Исследование взаимодействия акустических волн в нефти для построения систем диагностики нефтепроводов

Защита нефтепровода от несанкционированного доступа. Взаимодействие компонент многокомпонентного сигнала накачки в нефти. Анализ поведения компонент волн разностной частоты в сильновязкой жидкости для параметров компонент сигнала и параметров среды.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 28.05.2017
Размер файла 591,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Исследование взаимодействия акустических волн в нефти для построения систем диагностики нефтепроводов

Проблема раннего обнаружения порывов нефтепроводов является актуальной как с коммерческой, так и с экологической точек зрения. По данным "Гринпис", ежегодные потери нефти в результате утечек из трубопроводов составляют 5% от добычи, что эквивалентно 15 миллионам тонн в год. Кроме ущерба окружающей среде и здоровью людей, разливы нефти приносят значительные прямые экономические потери [1].

К настоящему времени отсутствуют надежные методы контроля состояния нефтепроводов, которые бы с высокой степенью вероятности позволяли обнаруживать утечки нефти из нефтепровода, моменты их наступления и координаты вдоль трассы трубопроводов.

Защита нефтепровода от несанкционированного доступа - сложнейшая задача, стоящая перед многими нефтедобывающими компаниями и нефтеперерабатывающими предприятиями и организациями. Убытки ведущих российских нефтедобывающих компаний от хищений и вандализма достигают уровня нескольких десятков тысяч долларов ежедневно. Помимо экономических потерь, в последнее время особо остро встал вопрос антитеррористической защищенности такого важного объекта как нефтепровод. нефтепровод жидкость частота

Предлагается использование акустических систем с параметрическими антеннами для контроля над нефтепроводом.

Параметры нелинейного взаимодействия акустических волн зависят от параметров среды распространения, а нефть это сильновязкая жидкость представляющая собой сложную жидкую смесь близкокипящих углеводородов и высокомолекулярных углеводородных соединений с гетероатомами кислорода, серы, азота, некоторых металлов и органических кислот.

Рассмотрим взаимодействие компонент многокомпонентного сигнала накачки в нефти.

Рассмотрим многокомпонентный сигнал волн накачки, состоящий из 10 компонент. В формировании первой компоненты сигнала разностной частоты будет принимать участие n спектральные составляющих сигнала накачки, т.е. девять пар волн накачки с частотами отличающимися на F-, восемь пар накачки с частотами отличающимися на 2F- и т.д. Поскольку все гармонические составляющие в сигнале накачки имеют разные частоты f, то и параметры нелинейного взаимодействия для различных пар гармонических составляющих будут различны.

Вычисление сигнала волны разностной частоты можно производить используя выражение [1-3]:

(1)

где - амплитуда m-той компоненты волны разностной частоты.

(2)

где n - количество компонент; m - номер компоненты сигнала разностной частоты (mmax=n-1); pk, pk+m -амплитуда взаимодействующих волн.

(3)

где Bk,k+m - коэффициент учитывающий параметры нелинейного взаимодействия волн.

(4)

(5)

где - длина зоны затухания m-той компоненты ВРЧ, , - длина зоны дифракции k-той и k+1-вой компоненты волн накачки, - длина зоны дифракции m-вой компоненты ВРЧ, - коэффициент затухания m-той компоненты ВРЧ, с - скорость звука.

Формулы (1)-(5) представлены для случая отсутствия дисперсии. В случаи дисперсии компонент сигнала их скорости будут различны и для этого формулы (1)--(3) не изменяются а формулы (4) и (5) можно представить в виде:

(6)

(7)

где ; ; ; ; ,,- скорость звука m-той компоненты ВРЧ, k-той и k+1- компоненты волн накачки соответственно, ?Dm=(kj-kj+1-Km)lzm - изменение фазового сдвига между взаимодействующими волнами на расстоянии пропорциональном lz для компонент сигнала, ?Dm - характеризует дисперсионные свойства среды и определяет период осцилляций и амплитуду ВРЧ, k - коэффициент затухания волн накачки.

Проведем анализ поведения компонент волн разностной частоты в сильновязкой жидкости для следующих параметров компонент сигнала и параметров среды: сигнал накачки десятикомпонентный, частота каждой компоненты сигнала разностной частоты 1кГц, диапазон частот компонент волн накачки 15-24 кГц, среда - нефть.

В сильновязких жидкостях силы взаимодействия между молекулами возрастают на столько, что становится возможным распространение поперечной акустической волны.

В случае идеальной безграничной среды зависимость волнового числа от частоты линейна:

(8)

Однако уже при слабом поглощении получаем выражение [7] :

(9)

Вообще говоря это выражение в общем виде следует писать в виде:

(10)

где действительный и мнимый члены, определяют дисперсия и поглощение соответственно.

Для сильновязких жидкостей [7] имеем:

(11)

Т.к. константа m` является малой величиной преобразуем предыдущее уравнение к виду:

(12)

Отсюда видно, что релаксационные процессы в среде приводят к дисперсии скорости звука:

(13)

где .

В этом случае зная закон изменения скорости от частоты в сильновязкой жидкости, получим для этого случая в формуле (4)

(14)

Подставляя (14) в (4) получим

(15)

В формуле (5) перепишем значения , , , с учетом того, что

получим

; ;

; .

Зависимость скорости от частоты для нефти приведена на рисунке 1. На этом рисунке вертикальными линиями обозначены положения компонент частот накачки и разностных частот.

Рисунок 1 - Зависимость скорости от частоты для нефти

Видно что, для различных значений компонент ВРЧ скорости существенно различаются, а для компонент накачки скорости менее различаются (различный наклон дисперсионной кривой).

Проведем анализ, как влияет положение компонент на частотной оси на характеристики генерируемого сигнала волн разностной частоты.

На рисунок 2 представлены осевые распределения амплитуд давлений ВРЧ с частотой F_=1 кГц для частот волн накачки 15-16 кГц (1 и 2 компонент десятикомпонентного сигнала накачки) (кривая 1) и для 23-24 кГц (9 и 10 компонент) (кривая 2); осевые распределения амплитуд давлений ВРЧ с частотой F_=5 кГц полученные в результате взаимодействия 1 и 6 компоненты десятикомпонентного сигнала накачки (15-20 кГц) (кривая 3) и 5 и 10 компонент (19-24 кГц) (кривая 4); севые распределения амплитуд давлений ВРЧ с частотой F_=9 кГц полученные в результате взаимодействия 1 и 10 компоненты десятикомпонентного сигнала накачки (15-24 кГц) (кривая 5).

Рисунок 2 - Осевые распределения компонент ВРЧ

На представленных на рис. 2 осевых распределениях амплитуд давлений ВРЧ видны осцилляции амплитуд давлений ВРЧ (дисперсионные искажения осевого распределения волны разностной частоты), которые возникают из-за разности в фазовых скоростях волн накачки и волны разностной частоты. Проанализировав результаты представленные на рисунке 1 и рисунке 2 можно сделать ряд выводов: на параметры осевого распределения сильное влияние оказывает дисперсия скорости звука обусловленная большой вязкостью среды; на искажение осевого распределения ВРЧ оказывает влияние как дисперсия в области частот волн накачки, так и дисперсия в области частот ВРЧ.

На рисунках 3 и 4 представлены задержки компонент сигнала разностной частоты и компонент сигнала накачки.

Угол наклона задержек зависит от угла наклона дисперсионной кривой. Задержки между различными компонентами сигнала различны (рис.3, 4), т.к. зависимость фазовой скорости от частоты нелинейная (рис. 1).

Рисунок 3 - Задержки компонент сигнала ВРЧ

Рисунок 4 - Задержки компонент сигнала накачки

Длительность многокомпонентного сигнала ВРЧ в сильновязкой среде в области дисперсии увеличивается из-за разности в фазовых скоростях компонент.

Таким образом, различные компоненты сигнала ВРЧ приходят в точку пространства в различное время, что приводит к изменению формы сигнала.

Если излучить многокомпонентный сигнал с задержками, такими чтобы компоненты сигнала ВРЧ начали распространяться с задержками представленными на рисунке 3, то в точку L лежащую на оси излучения компоненты сигнала ВРЧ «догонят» друг друга.

Так например, в точку лежащую на оси излучения на расстоянии 50 м от излучателя компоненты ВРЧ придут в разное время (времена прихода показаны на рисунке 5).

Рисунок 5 - Времена прихода компонент сигнала ВРЧ в точку L лежащую на расстоянии 50м от источника

Теперь сформируем сигнал накачки таким образом, чтобы компоненты сигнала ВРЧ начали распространятся с задержками представленными на рисунке 6. Компоненты такого сигнала ВРЧ в точку L лежащую на расстоянии 50 м от излучателя придут одновременно. Т.е. произойдет максимальное сжатие сигнала ВРЧ в этой точке.

Рисунок 6 - Задержки компонент сигнала ВРЧ

Следовательно, зная закон дисперсии и вводя вычисленные задержки по компонентам можно повышать дальность действия акустических систем с параметрическими антеннами работающих в сильновязких жидкостях таких как нефть.

Для решения проблемы обнаружения утечки в нефтепроводах или попытки несанкционированного отбора и их локализации можно использовать параметрические акустические системы. В данной работе исследовано взаимодействие компонент сигнала в нефти и еще необходимо исследование влияния геометрической дисперсии (волновода) на параметры нелинейного взаимодействия.

При взаимодействии компонент многокомпонентного сигнала накачки в волноводе устанавливается определенная картина поля волны разностной частоты. Нарушение нефтепровода изменяет эту картину, то есть амплитудные и фазовые распределения акустических волн в волноводе, что будет зафиксировано гидроакустическим приемником, установленным внутри или снаружи нефтепровода.

Литература

1. Воронин В.А., Куценко Т.Н., Тарасов С.П. Исследование эффективности генерации волн разностной частоты при использовании многокомпонентного сигнала накачки // Известия ТРТУ. Спец. вып./ Матер. XLV науч.-техн. и науч.-метод. конф. профессорско-преподавательского состава, аспирантов и сотрудников ТРТУ. Таганрог: Изд-во ТРТУ, 2000, №1(15). с.103.

2. Воронин В.А., Ишутко А.Г., Куценко Т.Н. К вопросу лоцирования природных слоев в грунте при использовании многокомпонентного сигнала накачки в параметрической антенне // Известия ТРТУ. Тематический выпуск «Нелинейные акустические системы «НЕЛАКС-2003». Матер. науч.-техн. конф. Таганрог: Изд-во ТРТУ, 2003, №6(35). с.158.

3. Пивнев П.П. Исследование взаимодействия многокомпонентного сигнала в средах с дисперсией. // Сборник трудов XVIII сессии Российского акустического общества. Т.1. - М.: ГЕОС, 2006, с. 127.

4. Кузнецов О.Л. Ефимова С.А. Применение ультразвука в нефтяной промышленности. -М.: Недра, 1983г.

5. Новиков Б.К., Тимошенко В.И. Параметрические антенны в гидролокации. - Л.: Судостроение, 1989. 256 с.

6. Исакович М.А. Общая акустика.- М.:Наука, 1973, 496с.

7. Руденко О.В., Солуян С.И., Хохлов Р.В., Акуст. ж. 15, 3, 414, 1969г.

Размещено на Allbest.ru

...

Подобные документы

  • Определение расчетных свойств нефти. Вычисление параметров насосно-силового оборудования. Влияние рельефа на режимы перекачки. Расчет и выбор оптимальных режимов работы магистрального нефтепровода с учетом удельных затрат энергии на перекачку нефти.

    курсовая работа [1,2 M], добавлен 21.02.2014

  • Проблема качества нефти в системе магистральных нефтепроводов. Технологический расчет параметров компаундирования Западно-Сибирской и Арлано-Чекмагушевской нефтей. Расчет модели, прогнозирующей качественные показатели по содержанию серы в нефти.

    дипломная работа [3,3 M], добавлен 14.07.2014

  • Виды акустических волн. Ультразвуковой контроль для бетонных блоков строительных конструкций, сварных швов магистральных трубопроводов. Акустические характеристики материалов. Типы ультразвуковых волн, взаимодействие с границей раздела двух сред.

    реферат [130,4 K], добавлен 21.04.2014

  • Особенности состава и основных систем блочно-комплектной компрессорной станции газлифта нефти. Анализ параметров технологических контуров установки для транспорта газа. Конструкция и особенности компрессоров. Основные и вспомогательные системы станции.

    лабораторная работа [1,8 M], добавлен 01.12.2011

  • Выбор режимов эксплуатации магистрального нефтепровода. Регулирование режимов работы нефтепровода. Описание центробежного насоса со сменными роторами. Увеличение пропускной способности нефтепровода. Перераспределение грузопотоков транспортируемой нефти.

    отчет по практике [551,4 K], добавлен 13.04.2015

  • Классификация нефтей и варианты переработки. Физико-химические свойства Тенгинской нефти и ее фракций, влияние основных параметров на процессы дистилляции, ректификации. Топливный вариант переработки нефти, технологические расчеты процесса и аппаратов.

    курсовая работа [416,8 K], добавлен 22.10.2011

  • Краткий обзор вредных примесей в нефти: механические примеси, кристаллы солей и вода, в которой растворены соли. Требования к нефти, поступающей на перегонку. Нефти, поставляемые на нефтеперерабатывающие заводы, в соответствии с нормативами ГОСТ 9965-76.

    презентация [430,3 K], добавлен 21.01.2015

  • Этапы проектирования устройства ультразвукового дефектоскопа. Вычисление параметра, определяющего длительность сигнала. Определение структуры согласованного и параметров квазиоптимального фильтра. Анализирование характеристик обнаружителя сигнала.

    курсовая работа [156,2 K], добавлен 27.10.2011

  • Состав скважинной продукции. Принципиальная схема сбора и подготовки нефти на промысле. Содержание легких фракций в нефти до и после стабилизации. Принципиальные схемы одноступенчатой и двухколонной установок стабилизации нефти, особенности их работы.

    презентация [2,5 M], добавлен 26.06.2014

  • Определение физических характеристик нефтепродуктов: плотность, вязкость, температура. Расчёт резервуарных парков нефтепродуктов, их размещение, полезный суммарный объем. Расчёт параметров и выбор типа насоса для перекачки нефти. Расчёт трубопровода.

    курсовая работа [1,5 M], добавлен 06.05.2014

  • Физико-химические свойства нефти, газа, воды исследуемых месторождений нефти. Технико-эксплуатационная характеристика установки подготовки нефти Черновского месторождения. Снижение себестоимости подготовки 1 т. нефти подбором более дешевого реагента.

    дипломная работа [1,5 M], добавлен 28.03.2017

  • Физико-химическая характеристика нефти. Первичные и вторичные процессы переработки нефти, их классификация. Риформинг и гидроочистка нефти. Каталитический крекинг и гидрокрекинг. Коксование и изомеризация нефти. Экстракция ароматики как переработка нефти.

    курсовая работа [71,9 K], добавлен 13.06.2012

  • Подготовка нефти к транспортировке. Обеспечение технической и экологической безопасности в процессе транспортировки нефти. Боновые заграждения как основные средства локализации разливов нефтепродуктов. Механический метод ликвидации разлива нефти.

    реферат [29,6 K], добавлен 05.05.2009

  • Историческая справка о создании и развитии нефтебаз. Прием нефти по техническим трубопроводам, автоматическая защита от превышения давления в них. Прием и выгрузка нефти и нефтепродуктов из вагонов-цистерн. Назначение операционных и технологических карт.

    курсовая работа [38,7 K], добавлен 24.06.2011

  • Подготовка нефти к транспортировке. Обзор различных систем внутрипромыслового сбора: самотечных и герметизированных высоконапорных. Типы танкеров для перевозки сжиженных газов. Техническая и экологическая безопасность в процессе транспортировки нефти.

    курсовая работа [488,8 K], добавлен 21.03.2015

  • Особенности формирования системы магистральных нефтепроводов на территории бывшего СССР. Анализ трассы проектируемого нефтепровода "Пурпе-Самотлор", оценка его годовой производительности. Принципы расстановки перекачивающих станций по трассе нефтепровода.

    курсовая работа [934,0 K], добавлен 26.12.2010

  • Гипотезы происхождения нефти. Содержание химических элементов в составе нефти. Групповой состав нефти: углеводороды и остальные соединения. Фракционный состав, плотность. Классификация природных газов. Особенности разработки газонефтяного месторождения.

    презентация [2,4 M], добавлен 31.10.2016

  • Классификация и типы нефти по различным признакам, выбор направления переработки и этапы данного технологического процесса. Очистка от примесей, способы регулирования температурного режима. Определение параметров используемой ректификационной колонны.

    курсовая работа [566,9 K], добавлен 26.02.2015

  • Кривая истинных температур кипения нефти и материальный баланс установки первичной переработки нефти. Потенциальное содержание фракций в Васильевской нефти. Характеристика бензина первичной переработки нефти, термического и каталитического крекинга.

    лабораторная работа [98,4 K], добавлен 14.11.2010

  • Диапазоны частот упругих колебаний. Преломление, отражение, дифракция, рефракция акустических волн. Прием и излучение ультразвука. Ультразвук в различных средах. Отражение и рассеяние ультразвука. Применение акустических методов в неразрушающем контроле.

    контрольная работа [815,0 K], добавлен 09.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.