Расчет гидравлического разрыва пласта

Гидравлический разрыв пласта как средство поддержания продуктивности нефтяных месторождений. Выбор скважин для проведения гидроразрыва пласта при проектировании разработки месторождений нефти и газа. Увеличение дебита скважины после гидроразрыва.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 01.03.2017
Размер файла 833,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

  • Введение
  • 1. Гидравлический разрыв пласта как средство поддержания продуктивности скважин
  • 2. Сущность метода ГРП
  • 2.1 Проведение гидроразрыва
  • 2.2 Средства проведения ГРП
  • 2.3 Необходимые параметры для проведения ГРП
  • 3. Технология и техника проведения ГРП
  • 3.1 Обвязка и оборудование при ГРП
  • 4. Выбор скважин для проведения гидравлического разрыва пласта при проектировании разработки месторождений нефти и газа
  • 4.1 Основные принципы выбора скважин для проведения гидроразрыва
  • 4.2 Целесообразность проведения ГРП
  • 4.3 Расстановка скважин при проектировании разработки новых месторождений или участков с применением ГРП
  • 4.4 Учет возможных осложнений в процессе ГРП
  • 4.5 Анализ геологического строения объекта; выявление продуктивных изолированных областей и скважин в низкопроницаемых включениях
  • 4.6 Использование математического моделирования на базе адекватной геолого-математической модели объекта для выявления скважин-кандидатов для проведения обработки
  • 4.7 Использование технико-экономического анализа при выборе скважин для проведения ГРП
  • 5. Последовательность подбора скважин для гидроразрыва при проектировании разработки месторождений нефти и газа
  • 6. Расчёт гидравлического разрыва пласта
  • 6.1 Расчёт давления гидроразрыва пласта
  • 6.2 Расчет рабочего устьевого давления гидроразрыва
  • 6.3 Определение необходимого количества рабочей жидкости
  • 6.4 Время проведения гидроразрыва
  • 6.5 Радиус горизонтальной трещины
  • 6.6 Проницаемость горизонтальной трещины
  • 6.7 Проницаемость призабойной зоны
  • 6.8 Проницаемость всей дренажной системы
  • 6.9 Дебит скважины после гидроразрыва
  • 6.10 Число насосных агрегатов
  • 6.11 Эффективность проведения ГРП
  • Заключение
  • Список использованной литературы

Введение

Сегодня "ЛУКОЙЛ-Коми" занимает второе место по объемам добычи нефти среди предприятий Группы "ЛУКОЙЛ". Многотысячный коллектив Общества занимается геологическим изучением, разведкой, поиском и добычей углеводородного сырья, реализацией нефти и газа, а также транспортировкой и хранением нефти.

Нефтяники "ЛУКОЙЛ-Коми" ставят перед собой задачу не только эффективно осваивать недра, но и восполнять минерально-сырьевую базу Тимано-Печорской нефтегазоносной провинции. Работа строится на современных принципах обеспечения ресурсо- и энергосбережения, промышленной и экологической безопасности, социального партнерства с Республикой Коми и Ненецким автономным округом.

Главный принцип деятельности Общества - обеспечение прироста запасов как минимум на уровне объема добычи. Нефтяники работают на месторождениях с различными геологическими условиями. Разная глубина залегания, богатый спектр свойств нефти и коллекторов предполагают использование разнообразных подходов к поиску и разработке.

На объектах "ЛУКОЙЛ-Коми" продолжается проведение мероприятий по повышению нефтеотдачи пластов. Большую пользу приносит гидравлический разрыв пласта (ГРП). Его используют для создания новых трещин как искусственных, так и для расширения старых (естественных), с целью улучшения сообщаемости со стволом скважины и увеличению системы трещин или каналов для облегчения притока и снижения энергетических потерь в этой ограниченной области пласта.

Гидравлический разрыв пласта проводится при давлениях, доходящих до 100 МПа, с большим расходом жидкости и при использовании сложной и многообразной техники.

1. Гидравлический разрыв пласта как средство поддержания продуктивности скважин

Извлечение нефти из пласта и любое воздействие на него осуществляется через скважины. Призабойная зона скважины (ПЗС) - область, в которой все процессы протекают наиболее интенсивно. Здесь как в единый узел сходятся линии токов при извлечении жидкости или расходятся - при закачке. От состояния призабойной зоны пласта существенно зависят эффективность разработки месторождения, дебиты добывающих, приёмистость нагнетательных и та доля пластовой энергии, которая может быть использована на подъём жидкости непосредственно в скважине.

Механические методы воздействия эффективны в твёрдых породах, когда создание дополнительных трещин в ПЗС позволяет приобщить к процессу фильтрации новые удалённые части пласта.

Сущность метода гидравлического разрыва пласта заключается в том, что на забое скважины путем закачки вязкой жидкости создаются высокие давления, превышающие в 1,5-2 раза пластовое давление, в результате чего пласт расслаивается и в нем образуются трещины.

Промысловая практика показывает, что производительность скважин после гидравлического разрыва увеличивается иногда в несколько десятков раз. Это свидетельствует о том, что образовавшиеся трещины соединяются с существовавшими ранее, и приток жидкости к скважине происходит из удаленных изолированных от скважины до разрыва пласта высокопродуктивных зон. О раскрытии естественных или образовании искусственных трещин в пласте судят по графикам изменения расхода и давления при осуществлении процесса.

Гидравлический разрыв пласта осуществляется для поддержания продуктивности скважин так, как показала практика проведение ГРП выгоднее, чем строительство новой скважины как с экономической стороны так и с точки зрения разработки. Но проведение гидравлического разрыва 6требует очень тщательного изучения термодинамических условий и состояния призабойной зоны скважины, состава пород и жидкостей, а так же систематического изучения накопленного промыслового опыта на данном месторождении. Осуществление гидравлического разрыва пласта рекомендуется в следующих скважинах:

Давших при опробовании слабый приток;

С высоким пластовым давлением, но с низкой проницаемостью коллектора;

С загрязненной призабойной зоной;

С заниженной продуктивностью;

С высоким газовым фактором(по сравнению с окружающими);

Нагнетательных с низкой приёмистостью;

Нагнетательных для расширения интервала поглощения.

Целью проведения гидравлического разрыва является увеличение продуктивности скважин, с воздействием на призабойную зону скважины - изменение свойств пористой среды и жидкости (свойства пористой среды изменяются при гидроразрыве за счет образования системы трещин).

Допустим, что успех или неуспех гидроразрыва мы связываем с двумя факторами: предшествующим дебитом скважины и толщиной пласта. В действительности эффективность гидроразрыва зависит, конечно, не от двух, а от многих факторов: давления нагнетаемой жидкости, темпа закачки, процента песка в этой жидкости и т.д.

2. Сущность метода ГРП

Гидравлический разрыв пласта проводится следующим образом: в проницаемый пласт закачивается жидкость при давлении до 100 МПа, под действием которого пласт расщепляется, либо по плоскостям напластования, либо вдоль естественных трещин. Для предупреждения смыкания трещин при снятии давления в них вместе с жидкостью закачивается крупный песок, сохраняющий проницаемость этих трещин, в тысячу раз превышающую проницаемость ненарушенного пласта.

Для предупреждения смыкания образовавшихся в пласте трещин и сохранения их в раскрытом состоянии после снижения давления ниже давления разрыва в образовавшиеся трещины нагнетают вместе с жидкостью отсортированный крупнозернистый кварцевый песок. Подача песка обязательна как во вновь созданные, так и в существовавшие в пласте трещины, раскрытые при гидроразрыве. Как показывают исследования, в процессе гидравлического разрыва возникают трещины шириной 1-2 мм. Радиус их может достигать нескольких десятков метров. Заполненные крупнозернистым песком трещины обладают значительной проницаемостью, в результате чего после гидроразрыва производительность скважины увеличивается в несколько раз.

Гидравлический разрыв пласта (ГРП) проводят для образования новых или раскрытия уже существующих трещин с целью повышения проницаемости призабойной зоны пласта и увеличения производительности скважины.

Гидравлический разрыв пласта получают в результате закачки жидкости в пласт под высоким давлением. Для предотвращения смыкания после окончания операции и снижения давления до первоначального в них вместе с жидкостью закачивают пористый материал - кварцевый песок, корунд.

Одним из важнейших параметров проведения ГРП является давление гидроразрыва, при котором образуются трещины в породы. В идеальных условиях давление раскрытия рр должно быть меньше пластового давления рг, создаваемого толщей вышележащих пород. Однако в реальных условиях может выполняться неравенство рг * рп < рр, что объясняется наличием в пласте глинистых пропластков, обладающих пластичными свойствами. В процессе бурения, когда цикл скважины не обсажен, под действием веса вышележащих пород может произойти выдавливание глины из пласта в скважины и частичное разгружение пласта, расположенного под глинистыми пропластками, что и приводит к снижению давления гидроразрыва.

Таким образом, давление разрыва зависит от предшествующего эксплуатации скважин процесса бурения. Поэтому рассчитать давление разрыва нельзя. Однако при сходных технологиях проводки скважин на данной площади можно говорить о среднем давлении разрыва, определяя его по данным гидроразрыва на соседних скважинах.

2.1 Проведение гидроразрыва

Гидравлический разрыв пласта проводят следующим образом (рис.1):

а) в зоне пласта, подлежащей разрыву, устанавливают пакеры (нижний может отсутствовать);

б) по специальной колоне труб, закачивают жидкость для образования в пласте трещин. Установка пакеров обусловлена необходимостью разгрузки эксплуатационной колонны от давления жидкости, а также обеспечением нагружения определенного интервала пласта, находящегося между пакерами;

в) в трещину закачивают крупнозернистый песок, который остается в ней и в дальнейшем при эксплуатации скважин выполняет роль каркаса, препятствует смыканию стенок трещин после снятия давления ниже величины давления разрыва.

Рис.1 - Схема проведения гидравлического разреза пласта: а - установка пакера; б - создание трещины; в - закачка песка; 1 - эксплуатационная колонна; 2 - колонна труб; 3 - продуктивный пласт; 4 - верхний пакер; 5 - нижний пакер; I - жидкость разрыва; II - жидкость-песконоситель; III - продавочная жидкость.

Обычно и жидкость разрыва, и жидкость-песконоситель при обработке добывающих скважин приготавливают на углеводородной основе, при обработке нагревательных скважин - на водной. Как правило, для этих целей используют различные эмульсии, а также углеводородные жидкости и водные растворы. Концентрация песка в жидкости-песконосителе обычно колеблется в пределах от 100 до 500 кг/м3 и зависит от ее фильтруемости и удерживающей способности.

Механизм гидравлического разрыва пласта, т. е. механизм образования в нем трещин, может быть представлен следующим образом. Все породы, слагающие тот или иной пласт, имеют естественные микротрещины, которые находятся в сжатом состоянии под влиянием веса вышележащей толщи пород. Проницаемость таких трещин небольшая. Все породы обладают некоторой прочностью. Поэтому для образования в пласте новых трещин и расширения существующих необходимо снять в породах пласта напряжения, создаваемые пластовым давлением, и преодолеть прочность пород на разрыв.

Давление разрыва даже в пределах одного пласта непостоянно и может изменяться в широких пределах. Практикой подтверждено, что в большинстве случаев давление разрыва Pp на забое скважины ниже пластового давления и составляет (15...25) * Н, кПа (1,5…2,5 кгс/см2). Здесь Н - глубина скважины в м.

Для малопроницаемых пород это давление может быть достигнуто при закачке маловязких жидкостей разрыва с ограниченными скоростями закачки. Если породы высокопроницаемые, требуется большая скорость нагнетания, а при ограниченной скорости нагнетания необходимо использовать жидкости повышенной вязкости. Наконец, для достижения давления разрыва в случае особо высокой проницаемости пород пласта следует применять еще большие скорости закачки высоковязких жидкостей. Процесс гидравлического разрыва пласта состоит из следующих последовательно проводимых операций: 1) закачка в пласт жидкости разрыва для образования трещин; 2) закачка жидкости-песконосителя с песком, предназначенным для закрепления трещин; 3) закачка продавочной жидкости для продавливания песка в трещины.

2.2 Средства проведения ГРП

Обычно в качестве жидкости разрыва и жидкости-песконосителя применяют одну и ту же жидкость, поэтому их объединяют под одним названием - жидкость разрыва. Для гидравлического разрыва пласта применяют различные рабочие жидкости, которые по физико-химическим свойствам можно разделить на две группы: жидкости на углеводородной основе и жидкости на водной основе.

В качестве углеводородных жидкостей применяют нефть повышенной вязкости, мазут, дизельное топливо или керосин, загущенные нафтеновыми мылами.

К растворам, применяемым в нагнетательных скважинах, относятся: водный раствор сульфит спиртовой барды, растворы соляной кислоты, вода, загущенная различными реагентами, а также загущенные растворы соляной кислоты.

Процесс разрыва в большой степени зависит от физических свойств жидкости разрыва и, в частности, от вязкости, фильтруемости и способности удерживать зерна песка во взвешенном состоянии.

К жидкости разрыва предъявляются следующие требования. Во-первых, она должна быть высоковязкой, чтобы не произошло ее быстрое проникновение в глубь пласта, иначе повышение давления вблизи скважины будет недостаточным. Во-вторых, при наличии в разрезе скважины нескольких продуктивных пропластков необходимо обеспечить по возможности равномерный профиль приемистости. Для этого ньютоновские жидкости не подходят, так как количество поступающей жидкости в каждый пропласток будет пропорционально его проницаемости. Поэтому лучше будут обрабатываться высокопроницаемые пропластки и, следовательно, эффект от проведения гидроразрыва будет снижен. Для гидроразрыва необходимо использовать жидкость, вязкость которой зависит от скорости фильтрации. Если с увеличением скорости фильтрации вязкость возрастает, то при движении в высокопроницаемом пропластке вязкость жидкости будет выше, чем в низкопроницаемом. В результате профиль приемистости становится более равномерным. Подобной фильтрационной характеристикой и обладают вязкоупругие жидкости, закон фильтрации для которой может быть записан в виде.

V = (kp)/(k L), (1)

где k - кажущаяся вязкость, определяемая по формуле

k/o = 1 + A p/L, (2)

o - предельная кажущаяся вязкость жидкости при v 0; A - константа, зависящая от вязкоупругих свойств жидкости (при A=0 получаем закон Дарси).

2.3 Необходимые параметры для проведения ГРП

При закачке жидкости в два слоя с проницаемостями k1 и k2 отношение подвижностей при одинаковых градиентах давления равно

(k/k)1 : (k/k)2 = k1 /k2 * (1+A (p/L)*)/1+A(p/L)*), (3)

Пусть, например,

A(p/L)*) =2

Тогда при

k1 /k2 =25 A (p/L)*=0,4

И отношение подвижностей равно примерно 11,7 вместо 25.

Для гидроразрыва в скважину спускают трубы, по которым жидкость поступает в пласт. Для предохранения обсадной колонны от больших давлений над разрываемым пластом устанавливают пакер, а для повышения герметичности над ним - гидравлический якорь. Под действием давления поршни якоря раздвигаются и прижимаются к обсадной колонне, предотвращая сдвиг пакера.

При очень низкой вязкости жидкости разрыва для достижения давления разрыва требуется закачка в пласт большого объема жидкости, что связано с необходимостью использовать несколько одновременно работающих насосных агрегатов.

При высокой вязкости жидкости разрыва для образования трещин необходимы высокие давления. В зависимости от проницаемости пород оптимальная вязкость жидкости разрыва колеблется в пределах 50-500 сП. Иногда при закачке через обсадную колонну используют жидкость с вязкостью до 1000 сП и даже до 2000 сП.

Жидкость разрыва должна быть слабофильтрующейся и обладать высокой удерживающей способностью в отношении взвешенного в ней песка, что предупреждает возможность оседания его в цилиндрах насоса, элементах обвязки, трубах и на забое скважины.

При этом достигаются сохранение постоянной концентрации песка в жидкости разрыва и хорошие условия для переноса его вглубь трещины. Фильтруемость проверяют на приборе по определению водоотдачи глинистого раствора. Низкой считается фильтруемость менее 10 см3 жидкости за 30 мин.

Способность жидкости разрыва удерживать песок во взвешенном состоянии находится в прямой зависимости от вязкости.

Более вязкие жидкости, как, например, мазуты, имеют удовлетворительную вязкость при температуре ниже 20 °С; сырые нефти и вода, имеют низкую вязкость, в большинстве случаев хорошо фильтруются, и их не рекомендуется в чистом виде использовать при гидроразрыве пласта.

Повышение вязкости, как и уменьшение фильтруемости жидкостей, применяемых при гидроразрыве пластов, достигается введением в них соответствующих загустителей. Такими загустителями для углеводородных жидкостей являются соли органических кислот, высокомолекулярные и коллоидные соединения нефтей (например, нефтяной гудрон) и другие отходы нефтепереработки.

Значительной вязкостью и высокой песконесущей способностью обладают некоторые нефти, керосино-кислотные, нефтекислотные, а также водо-нефтяные эмульсии. Эти жидкости используют в качестве жидкости разрыва и жидкости-песконосителя при разрыве пластов в нефтяных скважинах.

В нагнетательных скважинах при гидравлическом разрыве используют загущенную воду. Для загущения применяют сульфит-спиртовую барду (ССБ) и другие производные целлюлозы, хорошо растворимые в воде и имеющие низкую фильтруемость.

В зависимости от концентрации сухих веществ ССБ бывает двух видов - жидкая и твердая. Вязкость исходного жидкого концентрата 1500-1800 сП. Добавка воды к растворам ССБ ведет к быстрому понижению вязкости и способствует хорошему вымыванию ССБ водой из пористого пространства и восстановлению приемистости. Раствор ССБ обладает хорошей удерживающей способностью и низкой фильтруемостью. Для разрыва в основном применяется раствор ССБ вязкостью 250-800 сП.

В последнее время в качестве жидкости-песконосителя применяют загущенную ССБ концентрированную соляную кислоту (40% НСl и 60% ССБ). Применение такой жидкости разрыва позволяет сочетать процесс гидроразрыва с химическим воздействием на призабойную зону. В смеси с ССБ соляная кислота медленно реагирует с карбонатами (2-2,5 ч против 30-40 мин при использовании чистого раствора НСl). Это дает возможность по трещинам, образовавшимся при гидроразрыве, продавить глубоко в пласт химически активную соляную кислоту и обработать призабойную зону пласта на большом удалении от ствола скважины.

При гидроразрыве пласта в условиях высоких пластовых температур (130-150 °С) вязкость 20- и 24%-ных растворов ССБ с повышением температуры до 90 °С резко понижается до 8-0,6 сП.

При более высоких температурах вязкость этих растворов приближается к вязкостным свойствам воды. Поэтому в качестве эффективной жидкости разрыва и песконосителя, обладающей хорошей пескоудерживающей способностью и слабой фильтруемостью, применяют водные растворы КМЦ-500 (карбоксиметилцеллюлоза) в пределах 1,5-2,5% с добавкой иногда хлористого натрия до 20-25%. Продавочная жидкость при всех условиях должна иметь минимальную вязкость в целях снижения потерь напора при прокачке.

Цель заполнения песком трещин - предупреждение их смыкания и сохранение в открытом состоянии после снятия давления ниже величины давления разрыва. Поэтому к песку предъявляются следующие требования:

1) песок должен иметь достаточную механическую прочность, чтобы не разрушаться в трещинах под действием веса породы;

2) сохранять высокую проницаемость.

Этим требованиям удовлетворяет хорошо скатанный однородный кварцевый песок.

Применяется песок следующих фракций: 0,25-0,4 мм; 0,4-0,63; 0,63-0,79; 0,79-1,0; 1,0-1,6ММ. Наиболее приемлемой фракцией для гидроразрыва пласта являются пески с размером зерен от 0,5 до 1,0 мм.

Степень эффективности гидравлического разрыва пласта определяется диаметром и протяженностью созданных трещин и, следовательно, повышенной проницаемостью. Чем больше диаметр и протяженность трещин, тем выше эффективность обработки. Создание трещин большой протяженности достигается закачкой больших количеств песка. Практически в скважину закачивают от 4 до 20 т. песка. Концентрация песка в жидкости-песконосителе зависит от фильтруемости и удерживающей способности жидкости и колеблется от 100 до 600 кг на 1 м3 жидкости.

3. Технология и техника проведения ГРП

Гидравлический разрыв проводят в пластах с различной проницаемостью в случае падения дебита или приемистости нагнетательных скважин.

До проведения гидроразрыва скважину испытывают на приток, определяют ее поглотительную способность и давление при поглощении. С этой целью одним агрегатом закачивают нефть до получения на устье некоторого избыточного давления, при котором скважина начинает принимать жидкость. В течение 10-20 мин замеряют расход при постоянном давлении нагнетания. После подключения второго агрегата и увеличения количества закачиваемой жидкости поднимают давление на 2-3 МПа и вновь определяют расход.

Процесс увеличения расхода жидкости и давления повторяют несколько раз, и в конце исследования создают максимально возможное давление, при котором вновь замеряют расход. По полученным данным строят кривую зависимости приемистости скважины от давления нагнетания. По данным о поглотительной способности скважины до и после разрыва определяют количество жидкости и давление, необходимые для проведения разрыва, а также судят о качестве проведенного разрыва и об изменениях проницаемости пластов призабойной зоны после разрыва. За давление разрыва пласта условно принимают давление, при котором коэффициент приемистости скважины увеличивается в 3-4 раза по сравнению с начальным.

Забой скважины очищают от грязи способом дренирования и затем промывают. В отдельных случаях для увеличения фильтрационных свойств пластов рекомендуется предварительно обработать скважину соляной или грязевой кислотой и провести дополнительную перфорацию. Осуществление этих мероприятий способствует снижению давления разрыва и повышению его эффективности.

После промывки, очистки и проверки специальным шаблоном в скважину спускают насосно-компрессорные трубы диаметром 75 или 100 мм, по которым прокачивается жидкость разрыва. Для предохранения обсадной колонны от воздействия большого давления над разрываемым пластом устанавливают пакер, который разобщает фильтровую зону пласта от ее вышележащей части. Благодаря этому давление, создаваемое насосами, передается только на фильтровую зону и на нижнюю поверхность пакера.

Применяют различные конструкции пакеров. Наиболее распространены шлипсовые пакеры, выпускаемые под различные диаметры эксплуатационных колонн и рассчитанные на давление 50 МПа (рис.2).

Рис.2. Общий вид шлипсового пакера: 1- головка; 2 - кольцо опорное; 3 - манжета верхняя; 4 - ограничитель; 5 - манжета нижняя; 6 - корпус; 7 - фонарь; 8 - муфта.

Герметизация обсадной колонны осуществляется при деформации резиновых уплотнительных манжет (3, 5) от веса колонны насосно-компрессорных труб при опоре конуса на шлипсы пакера, центрирование которого осуществляется фонарем (7). Замковое устройство фонаря раскрывается при трении фонаря о стенки обсадных труб во время вращения пакера.

Осевая нагрузка при гидроразрыве воспринимается головкой пакера (1) с опорным кольцом (2) и передается на якорь, удерживающий пакер и колонну насосно-компрессорных труб от перемещения вверх. Головка пакера имеет левую резьбу в месте соединения с якорем.

В случае заклинивания манжет в обсадной колонне якорь может быть отвинчен от пакера правым вращением и поднят на поверхность.

Наряду со шлипсовыми пакерами применяют пакеры самоуплотняющиеся ПС. В этой конструкции герметизация достигается за счет самоуплотнения резиновых манжет под воздействием жидкости гидроразрыва.

В отличие от других типов пакеров в конструкции пакера ПС предусмотрен перепускной клапан, предназначенный для перепуска жидкости гидроразрыва в затрубное пространство во время спуска пакера, за счет чего снимается давление на самоуплотняющиеся манжеты. Перепускной клапан присоединяется через переводник и устанавливается выше гидравлического якоря.

После спуска труб с пакером и якорем устье скважины оборудуют специальной головкой, к которой подключают агрегаты для нагнетания в скважину жидкости разрыва.

3.1 Обвязка и оборудование при ГРП

При гидроразрыве пласта используют целый комплекс наземного оборудования: насосные агрегаты типа 2АН-500 или 4АН-700, пескосмесительный агрегат 4ПА. Для перевозки жидкости разрыва применяют автоцистерны 4ЦР или ЦР-20.

Агрегат 4АН-700 конструкции Азинмаша является основным в комплекте наземного оборудования. Он отличается повышенными мощностью и производительностью, удобен в эксплуатации. Рабочее давление агрегата позволяет проводить гидроразрыв пластов и осуществлять гидропескоструйные процессы и в глубоких скважинах. Все узлы его смонтированы на грузовом трехосном автомобиле КрАЗ-257 грузоподъемной силой 100-120 кН и представляют из себя следующее: силовую установку, коробку передач, трехплунжерный насос, манифольд и систему управления.

На раме автомобиля, непосредственно за кабиной водителя, расположена силовая установка агрегата, состоящая из двигателя с многодисковой фрикционной муфтой и центробежным вентилятором, систем питания, смазки и охлаждения, установки воздухоочистителя и других вспомогательных узлов.

Насос 4Р-700 трехплунжерный, горизонтальный одинарного действия. Плунжеры предусмотрены размерами 100 и 120 мм, что обеспечивает работу насоса соответственно при давлениях до 70 и 50 МПа. Производительность агрегата при давлении 70 МПа составляет 6,3 л/с и при 20 МПа - 22 л/с. Масса агрегата 20200 кг, габаритные размеры 9800 х 2900 x 3320 мм. Управление агрегатом производится с центрального пульта, расположенного в кабине автомобиля, где размещены педали управления топливным насосом и фрикционной муфтой двигателя, рукоятка управления коробкой передач и необходимая контрольно-измерительная аппаратура.

Для транспортировки песка нужных фракций к скважине, в которой намечено произвести гидроразрыв пласта, и для последующего механического приготовления песчано-жидкостной смеси применяют специальные пескосмесительные агрегаты типа 4ПА (рис. 3).

На самоходном шасси автомашины КрАЗ-257 смонтированы бункер 1 для сыпучего материала с загрузочным шнеком 2 и рабочим шнеком 3, камера гидравлического смещения 5, смеситель 7 с поплавковым регулятором уровня 6, а также приемный коллектор 11 и раздаточный коллектор 10 с насосом 9 для перекачки песка. В верхней разгрузочной части шнека 3 установлена поворотная заслонка 4, соединенная с поплавковым регулятором 6. К стенкам и днищу бункера 1 прикреплены пневмовибраторы, обеспечивающие надежное поступление сыпучего материала самотеком в приемник шнека 3.

Загрузочный и рабочий шнеки, а также лопастная мешалка приводятся в действие гидродвигателями при помощи масляного насоса 8. Все агрегаты установки управляются с пульта, размещенного в кабине автомобиля.

Песчано-жидкостная смесь с небольшой концентрацией песка приготавливается следующим образом. Жидкость через приемный коллектор 11 попадает в камеру гидравлического смещения 5, в которую из бункера 1 шнеком 3 подается сыпучий материал. Количество сыпучего материала регулируется частотой вращения рабочего шнека и заслонкой 4 при помощи поплавкового регулятора уровня 6 в зависимости от уровня смеси в смесителе 7. Избыточное количество сыпучего материала по отводящему патрубку поступает обратно в бункер. В камере гидравлического смешения 5 приготавливается раствор требуемой концентрации, который поступает в смеситель 7, где при помощи лопастной мешалки поддерживается равномерность концентрации песка. Из смесителя 7 раствор подается песковым насосом 9 через раздаточный коллектор 10 к месту потребления.

При приготовлении песчано-жидкостной смеси с большой концентрацией сыпучего материала камера гидравлического смешения заменяется проходной трубой, а жидкость из коллектора 11 и сыпучий материал из бункера 1 поступают непосредственно в смеситель 7, через сменную трубу (указана пунктиром). Готовая смесь отбирается так же, как и в первом случае.

Рис. 3. Схема пескосмесительного агрегата типа 4ПА: 1 - бункер; 2 - загрузочный шнек; 3 - рабочий шнек; 4 - поворотная заслонка; 5 - камера гидравлического смещения; 6 - поплавковый регулятор: 7 - смеситель; 8 - масляный насос; 9 - насос; 10 - раздаточный коллектор; 11 - приемный коллектор.

Емкость бункера 6,5 м3. Максимальная производительность рабочего шнека (по песку) 50 т/ч, максимальная грузоподъемная сила 90 кН, производительность загрузочного шнека 12-15 т/ч. Масса агрегата с грузом 23 000 кг, габаритные размеры 8700 х 2625 х 3600 мм. Пескосмесительный агрегат обслуживается одним шофером-мотористом. При проведении гидроразрыва пласта пескосмесительный агрегат с помощью гибких шлангов соединяется с автоцистернами и с насосными агрегатами. К агрегату 4ПА можно присоединить одновременно две автоцистерны и четыре насосных агрегата (по два с каждой стороны).

Автоцистерна 4ЦР предназначена для перевозки жидкости, используемой для гидравлического разрыва пласта, и подачи ее в пескосмесительный или насосный агрегат. Автоцистерна 4ЦР (рис. 4) смонтирована на шасси автомобиля КрАЗ-219 грузоподъемной силой 120 кН и состоит из цистерны 1, вертикального плунжерного насоса 2, системы обвязки насоса с арматурой 3, коробки отбора мощности 4, узла трансмиссии 5, узла жесткой буксировки 6 и искрогасителя 7.

Цистерна оборудована специальным устройством для подогрева жидкости паром. Для определения количества жидкости, отобранной из цистерны, внутри ее смонтирован поплавковый указатель уровня. Жидкость перекачивается из автоцистерны с помощью трехплунжерного вертикального насоса, имеющего производительность 16,7 л/с и максимальное давление 2,0 МПа.

Объем цистерны 9 м3. В зависимости от плотности жидкости в ней масса автоцистерны достигает 21435 кг. Габаритные размеры 10100 x 2700 х 2740 мм. Время подогрева жидкости от 20° до 50°С равно 2 ч. В настоящее время выпускают автоцистерны для жидкости разрыва емкостью 17 м3. под шифром ЦР-20, смонтирована цистерна на тягаче с прицепом. Кроме подогревательного устройства и вертикального насоса, автоцистерна снабжена центробежным насосом производительностью по воде 100 л/с с максимально развиваемым давлением 0,2 МПа.

При гидравлическом разрыве пласта устье скважины оборудуют специальной арматурой типа 1АУ-700, которая крепится на резьбе к эксплуатационной колонне. Арматура рассчитана на работу с давлением 70 МПа и состоит из крестовины, устьевой головки, пробковых кранов, предохранительного клапана и прочих элементов обвязки.

Для регулирования работы всего комплекса оборудования и агрегата при гидравлическом разрыве пласта используется самоходный блок манифольда типа 1БМ-700, который состоит из напорного и раздаточного коллекторов, подъемной стрелы и комплекта 60-мм насосно-компрессорных труб с шарнирным и быстросборным соединениями. Все оборудование блока манифольда монтируется на шасси грузового автомобиля повышенной проходимости (ЗИЛ-157К).

Напорный коллектор состоит из клапанной коробки с шестью отводами для соединения с насосными агрегатами; центральной трубы с датчиком контрольно-измерительных приборов (манометра, плотномера и расходомера) для работы со станцией контроля и управления процессами, двух отводов для соединения с арматурой на устье скважины; пробковых кранов и предохранительного клапана. Раздаточный коллектор служит для распределения рабочих жидкостей (продавочного раствора, воды, песчано-жидкостной смеси и т. д.) насосным агрегатам.

Комплект 60-мм насосно-компрессорных труб употребляется для соединения напорного коллектора с устьем скважины и подвода к раздаточному коллектору продавочного раствора, воды и других жидкостей. Для механизации погрузки и выгрузки арматуры устья блока манифольда имеется поворотная стрела с ручным управлением.

Рис. 4. Схема автоцистерны 4ЦР: 1 - цистерна; 2 - вертикальный плунжерный насос; 3 - система обвязки насоса с арматурой; 4 - коробка отбора мощности; 5 - узел трансмиссии; 6 - узел жесткой буксировки: 7 - искрогаситель.

На рисунке 5 приведена общая схема обвязки и расположения оборудования при гидравлическом разрыве пласта.

Рис. 5. Схема обвязки наземного оборудования при ГРП:1 - скважина; 2 - насосные агрегаты; 3 - пескосмесительный агрегат; 4 - вспомогательные насосные агрегаты; 5 - емкости для жидкости-песконосителя; 6 - емкость для жидкости разрыва и промывочной жидкости

На первом этапе закачивают жидкость разрыва насосными агрегатами, в результате чего давление постепенно увеличивается и по достижении определенного значения происходит разрыв пласта. О моменте разрыва судят по манометру на выкидной линии. Этот момент характерен резким спадом давления и увеличенным расходом нагнетаемой жидкости.

После разрыва пласта переходят ко второму этапу - подаче в трещину жидкости-песконосителя с песком при большом расходе и высоком давлении нагнетания. Жидкость-песконоситель с песком задавливают в трещину продавочной жидкостью при максимальном давлении и с максимальной скоростью закачки. Достигается это путем подключения наибольшего числа агрегатов. В качестве продавочной жидкости для нефтяных скважин используют нефть и для нагнетательных - воду. Количество этой жидкости должно быть равно емкости колонны труб. Закачка продавочной жидкости является последним, третьим этапом непрерывного процесса гидроразрыва пласта.

После продавки устье закрывают и скважину оставляют в покое до тех пор, пока устьевое давление не упадет до нуля. Затем скважину промывают, очищают от песка и приступают к освоению.

Представляет интерес техника проведения гидроразрыва в скважинах, продуктивные горизонты которых залегают на глубинах 2800-3400м. Технология разрыва пласта в таких скважинах отличается от обычной тем, что процесс гидроразрыва проходит при постоянном противодавлении на насосно-компрессорные трубы и на верхний торец резинового элемента пакера. Величина противодавления определяется как разность между расчетным значением давления гидроразрыва и максимально допустимым давлением на пакер. Для таких скважин рабочее давление в кольцевом пространстве (затрубном) определяют опытным путем. Для подкачки жидкости разрыва используют вспомогательный агрегат. Особенности расположения оборудования и обвязки устья при гидроразрыве по данной технологии показан на рисунке 6.

Рис. 6. Схема обвязки оборудования при ГРП в глубоких скважинах: 1 - пескосмеситель; 2 - агрегат ЦА-400; 3 - агрегат ЧАН-700; 4 - вспомогательный агрегат; 5 - емкость для рабочих жидкостей.

Работы по гидроразрыву на скважине рекомендуется осуществлять в следующей последовательности. Опрессовывают наземное оборудование на давление, равное 70 МПа, и заменяют в скважине воду на нефть, после чего спускают пакер. Затем с помощью насосных агрегатов, применяемых для гидроразрыва пласта, прокачкой жидкости в насосно-компрессорных трубах и под пакером создают максимально возможное давление. Подкачкой жидкости вспомогательным цементировочным агрегатом поднимают давление в кольцевом пространстве (затрубном) и оставляют скважину в покое на 30 мин. Этим на первом этапе достигается возможность образования трещин в пласте.

На втором этапе проводят операцию по закреплению трещин песком. После испытания скважины на приемистость в пласт закачивают жидкость-песконоситель.

Давление на устье во время закачки и продавливания в пласт может увеличиваться до 60-80 МПа. Проведение гидроразрыва по данной технологии позволяет значительно повысить производительность скважины.

При наличии в скважинах большой фильтровой зоны или несколько вскрытых продуктивных пропластков производят поинтервальные многократные гидравлические разрывы.

В последнее время разработан и внедрен новый способ поинтервального гидроразрыва, позволяющий за один спуск забойного оборудования проводить в любой последовательности гидроразрыв тех или иных пластов. При осуществлении гидроразрыва по этой технологии в одном пласте перфорированные отверстия против вышележащих пластов перекрываются тонущими, а против нижележащих пластов - плавающими в жидкости разрыва эластичными шариками. Применяемое забойное оборудование отличается простотой конструкции и может быть изготовлено в промысловых мастерских. Состоит оно из двух полых цилиндров, соосно-закрепленных на насосно-компрессорных трубах. Цилиндр с отверстиями в дне открыт сверху, а цилиндр с отверстиями в крышке - снизу. Труба, на которую надеты и приварены цилиндры, заглушена снизу и имеет отверстия над нижним цилиндром.

Подготовительные работы по поинтервальному гидроразрыву производят в следующей последовательности. В скважину на насосно-компрессорных трубах спускают цилиндры, пакер и якорь. Под нижний цилиндр помещают специальные эластичные шарики диаметром 18-20 мм с удельным весом меньшим, чем у жидкостей, применяемых при гидроразрыве (плавающие шарики); следовательно, в жидкости они все время будут прижиматься к крышке нижнего цилиндра. Диаметр цилиндра подбирают таким образом, чтобы шарики не могли попасть в зазор между ним и эксплуатационной колонной. Число шариков, загружаемых в нижний цилиндр, берется несколько больше, чем число перфорационных отверстий, находящихся ниже самого верхнего интервала, намеченного для гидроразрыва.

В верхний цилиндр помещают тонущие шарики. При этом количество их также должно быть больше, чем число отверстий, находящихся выше нижнего интервала, намеченного для гидроразрыва. Чтобы шарики при спуске вниз или при негерметичном перекрытии колонны не попадали под пакер, ставят специальный диск-отбойник. Пакер устанавливается с таким расчетом, чтобы интервал, намеченный для гидроразрыва, находился между цилиндрами с шариками. После этого производят гидроразрыв намеченного пласта обычным способом. Если при разрыве начнут принимать жидкость выше или нижележащие пласты, то их перфорационные отверстия перекрываются шариками, которые потоком жидкости увлекаются из цилиндров к этим отверстиям. Таким образом, гидроразрыв произойдет только в намеченном интервале. После прекращения закачки шарики благодаря соответствующей разнице в их удельных весах соберутся в свои цилиндры. Приподнимая или опуская оборудование и устанавливая цилиндры с шариками в нужном интервале, можно произвести гидроразрыв любого пласта.

4. Выбор скважин для проведения гидравлического разрыва пласта при проектировании разработки месторождений нефти и газа

4.1 Основные принципы выбора скважин для проведения гидроразрыва

Комплексный подход к проектированию гидравлического разрыва пласта требует рассмотрения этой технологии не только как средства обработки призабойной зоны скважин, но и как элемента системы разработки. В связи с этом предлагаются следующие основные принципы выбора скважин для ГРП - выявление скважин с загрязненной призабойной зоной где наблюдается падение добычи жидкости при сохранении тех же условий эксплуатации, более низкие значения дебита по сравнению с расположенными поблизости скважинами данного месторождения.

Выявление таких скважин осуществляется на основе промысловых данных либо в результате расчета. Расчетный метод состоит в следующем - оценивается радиус области дренирования скважины и вычисляется дебит жидкости по формуле Дюпюи. Если расчетный дебит значительно выше фактического, то можно предположить, что имеется загрязнение призабойной зоны. Кроме того, ухудшение коллекторских свойств в призабойной зоне может быть выявлено по результатам гидродинамических исследований. Трещины гидроразрыва обеспечивают связь скважины с областью пласта неухудшенной проницаемости. Гидроразрыв в скважинах с загрязненной призабойной зоной позволяет не только восстановить первоначальную добывную способность скважин, но и добиться ее значительного превышения. Увеличение производительности скважины после ГРП определяется соотношением проницаемостей пласта и трещины и размерами трещины. Причем дебит скважины не возрастает неограниченно с ростом длины трещины. Существует предельное значение длины трещины, превышение которого не приводит к росту дебита жидкости. Определение этой величины может быть осуществлено на основе расчетных зависимостей.

4.2 Целесообразность проведения ГРП

Расчеты, проведенные и опубликованные в труде Каневской Р.Д. "Математическое моделирование разработки месторождений нефти и газа" [4], показывают нецелесообразность обработки всех добывающих скважин, так как при этом достигается незначительный прирост дебита системы по сравнению со случаем, когда обработана лишь часть скважин. Так, например, для пяти- и обращенной семиточечной систем расстановки скважин обработка всех добывающих скважин по сравнению со случаем, когда обработана лишь половина скважин (через одну), приводит к увеличению среднего дебита всего на 5-13 %. Для обращенной девятиточечной системы прирост дебита при проведении ГРП во всех добывающих скважинах по сравнению со случаем, когда обрабатываются лишь скважины, расположенные в середине сторон элемента, составляет менее 5 %. Для трехрядной системы обработка всех добывающих скважин или только скважин первого и третьего рядов дает практически одинаковый результат.

Так же эти расчеты [4] показывают высокую эффективность проведения ГРП в нагнетательных скважинах для обращенных семи-, девятиточечной и трехрядной систем расстановки скважин. Гидроразрывы в добывающих скважинах не приводят к ожидаемому приросту добычи нефти, если они не обеспечиваются необходимым объемом закачки или энергетической "поддержкой" со стороны пластовой системы. Кратное увеличение дебита системы в результате ГРП происходит лишь при одновременной обработке добывающих и нагнетательных скважин. Учет ориентации трещин при гидроразрыве в обводненных добывающих скважинах в краевых зонах пласта и в рядных системах разработки.

Влияние ориентации трещин на обводненность после ГРП оказывается наиболее существенным при рядных системах расстановки скважин и в краевых зонах пласта. В этих случаях ориентация трещин является важным

фактором, определяющим долю воды в продукции скважин после ГРП. Возможны как резкое падение, так и быстрый рост обводненности. Время, в течение которого затем восстанавливается первоначальное значение, может

быть сопоставимо с продолжительностью эффекта ГРП. Если трещина ориентирована параллельно нагнетательному ряду или водонефтяному разделу, то гидроразрыв приведет к замедлению роста обводненности или даже к значительному снижению этого показателя. В данном случае эффективность ГРП даже в обводненных скважинах может оказаться достаточно высокой. Если трещина ортогональна водонефтяной границе или нагнетательному ряду, то эффект ГРП может оказаться отрицательным.

В случае благоприятной ориентации трещин целесообразно проведение повторных ГРП для получения дополнительного эффекта. Для площадных систем разработки эффекты, связанные с изменением обводненности из-за различной ориентации трещин, носят непродолжительный и менее выраженный характер, поэтому их можно не учитывать.

4.3 Расстановка скважин при проектировании разработки новых месторождений или участков с применением ГРП

Образование трещины гидроразрыва приводит к перераспределению фильтрационных потоков в пласте, изменению геометрии области дренирования и динамики обводнения добывающих скважин. Учет ориентации трещин при проектировании системы разработки с использованием ГРП дает возможность замедлить процесс обводнения скважины при одновременном увеличении добычи жидкости. Если предполагается применение рядной системы расстановки скважин, то по возможности следует ориентировать ряды вдоль направления трещин. Если трещины параллельны водонефтяному контакту, целесообразно располагать добывающие скважины в краевой зоне в виде ряда вдоль этого направления. Эффективным может оказаться увеличение расстояния между скважинами в направлении распространения трещин и уменьшение расстояния в ортогональном направлении, при этом площадь дренирования скважины может остаться прежней.

4.4 Учет возможных осложнений в процессе ГРП

Осложнения в процессе ГРП возможны прежде всего за счет прорыва по трещинам газа или воды. Толщина естественных барьеров, отделяющих продуктивный коллектор от выше- или нижележащих газо- или водонасыщенных пластов, как правило, должна быть не менее 4,5-6 м. Вертикальная трещина развивается по высоте обычно за счет роста вверх; в направлении развития трещины может находиться водо- или газонефтяной контакт. В добывающих скважинах, дающих продукцию с высоким содержанием воды или газа, как правило, проводить ГРП нежелательно. Для проведения ГРП пригодны только технически исправные скважины.

4.5 Анализ геологического строения объекта; выявление продуктивных изолированных областей и скважин в низкопроницаемых включениях

Выбор скважин для ГРП должен осуществляться на основе адресной геологической модели пласта. По каждой скважине необходимо учитывать результаты геофизических исследований, а также всю информацию, полученную в результате гидродинамических исследований, промыслового анализа и т.п. Степень достоверности исходных представлений о геологическом строении пласта определяет обоснованность принимаемых решений по выбору скважин для проведения ГРП. Выявление линз и продуктивных зон пласта, не дренированных или слабо дренированных ранее, и последующее создание протяженных трещин гидроразрыва, обеспечивающих связь скважины с этими зонами, позволит повысить коэффициент нефтеизвлечения, что обеспечит высокую эффективность ГРП. Для этого в каждом конкретном случае необходим анализ геологического строения пласта.

Проведение ГРП в скважинах, вскрывающих низкопроницаемые включения, приводит к значительному повышению производительности этих скважин. Гидроразрыв в скважинах, оказавшихся в непроницаемых линзах небольших размеров, позволит ввести эти скважины в эксплуатацию. Если размеры включения или линзы относительно невелики, эффективным окажется гидроразрыв с созданием трещины, выходящей за пределы включения.

Особую актуальность в этой ситуации приобретает знание ориентации трещины, поскольку это позволит подобрать размер трещины таким образом, чтобы она выходила за пределы включения. В некоторых случаях ГРП в нагнетательных скважинах создаст возможность для заводнения новых пропластков, которые до этого были изолированы от нагнетания. Определение рекомендуемой длины трещины в условиях неоднородного пласта должно осуществляться на базе детерминированной геологической модели и с учетом реального направления трещин. Расчеты рекомендуется проводить с использованием математической модели, позволяющей рассчитывать фильтрацию в пласте с трещинами гидроразрыва.

4.6 Использование математического моделирования на базе адекватной геолого-математической модели объекта для выявления скважин-кандидатов для проведения обработки

Априорные оценки, выполненные без учета детального геологического строения объекта, не могут выявить многие конкретные особенности фильтрационного процесса. Неоднородность пластов оказывает сильное влияние на происходящие в них процессы. Поскольку истинная структура неоднородного пласта недоступна непосредственному изучению, а современные математические модели, используемые при проектировании, не позволяют учесть явно многие детали строения пласта (например, неоднородности мелкого масштаба и т.п.), то использование методов усреднения и расчета эффективных параметров - проницаемости, пористости, модифицированных фазовых проницаемостей - является неотъемлемым элементом построения геолого-гидродинамической модели объекта. При этом, естественно, крупномасштабные неоднородности, доступные непосредственному наблюдению, такие как уверенно выделяемые зоны, слои и прослои, включения неколлектора, должны быть учтены в модели явно.

Только детальное математическое моделирование позволяет учесть влияние интерференции скважин и неоднородности пласта, оценить запас пластовой энергии и наметить для ГРП нагнетательные скважины. Интерференция приводит к тому, что ГРП неодинаково проявляется в работе отдельных скважин. В некоторых скважинах отмечается неувеличение или даже снижение добычи нефти по сравнению с вариантом без ГРП. Поэтому для принятия решения по выбору скважин для обработки необходимо произвести расчеты базового варианта (без ГРП) и вариантов с гидроразрывами в различных скважинах на базе детальной трехмерной геологоматематической модели объекта. Технологически эффективные варианты должны характеризоваться минимальным количеством гидроразрывов при максимальных уровнях отбора нефти.

4.7 Использование технико-экономического анализа при выборе скважин для проведения ГРП

При комплексном подходе к проектированию разработки с применением ГРП технико-экономическая оценка эффективности этого метода должна проводиться не для отдельных скважин, а для объекта в целом. Выбор рекомендуемого варианта разработки с применением ГРП осуществляется на основе комплексного технико-экономического анализа технологически эффективных вариантов, при этом должны учитываться затраты на проведение ГРП, прирост добычи нефти в целом по объекту, увеличение добычи жидкости, закачки и др. Целесообразно сопоставление варианта с ГРП с другими конкурирующими технологиями (например, с применением горизонтальных скважин). В случае локального ГРП рекомендуется оценка технологической и экономической эффективности этого метода по сравнению с другими средствами обработки призабойной зоны скважин (кислотные обработки, глубокая перфорация и др.).

5. Последовательность подбора скважин для гидроразрыва при проектировании разработки месторождений нефти и газа

...

Подобные документы

  • Основные представления о механизме, выбор скважины и технологии проведения гидравлического разрыва пласта. Расчет потребного технического обеспечения процесса и современного оборудования. Оценка экономической эффективности и безопасности гидроразрыва.

    курсовая работа [3,3 M], добавлен 12.03.2015

  • Анализ технологической эффективности проведения гидроразрыва пласта. Расчет проведения ГРП в типовой добывающей скважине. Методы восстановления продуктивности скважин при обработке призабойной зоны. Правила безопасности нефтяной и газовой промышленности.

    курсовая работа [185,2 K], добавлен 12.05.2014

  • Российский комплекс гидравлического разрыва нефтяных и газовых пластов. Предназначение комплекса ГРП для вовлечения в разработку трудноизвлекаемых запасов углеводородов и повышения эффективности их добычи. Технические характеристики и состав комплекса.

    презентация [8,0 M], добавлен 12.10.2015

  • Характеристика оборудования для добычи и замера дебита нефти, газа, воды и капитального ремонта скважин. Конструкции установок штангового глубинного насоса. Схема и принцип работы автоматических групповых замерных установок. Дожимная насосная станция.

    реферат [852,0 K], добавлен 11.11.2015

  • Расчет показателей процесса одномерной установившейся фильтрации несжимаемой жидкости в однородной пористой среде. Схема плоскорадиального потока, основные характеристики: давление по пласту, объемная скорость фильтрации, запасы нефти в элементе пласта.

    курсовая работа [708,4 K], добавлен 25.04.2014

  • Определение значения числа Рейнольдса у стенки скважины перфорированной эксплуатационной колонны. Расчет количества жидкости в нагнетательной скважине для поддержания давления. Определение пьезометрического уровня на забое скважины для сохранения дебита.

    контрольная работа [534,6 K], добавлен 12.06.2013

  • Назначение и виды гидродинамических исследований пласта. Описание методов обработки Чарного, Хорнера, метода касательной и квадратичного уравнения. Определение проницаемости, гидропроводности, пьезопроводности, скин-эффекта и коэффициента продуктивности.

    курсовая работа [101,6 K], добавлен 20.03.2012

  • Горно-геологическая характеристика пласта и вмещающих пород. Выбор и обоснование способа подготовки и системы разработки. Выбор технологической схемы и средств механизации. Рассмотрение технологических процессов и организации работ в очистном забое.

    курсовая работа [70,9 K], добавлен 17.10.2021

  • Характеристика геологического строения Самотлорского месторождения и продуктивных пластов. Гидродинамические исследования водонагнетательных скважин. Свойства нефти, газа и воды в пластовых условиях. Методы контроля за разработкой нефтяных месторождений.

    курсовая работа [59,6 K], добавлен 14.11.2013

  • Геолого-промысловая характеристика и состояние разработки Лянторского месторождения. Анализ технологических режимов и условий эксплуатации добывающих скважин. Характеристика призабойной зоны пласта. Условия фонтанирования скважины и давления в колоннах.

    курсовая работа [1,4 M], добавлен 06.01.2011

  • Понятие о нефтяной залежи. Источники пластовой энергии. Приток жидкости к перфорированной скважине. Режимы разработки нефтяных месторождений. Конструкция оборудования забоев скважин. Кислотные обработки терригенных коллекторов. Техника перфорации скважин.

    презентация [5,1 M], добавлен 24.10.2013

  • Периоды разработки газовых месторождений. Системы размещения скважин по площади газоносности месторождений природных газов. Разработка газоконденсатных, газогидратных и многопластовых газовых месторождений. Коэффициенты конденсатоотдачи, компонентоотдачи.

    реферат [55,4 K], добавлен 17.01.2011

  • Характеристика Киняминского месторождения. Подсчет балансовых и извлекаемых запасов нефти и газа. Анализ структуры фонда скважин и показателей их эксплуатации. Технологии воздействия на пласт и призабойную зону пласта. Оценка капитальных вложений.

    курсовая работа [264,4 K], добавлен 21.01.2014

  • Анализ классификации оборудования, предназначенного для подъема продукции пласта из скважины, принципы и обоснование его выбора. Колонная и трубная колонка. Неполадки при работе фонтанных скважин и пути их устранения. Типы насосно-компрессорных труб.

    дипломная работа [2,0 M], добавлен 13.07.2015

  • Изучение технологии бурения и контроля нефтяных и газовых скважин на нефтедобывающем предприятии "Сургутнефтегаз". Освоение скважин с применением струйных насосов и пенных систем. Артезианская эксплуатация и газлифтное фонтанирование, давление пласта.

    отчет по практике [4,8 M], добавлен 29.04.2015

  • Основные методы увеличения нефтеотдачи. Текущий и конечный коэффициент нефтеизвлечения. Заводнение как высокопотенциальный метод воздействия на пласты. Повышение нефтеотдачи пластов физико-химическими методами. Гидравлический разрыв нефтяного пласта.

    презентация [2,5 M], добавлен 15.10.2015

  • Гідравлічний розрив пласта (ГРП), технологія проведення та різновиди. Типи робочих рідин та наповнювачів, обладнання, що використовуються в процесі ГРП. Розрахунок показників для проектування ГРП. Працездатність елементів гідравлічної частини насоса.

    курсовая работа [2,8 M], добавлен 03.08.2012

  • Разработка конструкции скважины №8 Пинджинского месторождения; обеспечение качества буровых, тампонажных работ, повышение нефтеносности. Технология первичного вскрытия продуктивного пласта. Расчет обсадной колонны и режима закачки; крепление, испытание.

    курсовая работа [1,7 M], добавлен 05.12.2013

  • Характеристика литолого-стратиграфического разреза. Возможные осложнения при строительстве скважины. Особенности геофизических работ в скважине, проектирование ее конструкции. Выбор конструкции забоя и расчет глубины скважины. Выбор способа бурения.

    курсовая работа [618,1 K], добавлен 28.12.2014

  • Агрегаты электронасосные ЦНС63-1800 для нагнетания воды в скважины системы поддержания пластового давления нефтяных месторождений. Обслуживание оборудования, измерение параметров. Порядок разборки и сборки насоса, его вибродиагностика и центровка.

    курсовая работа [317,7 K], добавлен 05.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.