главнаяреклама на сайтезаработоксотрудничество Библиотека Revolution
 
 
Сколько стоит заказать работу?   Искать с помощью Google и Яндекса
 



Уравнения. Системы уравнений. Графики функции

Системы уравнений. Запись в виде системы. Линейное уравнение с двумя переменными. Квадратные уравнения второй степени. Упрощенное уравнение третей степени. Переменная в четвертой степени. Множество корней (решений). Способ подстановки. Способ сложения.

Рубрика: Математика
Вид: реферат
Язык: русский
Дата добавления: 02.06.2008
Размер файла: 96,3 K

Полная информация о работе Полная информация о работе
Скачать работу можно здесь Скачать работу можно здесь

рекомендуем


Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже.

Название работы:
E-mail (не обязательно):
Ваше имя или ник:
Файл:


Cтуденты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны

Подобные работы


1. Системы уравнений с двумя переменными
Определение системы с двумя переменными, способ ее решения. Специфика преобразования линейных уравнений с двумя переменными. Способ сложения и замены переменных в этом виде уравнений, примеры их графиков. Алгоритм нахождения количества системы уравнений.
презентация [226,6 K], добавлена 08.12.2011

2. Поиски более рационального способа решения систем линейных уравнений с двумя переменными - методом подстановки
Способы решения системы уравнений с двумя переменными. Прямая как график линейного уравнения. Использование способов подстановки и сложения при решении систем линейных уравнений с двумя переменными. Решение системы линейных уравнений методом Гаусса.
реферат [532,7 K], добавлена 10.11.2009

3. Решение отдельных видов уравнений n-й степени (n>2)
Решение биквадратных, симметричных и кубических уравнений, содержащих радикалы. Решение уравнений четвертой степени методом понижения степени и разложения на множители. Применение бинома Ньютона. Графический метод решения уравнений повышенной степени.
презентация [754,7 K], добавлена 29.05.2010

4. Аналитическая математика
Уравнения, системы линейных, квадратных и третьей степени уравнений. Уравнения высших степеней сводящиеся к квадратным. Системы уравнений, три переменные. График квадратичной функции, пределы, производные. Интегральное счисление и примеры решения задач.
шпаргалка [129,6 K], добавлена 22.06.2008

5. 10 способов решения квадратных уравнений
История развития формул корней квадратных уравнений. Квадратные уравнения в Древнем Вавилоне. Решение квадратных уравнений Диофантом. Квадратные уравнения в Индии, в Хорезмии и в Европе XIII - XVII вв. Теорема Виета, современная алгебраическая запись.
контрольная работа [992,3 K], добавлена 27.11.2010

6. Уравнения с одной переменной
Уравнение как равенство, содержащее неизвестное число. Примеры уравнений с одной переменной. Условия обращения уравнения в истинное числовое равенство – его решение (корень). Множество решений уравнения. Уравнение без решения (множество решений пусто).
презентация [12,2 K], добавлена 20.12.2011

7. Решение алгебраического уравнения n-ой степени
Метод аналитического решения (в радикалах) алгебраического уравнения n-ой степени с возвратом к корням исходного уравнения. Собственные значения для нахождения функций от матриц. Устойчивость решений линейных дифференциальных и разностных уравнений.
научная работа [47,7 K], добавлена 05.05.2010

8. 10 и еще один способ решения квадратных уравнений
Выведение формулы решения квадратного уравнения в истории математики. Сравнительный анализ технологий различных способов решения уравнений второй степени, примеры их применения. Краткая теория решения квадратных уравнений, составление задачника.
реферат [7,5 M], добавлена 18.12.2012

9. Составление дифференциальных уравнений в САУ
Схематическое изображение и краткое описание заданной гидравлической системы, выражение работы данной системы с помощью уравнений. Написание уравнения системы виде входа-выхода, решение задачи в символьном виде. Разложение уравнения в ряд Тейлора.
лабораторная работа [92,4 K], добавлена 11.03.2012

10. Дифференциальные уравнения
Задачи Коши для дифференциальных уравнений. График решения дифференциального уравнения I порядка. Уравнения с разделяющимися переменными и приводящиеся к однородному. Однородные и неоднородные линейные уравнения первого порядка. Уравнение Бернулли.
лекция [520,6 K], добавлена 18.08.2012


Другие документы, подобные Уравнения. Системы уравнений. Графики функции


3

Глава 1. Уравнения. Системы уравнений

1. Линейные уравнения

1. Уравнение первой степени вида , называется линейным уравнением. Где - переменные, числа и стоящие перед переменными называются коэффициентами, а и - свободные члены. Запишем линейное уравнение

(1)

Для решения уравнения (1) перенесем переменные содержащие коэффициенты, в левую часть уравнения с положительным знаком, а свободные члены в правую часть уравнения с отрицательным знаком, получим уравнение вида

(2)

Пусть , а , тогда уравнение (2) будет иметь вид

(3)

Примеры.

1) Решить уравнение

Перенесем неизвестные с коэффициентами в левую часть уравнения, а свободные члены в правую часть, получим:

Используя уравнение (3) получим:

Ответ:

2) Решить уравнение

Видно, что в этом уравнении есть один отрицательный свободный член - 4. Но, перенося его в правую часть уравнения еще с одним отрицательным знаком, получим , тогда

Отсюда:

Ответ:

3) Решить уравнение

В этом уравнении один коэффициент отрицательный, перенося его и еще с положительным знаком в левую часть нет смысла, т.к. , тогда:

Отсюда:

Ответ:

4)

Используя объяснения к уравнению 2), получим

Отсюда:

Ответ:

5)

Используя объяснения, приведенные к уравнениям 1), 2), 3), 4), получим

Отсюда:

Ответ:

2. Пусть дано линейное уравнение вида

(4)

В отличие от уравнения (1) переменные, содержащие коэффициенты, переносятся в левую часть с отрицательным знаком, в правую часть свободные члены переносятся тоже со знаком отрицательным. Но свободный член в уравнении (4) и так стоит в правой части, поэтому он не будет менять знак, поменяет знак только член . И так, решим уравнение (4).

Перенесем переменные с коэффициентами в левую часть с отрицательным знаком, а член в правую часть тоже с отрицательным знаком, получим

(5)

Отсюда:

Если , то

Решение уравнения (4) можно записать в виде системы:

(6)

Пример. Решить уравнение

Перенесем неизвестные с коэффициентами в левую часть с отрицательным знаком, а член в правую часть со знаком «минус», тогда

Отсюда:

Ответ:

3. Линейное уравнение с двумя переменными имеет вид:

(7)

Для решения уравнения (7) выразим переменную через переменную , т.е. получим уравнение вида

(8)

Для нахождения решения уравнения (7) в уравнении (8) выбирается произвольное (любое) значение . Таким образом, уравнение (7) обладает множеством решений.

Пример. Решить уравнение

Воспользуемся формулой (8), тогда

Теперь выберем абсолютно любое значение икса, например, при , получим:

Ответ:

2. Квадратные уравнения

Уравнение второй степени вида называется квадратным. Для решения такого уравнения воспользуемся следующими формулами:

и (9)

Где и - корни квадратного уравнения

Пусть , тогда если , то можно записать:

(10)

Если , то уравнение не имеет решений.

Пример. Решить уравнение

Пользуясь формулами (9) получим:

Ответ: и

3. Уравнение третей степени

Уравнение третей степени вида называется кубичным уравнением. Для решения такого уравнения заменим неизвестное - на коэффициент и вводя подстановку .

Получим более упрощенное уравнение третей степени:

(11)

Поскольку уравнение в третей степени, то соответственно решениями этого уравнения будут три корня, которые сейчас определим из следующей системы

(12)

Корни - есть решения уравнения, где - комплексное число.

4. Уравнения высших степеней сводящиеся к квадратным

1.Рассмотрим уравнение, у которого одна переменная находится в четвертой степени, т.е. дано уравнение вида:

(13)

Для решения такого уравнения, выразим через , получим,

(14)

Решая это уравнение по следующим формулам, имеем:

и (15)

Пример. Решить уравнение.

Выразим через , получим , решая это уравнение по формулам (19) получим

Отсюда получаем множество корней (решений)

Ответ: .

2. Рассмотрим уравнение, у которого одна степень находится в пятой степени, т.е. имеется уравнение вида

(16)

Для решения такого уравнения выберем переменную, у которой степень самая меньшая, по сравнению с другими степенями, это будет переменная , вынося ее за скобку получим:

(17)

Отсюда , т.е. мы получили некоторое множество нулей. Уравнение , решается через дискриминант.

Пример. Решить уравнение

Вынесем за скобку, получим , отсюда , который имеет множество корней (0; 0; 0). Далее, решая уравнение, получим и . Таким образом, получили множество решений (0; 0; 0; -2; ).

5. Системы уравнений

Пусть дана система уравнений

(18)

где - коэффициенты при неизвестных и , и - свободные члены.

Система (18) решается тремя способами 1) Графический способ; 2) Способ подстановки; 3) Способ сложения. Первый способ рассматривать не будем. Остальные способы рассмотрим при решении следующих систем уравнений.

1) Способ подстановки.

Возьмем первое уравнение системы и из этого уравнения выразим через , получим:

Подставив это выражение во второе уравнение системы, получим

Отсюда,

Запишем последнее уравнение и решим его:

Подставив теперь найденное значение в выражение, стоящее выше, получим:

Ответ: и

2) Способ сложения.

Умножим первое и второе уравнения система на 2, получим:

Затем, сложив почленно уравнения системы, получим . Найдем значения игрека, для этого найденное значение икса подставим в любое уравнение исходной (первоначальной) системы, получим:

3) Способ сложения.

Запишем систему

Умножим первое уравнение на 2, а второе на 2, получим:

Сложим 6x и 8x, получим 14x и 12+6=18, отсюда . Подставив теперь значение x в любое уравнение системы, получим:

Ответ:

7. Система трех уравнений с тремя переменными

(19)

где - коэффициенты при неизвестных , - свободные члены.

Для решения системы (19) составим определитель

(20)

Первое число у индекса указывает число (номер) строки, второе число - номер столбца. Сам определитель обозначается буквой d.

Для вычисления определителя пользуются правилом Крамера, т.е.:

d==

Корни системы (24) находятся по формулам:

Где - числа, которые следует определить по следующему правилу:

Таким же методом определяются остальные определители

ГЛАВА 2. ГРАФИК ФУНКЦИИ

1. График функции

Функция называется линейной функцией. Для нахождения точек пересечения графика функции нужно решить два уравнения:

Пример. Функция задана уравнением , найти точки пересечения с осями координат.

Решим два уравнения

Ответ: точки x =-2 и y = 4 являются точками пересечения с осями координат.

2. Квадратичная функция

Функция вида называется квадратичной. Для нахождения точек пересечения графика с осями координат, нужно решить квадратное уравнение .

... читать дальше >>>

Поcмотреть текст работы Поcмотреть полный текст
Скачать работу можно здесь Скачать работу "Уравнения. Системы уравнений. Графики функции" можно здесь
Сколько стоит?

Рекомендуем!

база знанийглобальная сеть рефератов