Об истории Тригонометрии

Очерк возникновения и применения тригонометрических вычислений. Открытие фактической связи отрезков треугольника с окружностью. Анализ геометрического определения тригонометрических тождеств. Обзор решений дифференциальных и функциональных уравнений.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 05.10.2013
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

ГОСУДАРСТВЕННОГО ОБРАЗОВАТЕЛЬНОГО УЧЕРЕЖДЕНИЯ СРЕДНЕ ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Контрольная работа

по математике

на тему: Об истории Тригонометрии

Выполнил:

Тарновецкий Сергей

2011 год

Введение

Я заинтересовался этой темой, так как хотел узнать более обширно об тригонометрии в частности об ее истории.

Я поставил перед собой цель: на основе подобранного материала установить где встречается тригонометрия кроме школьного курса при решений задач и тождеств.

Прочитав литературу, я узнал что тригонометрические вычисления применяются практически во всех областях геометрии, физики и инженерного дела. Большое значение имеет техника триангуляции, позволяющая измерять расстояния до недалёких звёзд в астрономии, между ориентирами в географии, контролировать системы навигации спутников.

Также следует отметить применение тригонометрии в таких областях, как теория музыки, акустика, оптика, анализ финансовых рынков, электроника, теория вероятностей, статистика, биология, медицина (включая ультразвуковое исследование (УЗИ) и компьютерную томографию), фармацевтика, химия, теория чисел (и, как следствие, криптография), сейсмология, метеорология, океанология, картография, многие разделы физики, топография и геодезия, архитектура, фонетика, экономика, электронная техника, машиностроение, компьютерная графика, кристаллография, а также я узнал много нового, неизвестного мне ранее.

1. Об истории тригонометрии

Тригонометрия - слово греческое и в буквальном переводе означает измерение треугольников (trigwnon - треугольник, а metrew- измеряю).

В данном случае измерение треугольников следует понимать как решение треугольников, т. е., определение сторон, углов и других элементов треугольника, если даны некоторые из них. Большое количество практических задач, а также задач планиметрии, стереометрии, астрономии и других приводятся к задаче решения треугольников.

Возникновение тригонометрии связано с астрономией и строительным делом.

Хотя название науки возникло сравнительно недавно, многие относимые сейчас к тригонометрии понятия и факты были известны ещё две тысячи лет назад.

Впервые способы решения треугольников, основанные на зависимостях между сторонами и углами треугольника, были найдены древнегреческими астрономами Гиппархом (2 в. до н. э.) и Клавдием Птолемеем (2 в. н. э.). Позднее зависимости между отношениями сторон треугольника и его углами начали называть тригонометрическими функциями.

Значительный вклад в развитие тригонометрии внесли арабские ученые Аль-Батани (850-929) и Абу-ль-Вафа, Мухамед-бен Мухамед (940-998), который составил таблицы синусов и тангенсов через 10' с точностью до 1/604. Теорему синусов уже знали индийский ученый Бхаскара (р. 1114, год смерти неизвестен) и азербайджанский астроном и математик Насиреддин Туси Мухамед (1201-1274). Кроме того, Насиреддин Туси в своей работе «Трактат о полном четырехстороннике» изложил плоскую и сферическую тригонометрию как самостоятельную дисциплину.

Длительную историю имеет понятие синус. Фактически различные отношения отрезков треугольника и окружности (а по существу, и тригонометрические функции) встречаются уже в III веке до н.э. в работах великих математиков Древней Греции - Евклида, Архимеда, Апполония Пергского. В римский период эти отношения достаточно систематично исследовались Менелаем (I век н.э.), хотя и не приобрели специального названия. Современный синус a, например, изучался как полухорда, на которую опирается центральный угол величиной a, или как хорда удвоенной дуги.

Рис. 1:

В IV-V веках появился уже специальный термин в трудах по астрономии великого индийского учёного Ариабхаты, именем которого назван первый индийский спутник Земли. Отрезок АМ (рис. 1) он назвал ардхаджива (ардха - половина, джива - тетива лука, которую напоминает хорда). Позднее появилось более краткое название джива. Арабскими математиками в IX веке это слово было заменено на арабское слово джайб (выпуклость). При переводе арабских математических текстов в веке оно было заменено латинским синус (sinus - изгиб, кривизна).

Слово косинус намного моложе. Косинус - это сокращение латинского выражения completely sinus, т. е., “дополнительный синус” (или иначе “синус дополнительной дуги”.

Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс (а также котангенс) введен в X веке арабским математиком Абу-ль-Вафой, который составил и первые таблицы для нахождения тангенсов и котангенсов. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты лишь в XIV веке немецким математиком, астрономом Регимонтаном (1467 г.). Он доказал теорему тангенсов. Региомонтан составил также подробные тригонометрические таблицы, благодаря его трудам плоская и сферическая тригонометрия стала самостоятельной дисциплиной и в Европе.

Название «тангенс», происходящее от латинского tanger (касаться), появилось в 1583 г. Tangens переводится как «касающийся» (линия тангенсов - касательная к единичной окружности).

Дальнейшее развитие тригонометрия получила в трудах выдающихся астрономов Николая Коперника (1473-1543) - творца гелиоцентрической системы мира, Тихо Браге (1546-1601) и Иогана Кеплера (1571-1630), а также в работах математика Франсуа Виета (1540-1603), который полностью решил задачу об определениях всех элементов плоского или сферического треугольника по трем данным.

Долгое время тригонометрия носила чисто геометрический характер, т. е., факты, которые мы сейчас формулируем в терминах тригонометрических функций, формулировались и доказывались с помощью геометрических понятий и утверждений. Такою она была еще в средние века, хотя иногда в ней использовались и аналитические методы, особенно после появления логарифмов. Пожалуй, наибольшие стимулы к развитию тригонометрии возникали в связи с решением задач астрономии, что представляло большой практический интерес (например, для решения задач определения местонахождения судна, предсказания затемнения и т. д.). Астрономов интересовали соотношения между сторонами и углами сферических треугольников. И надо заметить, что математики древности удачно справлялись с поставленными задачами.

Начиная с XVII в., тригонометрические функции начали применять к решению уравнений, задач механики, оптики, электричества, радиотехники, для описания колебательных процессов, распространения волн, движения различных механизмов, для изучения переменного электрического тока и т. д. Поэтому тригонометрические функции всесторонне и глубоко исследовались, и приобрели важное значение для всей математики.

Аналитическая теория тригонометрических функций в основном была создана выдающимся математиком XVIII веке Леонардом Эйлером (1707-1783) членом Петербургской Академии наук. Громадное научное наследие Эйлера включает блестящие результаты, относящиеся к математическому анализу, геометрии, теории чисел, механике и другим приложениям математики. Именно Эйлер первым ввел известные определения тригонометрических функций, стал рассматривать функции произвольного угла, получил формулы приведения. После Эйлера тригонометрия приобрела форму исчисления: различные факты стали доказываться путем формального применения формул тригонометрии, доказательства стали намного компактнее проще.

Таким образом, тригонометрия, возникшая как наука о решении треугольников, со временем развилась и в науку о тригонометрических функциях.

Позднее часть тригонометрии, которая изучает свойства тригонометрических функций и зависимости между ними, начали называть гониометрией (в переводе - наука об измерении углов, от греческого gwnia - угол, metrew - измеряю). Термин гониометрия в последнее время практически не употребляется.

2. Тригонометрические функции

Элементарные функции, которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости сторон этих треугольников от острых углов при гипотенузе (или, что эквивалентно, зависимость хорд и высот от центрального угла в круге). Эти функции нашли широчайшее применение в самых разных областях науки. Впоследствии определение тригонометрических функций было расширено, их аргументом теперь может быть произвольное вещественное или даже комплексное число.

Наука, изучающая свойства тригонометрических функций, называется тригонометрией.

К тригонометрическим функциям относятся:

Во-первых, прямые тригонометрические функции:

- синус (sin x);

- косинус (cos x).

Во-вторых, противоположные им тригонометрические функции:

- секанс (sec x);

- косеканс (cosec x).

В-третьих, производные тригонометрические функции:

- тангенс (tg x);

- котангенс (ctg x).

В западной литературе тангенс, котангенс и косеканс обозначаются tan x, cot x, csc x.

Кроме этих шести, существуют также некоторые редко используемые тригонометрические функции (версинус и т. д.), а также обратные тригонометрические функции (арксинус, арккосинус и т. д.), рассматриваемые в отдельных статьях.

Синус и косинус вещественного аргумента являются периодическими непрерывными и неограниченно дифференцируемыми вещественно значимыми функциями.

Остальные четыре функции на вещественной оси также вещественно значимые, периодические и неограниченно дифференцируемые на области определения, но не непрерывные.

Тангенс и секанс имеют разрывы второго рода в точках ±рn, а котангенс и косеканс - в точках ±рn.

Рис. 2. - Графики тригонометрических функций: синуса, косинуса, тангенса, котангенса, секанса, косеканса:

3. Геометрическое определение

Обычно тригонометрические функции определяются геометрически. Пусть нам дана декартова система координат на плоскости, и построена окружность радиуса R с центром в начале координат O. Измерим углы как повороты от положительного направления оси абсцисс до луча OB. Направление против часовой стрелки считается положительным, по часовой стрелке отрицательным. Абсциссу точки В обозначим xB, ординату обозначим yB.

Синусом называется отношение:

Косинусом называется отношение:

Тангенс определяется как:

Котангенс определяется как:

Секанс определяется как:

Косеканс определяется как:

Ясно, что значения тригонометрических функций не зависят от величины радиуса окружности R в силу свойств подобных фигур.

Также, следует отметить, что часто этот радиус принимают равным величине единичного отрезка.

Исходя из чего, синус оказывается равен просто ординате yB, а косинус - абсциссе xB.

Если б - вещественное число, то синусом б в математическом анализе называется синус угла, радианная мера которого равна б, аналогично для прочих тригонометрических функций.

Рассмотрим графическое представления данного явления на рисунке 3.

4. Определение тригонометрических функций для острых углов

Рис. 4. - Численные значения тригонометрических функций угла б в тригонометрической окружности с радиусом, равным единице:

5. Определение тригонометрических функций как решений дифференциальных уравнений, функциональных уравнений, и через ряды

Во многих учебниках элементарной геометрии до настоящего времени тригонометрические функции острого угла определяются как отношения сторон прямоугольного треугольника. Пусть OAB - треугольник с углом б.

Тогда:

- Синусом угла б называется отношение AB/OB (отношение противолежащего катета к гипотенузе);

- Косинусом угла б называется отношение ОА/OB (отношение прилежащего катета к гипотенузе);

- Тангенсом угла б называется отношение AB/OA (отношение противолежащего катета к прилежащему);

- Котангенсом угла б называется отношение ОА/AB (отношение прилежащего катета к противолежащему);

- Секансом угла б называется отношение ОB/OA (отношение гипотенузы к прилежащему катету);

- Косекансом угла б называется отношение ОB/AB (отношение гипотенузы к противолежащему катету).

Построив систему координат с началом в точке O, направлением оси абсцисс вдоль OA и в случае необходимости изменив ориентацию (перевернув) треугольник так, чтобы он находился в первой четверти системы координат, и затем, построив окружность с радиусом, равным гипотенузе, сразу находим, что такое определение функций приводит к тому же результату, что и предыдущее.

Рис. 5. - Тригонометрические функции острого угла:

6. Определение тригонометрических функций для острых углов

Функции косинус и синус можно определить как четное (косинус) и нечетное (синус) решение дифференциального уравнения:

С начальными условиями, что функции одной переменной, вторая производная которых равна самой функции, взятой со знаком минус:

Функции косинус и синус можно определить как непрерывные решения (f и g соответственно) системы функциональных уравнений:

Используя геометрию и свойства пределов, можно доказать, что производная синуса равна косинусу и что производная косинуса равна минус синусу. Тогда можно воспользоваться теорией рядов Тейлора и представить синус и косинус в виде суммы степенных рядов:

Пользуясь этими формулами, а также уравнениями:

7. Значения тригонометрических функций для некоторых углов

Значения синуса, косинуса, тангенса, котангенса, секанса и косеканса для некоторых углов приведены в таблице.

Таблица 1:

7. Значения тригонометрических функций нестандартных углов

Таблица 2:

Рис. 6. - Значения косинуса и синуса на окружности:

8. Простейшие тождества

Тригонометрические тождества - математические выражения для тригонометрических функций, которые выполняются при всех значениях аргумента (из общей области определения).

Поскольку синус и косинус являются соответственно ординатой и абсциссой точки, соответствующей на единичной окружности углуб, то, согласно уравнению единичной окружности или теореме Пифагора, имеем:

Это соотношение называется основным тригонометрическим тождеством.

Деля это уравнение на квадрат косинуса и синуса соответственно имеем далее:

Непрерывность.

Синус и косинус - непрерывные функции. Тангенс и секанс имеют точки разрыва:

- котангенс и косеканс.

Четность.

Косинус и секанс - чётные. Остальные четыре функции - нечётные, то есть:

Периодичность:

Функции:

Формулами приведения называются формулы следующего вида:

Здесь f - любая тригонометрическая функция, g - соответствующая ей кофункция (то есть косинус для синуса, синус для косинуса и аналогично для остальных функций), n - целое число. Перед полученной функцией ставится тот знак, который имеет исходная функция в заданной координатной четверти при условии, что угол б острый, например:

Таблица 3. - Некоторые формулы приведения:

Значения тригонометрических функций суммы и разности двух углов:

Аналогичные формулы для суммы трёх углов:

Формулы двойного угла:

Формулы тройного угла:

Прочие формулы для кратных углов:

- следует дополнения и формулы Гаусса для Гамма-функции:

Произведения функций двух углов:

Аналогичные формулы для синусов и косинусов трёх углов:

Формулы для произведений тангенсов и котангенсов трёх углов можно получить, поделив правые и левые части соответствующих равенств, представленных выше.

Степени:

Суммы:

Для функций от аргумента x существует представление:

Где угол ? находится из соотношений:

Однопараметрическое представление.

Все тригонометрические функции можно выразить через тангенс половинного угла:

9. Производные и интегралы

Все тригонометрические функции непрерывно и неограниченно дифференцируемы на всей области определения:

Интегралы тригонометрических функций на области определения выражаются через элементарные функции следующим образом:

10. Тригонометрические функции комплексного аргумент

Определение:

Формула Эйлера:

Позволяет определить тригонометрические функции от комплексных аргументов через экспоненту или (с помощью рядов) как аналитическое продолжение их вещественных аналогов:

Комплексные синус и косинус тесно связаны с гиперболическими функциями:

Большинство перечисленных выше свойств тригонометрических функций сохраняются и в комплексном случае. Некоторые дополнительные свойства: тригонометрический тождество уравнение

- комплексные синус и косинус, в отличие от вещественных, могут принимать сколь угодно большие по модулю значения;

- все нули комплексных синуса и косинуса лежат на вещественной оси.

Размещено на Allbest.ru

...

Подобные документы

  • Сущность и стадии развития тригонометрии. Свойства функции синус, косинус, тангенс, котангенс. Решение простых тригонометрических уравнений. Формула Эйлера как связь между математическим анализом и тригонометрией. Применение тригонометрических вычислений.

    реферат [648,7 K], добавлен 15.06.2014

  • Исторический обзор формирования тригонометрии как науки от древности до наших дней. Введение понятия тригонометрических функций на уроках алгебры и начал анализа по учебникам А.Г. Мордковича, М.И. Башмакова. Решения линейных дифференциальных уравнений.

    дипломная работа [2,6 M], добавлен 02.07.2011

  • История развития тригонометрии, характеристика ее основных понятий и формул. Общие вопросы, цели изучения и способы определения тригонометрических функций числового аргумента в школьном курсе. Рекомендации и методы решения тригонометрических уравнений.

    курсовая работа [257,7 K], добавлен 19.10.2011

  • Знакомство с особенностями возникновения тригонометрии, рассмотрение этапов развития. Анализ способов решения треугольников, основанных на зависимостях между сторонами и углами треугольника. Характеристика аналитической теории тригонометрических функций.

    презентация [654,4 K], добавлен 24.06.2014

  • Тригонометрические уравнения и неравенства в школьном курсе математики. Анализ материала по тригонометрии в различных учебниках. Виды тригонометрических уравнений и методы их решения. Формирование навыков решения тригонометрических уравнений и неравенств.

    дипломная работа [1,9 M], добавлен 06.05.2010

  • Исторический обзор формирование тригонометрии как науки. Различные способы введения понятия тригонометрических функций. Анализ школьных учебников М.И. Башмакова и А.Г. Мордковича по данной тематике. Перспективы использования материала для преподавания.

    дипломная работа [2,7 M], добавлен 02.07.2011

  • Понятие тригонометрии, ее сущность и особенности, история возникновения и развития. Структура тригонометрии, ее элементы и характеристика. Создание и развитие аналитической теории тригонометрических функций, роль в нем академика Леонарда Эйлера.

    творческая работа [69,7 K], добавлен 15.02.2009

  • Элементарные тригонометрические уравнения и методы их решения. Введение вспомогательного аргумента. Схема решения тригонометрических уравнений. Преобразование и объединение групп общих решений тригонометрических уравнений. Разложение на множители.

    курсовая работа [1,1 M], добавлен 21.12.2009

  • Характеристика тригонометрических понятий. Свойства тригонометрических функций, особенности их практического применения в электротехнике. Исследование электрических сигналов путем визуального наблюдения графика сигнала на экране с помощью осциллографа.

    презентация [287,9 K], добавлен 28.05.2016

  • Углы и их измерение, тригонометрические функции острого угла. Свойства и знаки тригонометрических функций. Четные и нечетные функции. Обратные тригонометрические функции. Решение простейших тригонометрических уравнений и неравенств с помощью формул.

    учебное пособие [876,9 K], добавлен 30.12.2009

  • Описание колебательных систем дифференциальными уравнениями с малым параметром при производных, асимптотическое поведение их решений. Методика регулярных возмущений и особенности ее применения при решении задачи Коши для дифференциальных уравнений.

    курсовая работа [1,5 M], добавлен 15.06.2009

  • Углы и их измерение. Соответствие между углами и числовым рядом. Геометрический смысл тригонометрических функций. Свойства тригонометрических функций. Основное тригонометрическое тождество и следствия из него. Универсальная тригонометрическая подстановка.

    учебное пособие [1,4 M], добавлен 18.04.2012

  • Частные случаи производной логарифмической функции. Производная показательной функции, экспоненты, степенной, тригонометрических функций. Производная синуса, косинуса, тангенса, котангенса, арксинуса. Производные обратных тригонометрических функций.

    презентация [332,2 K], добавлен 21.09.2013

  • Понятие и назначение интегралов, их классификация и разновидности. Вычисление интегралов от тригонометрических функций: методика, основные этапы, используемые инструменты. Интегралы, зависящие от параметра, их отличительные особенности и вычисление.

    курсовая работа [1,1 M], добавлен 19.09.2011

  • Существование и единственность решений дифференциальных уравнений. Геометрическая интерпретация решений. Линейные и нелинейные системы. Дифференциальные уравнения, моделирующие динамику популяций конкурирующих видов, их решения и фазовые портреты.

    дипломная работа [2,5 M], добавлен 27.06.2012

  • Понятия и решения простейших дифференциальных уравнений и дифференциальных уравнений произвольного порядка, в том числе с постоянными аналитическими коэффициентами. Системы линейных уравнений. Асимптотическое поведение решений некоторых линейных систем.

    дипломная работа [395,4 K], добавлен 10.06.2010

  • Европейская математика эпохи Возрождения. Создание буквенного исчисления Франсуа Виет и метода решения уравнений. Усовершенствование вычислений в конце XVI – начале XVII веков: десятичные дроби, логарифмы. Установление связи тригонометрии и алгебры.

    презентация [4,9 M], добавлен 20.09.2015

  • Характеристика уравнений с разделяющимися переменными. Сущность метода Бернулли и метода Лагранжа, задачи Коша. Решение линейных уравнений n-го порядка. Фундаментальная система решений - набор линейно независимых решений однородной системы уравнений.

    контрольная работа [355,9 K], добавлен 28.02.2011

  • Степенные ряды. Радиус сходимости. Ряды Лорана. Полюса и особые точки. Интегрирование дифференциальных уравнений при помощи степенных рядов. Общее дифференциальное уравнение Риккати. Исследование решений в окрестности полюса и существенно особой точки.

    дипломная работа [252,1 K], добавлен 15.12.2012

  • Система двух нелинейных обыкновенных дифференциальных уравнений, порождённая прямым и обратным преобразованиями Беклунда высшего аналога второго уравнения Пенлеве. Аналитические свойства решения, наличие у системы четырёхпараметрических семейств решений.

    реферат [104,0 K], добавлен 28.06.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.