностей дает нам теория вероятностей и математическая статистика.

Список использованной литературы

1. Лифиц И.М. Основы стандартизации, метрологии и сертификации // М.: Юрайт, 2001. 270 стр.

2. Асташенков А.И., Маликова Х.О. Пора вносить изменения в Закон РФ «Об обеспечении единства измерений» // Законодательная и прикладная метрология. 1996. № 2. С. 7--12.

3. Брюханов В.А. О действующих государственных стандартах на методы контроля и испытаний // Стандарты и качество. 1996.№ 11. С. 18--20.

4. Брянский А.Н. Метрология и сертификация // Законодательная и прикладная метрология. 1997. № 1. С. 38--39.

5. Воробьева Г.Н. О стандартизации услуг // Стандарты и качество. 1998. № 1. С. 30--34.

6. Воронин Г.П. Госстандарт России сегодня: некоторые итоги, проблемы, задачи // Стандарты и качество. 1998. № 12. С.20--23.

7. Добровольная сертификация // Стандарты и качество. 1998. №11. С. 54--56.

8. Исаев Л. К., Малинский В. Д. Метрология и стандартизация в сертификации. М.: ИПК Издательство стандартов, 1996. 169 с.

9. Крылова Г.Д. Основы стандартизации, сертификации, метрологии. М.: ЮНИТИ, 1998. 465 с.

10. Медведев A. M. О техническом законодательстве ЕС // Стандарты и качество. 1996. № 5. С. 27.

11. Резниченко В.А. и др. Проблемы качества и сертификации в автомобилестроении // Стандарты и качество. 1996. № 9. С. 54--59.

Размещено на Allbest.ru

...

Подобные документы

  • Классификация погрешностей измерений: по форме представления, по условиям возникновения, в зависимости от условий и режимов измерения, от причин и места возникновения. Характерные грубые погрешности и промахи. Измерения и их погрешности в строительстве.

    курсовая работа [34,3 K], добавлен 14.12.2010

  • Виды и причины возникновения погрешностей: погрешность результата измерения; инструментальная и методическая; основная и дополнительная. Первая система единиц физических величин. Изменение погрешности средств измерений во время их эксплуатации.

    реферат [20,2 K], добавлен 12.05.2009

  • Общие вопросы основ метрологии и измерительной техники. Классификация и характеристика измерений и процессы им сопутствующие. Сходства и различия контроля и измерения. Средства измерений и их метрологические характеристики. Виды погрешности измерений.

    контрольная работа [28,8 K], добавлен 23.11.2010

  • Выбор магнитоэлектрического вольтметра или амперметра со стандартными пределами измерения и классом точности. Расчет доверительных границ суммарной погрешности результата измерения, случайной погрешности при обработке результатов косвенных измерений.

    контрольная работа [2,3 M], добавлен 19.06.2012

  • Классификация погрешностей по характеру проявления (систематические и случайные). Понятие вероятности случайного события. Характеристики случайных погрешностей. Динамические характеристики основных средств измерения. Динамические погрешности измерений.

    курсовая работа [938,8 K], добавлен 18.04.2015

  • Построение линейной модели методом наименьших квадратов. Определение погрешности коэффициентов уравнения регрессии по двухстороннему или одностороннему критерию. Постулаты теории измерений. Метрологические свойства и классификация средств измерений.

    презентация [43,2 K], добавлен 30.07.2013

  • Характеристика современных телевизоров. Стандарты телевизионного вещания. Доверительные границы случайной погрешности результата измерения. Прямые измерения с многократными наблюдениями. Результат измерения, оценка его среднего квадратического отклонения.

    курсовая работа [1,0 M], добавлен 14.11.2013

  • Этапы проведения измерений. Вопрос о предварительной модели объекта, обоснование необходимой точности эксперимента, разработка методики его проведения, выбор средств измерений, обработка результатов измерений, оценки погрешности полученного результата.

    реферат [356,6 K], добавлен 26.07.2014

  • Погрешность измерения температуры перегретого пара термоэлектрическим термометром. Расчет методической погрешности изменения температуры нагретой поверхности изделия. Определение погрешности прямого измерения давления среды деформационным манометром.

    курсовая работа [203,9 K], добавлен 01.10.2012

  • Сведения о методах и видах измерений. Описание теории и технологической схемы процесса искусственного охлаждения. Метрологическое обеспечение процесса. Выбор и обоснование системы измерений, схема передачи информации. Расчет погрешностей измерения.

    курсовая работа [437,4 K], добавлен 29.04.2014

  • Метрология, история ее возникновения и связь с другими предметами. Единство измерений. Погрешности и пути их ликвидации. Систематические и случайные погрешности. Средства измерения и их государственная поверка. Цели и задачи государственной поверки.

    реферат [76,3 K], добавлен 14.01.2012

  • Основы теории обработки результатов измерений. Влияние корреляции на суммарную погрешность измерения тока косвенным методом, путём прямых измерений напряжения и силы тока. Алгоритм расчёта суммарной погрешности потребляемой мощности переменного тока.

    курсовая работа [132,9 K], добавлен 17.03.2015

  • Обработка результатов прямых равноточных и косвенных измерений. Нормирование метрологических характеристик средств измерений классами точности. Методика расчёта статистических характеристик погрешностей в эксплуатации. Определение класса точности.

    курсовая работа [1,2 M], добавлен 16.06.2019

  • Исследование понятий "сходимость" и "воспроизводимость измерений". Построение карты статистического анализа качества конденсаторов методом средних арифметических величин. Анализ основных видов погрешностей измерений: систематических, случайных и грубых.

    контрольная работа [154,2 K], добавлен 07.02.2012

  • Государственные эталоны, образцовые и рабочие средства измерений. Государственная система обеспечения единства измерений. Метрологические службы организаций. Определение и подтверждение соответствия систем измерения установленным техническим требованиям.

    презентация [36,0 K], добавлен 30.07.2013

  • Классификация средств измерения. Виды поверки и поверочная схема. Сущность и сравнительная характеристика методов поверки: непосредственное сличение, прямые и косвенные измерения. Порядок разработки и требования к методикам поверки средств измерения.

    реферат [24,5 K], добавлен 20.12.2010

  • Динамическая, систематическая и случайная погрешности средств измерений. Причины возникновения систематических составляющих погрешности. Формы подтверждения соответствия требованиям безопасности в РФ. Подготовка к сертификации бензина, дизельного топлива.

    контрольная работа [37,4 K], добавлен 20.02.2014

  • Обработка результатов прямых и косвенных измерений с использованием ГОСТ 8.207-76. Оценка среднего квадратического отклонения, определение абсолютной погрешности и анормальных результатов измерений. Электромагнитный логометр, его достоинства и недостатки.

    курсовая работа [938,3 K], добавлен 28.01.2015

  • Общие положения Государственной системы обеспечения единства измерений. Передача размеров единиц физических величин, их поверочные схемы. Способы поверки средств измерений. Погрешности государственных первичных и специальных эталонов, их оценка.

    контрольная работа [184,3 K], добавлен 19.09.2015

  • Основные термины и определения в области метрологии. Классификация измерений: прямое, косвенное, совокупное и др. Классификация средств и методов измерений. Погрешности средств измерений. Примеры обозначения класса точности. Виды измерительных приборов.

    презентация [189,5 K], добавлен 18.03.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.