Основы высшей математики

Изучение понятия и видов матрицы, рассмотрение алгоритма решения систем линейных уравнений в матричной форме. Исследование свойств пределов функций и примеров их нахождения. Характеристика основных задач, инструментов и методов аналитической геометрии.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 02.06.2014
Размер файла 449,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Департамент образования г. Москвы

Институт государственного управления, права и инновационных технологий

Реферат

по курсу: Математика/Математический анализ

на тему: Основы высшей математике

Выполнил:

Студент 1 курса

Заочной формы обучения

Факультета информационных технологий в управлении

Нечаев А.С.

Проверил:

ст.препод.

В.Д. Глимаков

Москва 2013

1. Понятие, определение матрицы

Определение матрицы. Матрицей называется прямоугольная таблица из чисел, содержащая некоторое количество m строк и некоторое количество n столбцов.

Основные понятия матрицы: Числа m и n называются порядками матрицы. В случае, если m=n, матрица называется квадратной, а число m=n - ее порядком.

В дальнейшем для записи матрицы будут применяться обозначение:

основа высшая математика

Впрочем, для краткого обозначения матрицы часто используется одна большая буква латинского алфавита, (например, А), либо символ ||aij||, а иногда и с разъяснением:

A=||aij||=(aij) (i=1,2,...,m; j=1,2,...n)

Числа aij, входящие в состав данной матрицы, называются ее элементами. В записи aij первый индекс i означает номер строки, а второй индекс j - номер столбца.

Например, матрица

это матрица порядка 2Ч3, ее элементы

a11=1, a12=x, a13=3, a21=-2y, ...

Итак, мы ввели определение матрицы. Рассмотрим виды матриц и дадим соответствующие к ним определения.

1.1 Виды матриц

Введем понятие матриц: квадратных, диагональных, единичных и нулевых.

Определение матрицы квадратной: Квадратной матрицей n-го порядка называется матрица размера nЧn.

В случае квадратной матрицы вводятся понятие главной и побочной диагоналей. Главной диагональю матрицы называется диагональ, идущая из левого верхнего угла матрицы в правый нижний ее угол.

Побочной диагональю той же матрицы называется диагональ, идущая из левого нижнего угла в правый верхний угол.

Понятие диагональной матрицы: Диагональной называется квадратная матрица, у которой все элементы вне главной диагонали равны нулю.

Понятие единичной матрицы: Единичной (обозначается Е иногда I) называется диагональная матрица с единицами на главной диагонали.

Понятие нулевой матрицы: Нулевой называется матрица, все элементы которой равны нулю.

Две матрицы А и В называются равными (А=В), если они одинакового размера (т.е. имеют одинаковое количество строе и одинаковое количество столбцов и их соответствующие элементы равны). Так, если

то А=B, если a11=b11, a12=b12, a21=b21, a22=b22

1.2 Решение систем линейных уравнений в матричной форме

Пусть дана система уравнений

Если обозначить матрицу, составленную из коэффициентов при неизвестных

свободные члены и неизвестные записать в виде матриц-столбцов

и

тогда, используя правило умножения матриц, эту систему уравнений можно записать так:

Или А•Х = В

Это равенство называется простейшим матричным уравнением. Такое уравнение решается следующим образом. Пусть матрица А невырожденная (), тогда существует обратная матрица А-1. Умножив на нее обе части матричного уравнения, имеем

Используя сочетательный закон умножения, получим

Но так какА-1А = ЕиЕ•Х = Х, получим Х = А-1В

Т.к. систему линейных уравнений можно записать в виде матричного уравнения, то эту систему можно решить как матричное уравнение.

Размещено на http://www.allbest.ru/

Пример: Решить систему уравнений в матричной форме

Решение. Составим матричное уравнениеА•Х = В, где

,,

и найдем Х по формуле Х = А-1В Для этого необходимо выполнить действия:

1. Найти А-1

2. Найти произведение

1) Чтобы найти А-1, надо выполнить четыре действия:

А11 = 3, А12 = - 6, А13 = 3, А21 = - 4, А22 = 2, А23 = - 1, А31 = 2, А32 = - 1, А33 = - 4

составим матрицу

транспонируем ее, получим

умножим на

.

Получим

Найдем Х = А-1В

Итак, решение системы уравнений есть х1 = 4, х2 = 3, х3 = 5 Ответ: (4; 3;5)

1.3 Определители и их свойства

матрица размера .

Определителем называется сумма вида:

где - число инверсий (Инверсией в перестановке порядка называется всякая пара индексов такая, что и ) в перестановке .

Свойства определителей

· Перестановка строк меняет знак определителя

Доказательство. Если мы переставим i и j строки, потом возьмём - член , то все его множетели и в старом остануться в разных строках и столбцах. таким образом определители состоят из одинаковых членов. члену соответствует подстановка

Так, например элемент стоит теперь в j-ой строке, но в старом остаётся в -ом столбце. но вторя подстановка получается из первой путём одной транспозиции в верхней строке, т.е. имеет противоположную чётность все члены входят в новый с обратными знаками.

Если все элементы строки умножить на число k, то сам умножится на k.

Доказательство. Пусть на k умножают элементы i-ой строки. каждый член определителя содержит ровно один элемент из i-ой строки, по этому всякий член преобретает множитель k, т.е. сам определитель умножается на k.

Если все элементы i-ой строки представить в виде суммы двух слагаемых, то

.

Мемтод Гамусса -- классический метод решения системы линейных алгебраических уравнений (СЛАУ). Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которой последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные[

Сущность этого метода состоит в том, что посредством последовательных исключений неизвестных данная система превращается в ступенчатую (в частности, треугольную) систему, равносильную данной. При практическом решении системы линейных уравнений методом Гаусса удобнее приводить к ступенчатому виду не саму систему уравнений, а расширенную матрицу этой системы, выполняя элементарные преобразования над ее строками. Последовательно получающиеся в ходе преобразования матрицы обычно соединяют знаком эквивалентности.

Пример: Решить систему уравнений методом Гаусса:

x + y - 3z = 2,

3x - 2y + z = - 1,

2x + y - 2z = 0.

Решение. Выпишем расширенную матрицу данной системы и произведем следующие элементарные преобразования над ее строками:

а) из ее второй и третьей строк вычтем первую, умноженную соответственно на 3 и 2:

~ ;

б) третью строку умножим на (-5) и прибавим к ней вторую:

В результате всех этих преобразований данная система приводится к треугольному виду:

x + y - 3z = 2,

-5y + 10z = -7,

- 10z = 13.

Из последнего уравнения находим z = -1,3. Подставляя это значение во второе уравнение, имеем y = -1,2. Далее из первого уравнения получим x = - 0,7.

Метод Крамера (правило Крамера) -- способ решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы(причём для таких уравнений решение существует и единственно). Назван по имени Габриэля Крамера (1704-1752), придумавшего метод.

Для системы линейных уравнений с неизвестными (над произвольным полем)

с определителем матрицы системы , отличным от нуля, решение записывается в виде

(i-ый столбец матрицы системы заменяется столбцом свободных членов).

В другой форме правило Крамера формулируется так: для любых коэффициентов c1, c2, …, cn справедливо равенство:

В этой форме формула Крамера справедлива без предположения, что отлично от нуля, не нужно даже, чтобы коэффициенты системы были бы элементами целостного кольца (определитель системы может быть даже делителем нуля в кольце коэффициентов). Можно также считать, что либо наборы и , либо набор состоят не из элементов кольца коэффициентов системы, а какого-нибудь модуля над этим кольцом. В этом виде формула Крамера используется, например, при доказательстве формулы для определителя Грама и Леммы Накаямы.

Пример Система линейных уравнений:

Определители:

Решение:

Пример:

Определители:

1.4 Миноры и алгебраические уравнения

Рассмотрим матрицу A:

Вычеркнем из матрицы k строк с номерами i1, i2, ..., ik и k столбцов, с номерами j1, j2, ..., jk.

Элементы, расположенные на пересечении вычеркнутых строк, образуют определиитель, который называется минором порядка k. Его обозначают Mk:

Минор, образованный оставшимися элементами называется дополнительным минором минора Mk и обозначают Mk'.

Алгебраическим дополнением Ak минора Mk называется число, равное дополнительному минору Mk', умноженному на (?1) в степени, равной сумме номеров вычеркнутыж строк и столбцов:

Если вычеркнуты одна строка и один столбец, то соответствующие миноры и алгебраические дополнения называют минорами и алгебраическими дополнениями элемента.

Определитель равен сумме произведений элементов любой строки или любого столбца на их алгебраические дополнения:

Минор, расположенный в первых k строках и k столбцах, называется угловым минором.

Теомрия мномжеств -- раздел математики, в котором изучаются общие свойства множеств. Теория множеств лежит в основе большинства математических дисциплин; она оказала глубокое влияние на понимание предмета самой математики

2. Свойства пределов

Обозначение предела

Предел функции обозначается как

или через символ предела:

Всюду ниже предполагается, что пределы функций существуют.

Предел суммы

Предел суммы двух функций равен сумме пределов этих функций:

Расширенное правило суммы

Предел постоянной величины

Предел постоянной величины равен самой постоянной величине:

Предел произведения функции на постоянную величину

Постоянный коэффициент можно выносить за знак предела:

Предел произведения

Предел произведения двух функций равен произведению пределов этих функций (при условии, что последние существуют):

Расширенное правило произведения

Предел частного

Предел частного двух функций равен отношению пределов этих функций при условии, что предел знаменателя не равен нулю:

Предел степенной функции

где степень p - действительное число. В частности,

Если f ( x ) = x, то

Предел показательной функции

где основание a > 0.

Предел логарифмической функции

где основание a > 0.

Теорема "о двух милиционерах"

Предположим, что

для всех x близких к a, за исключением, быть может, самой точкиx = a. Тогда, если

То

То есть функция f (x) остается "зажатой" между двумя другими функциями, стремящимися к одному и тому же пределу L.

Пример 1

Найти предел

.

Решение

Пример 2

Найти предел

.

Решение.

Используя основные свойства пределов (правило суммы, правило частного и предел степенной функции), получаем

3. Аналитическая геометрия

Аналитическая геометрия, раздел геометрии, который исследует простейшие геометрические объекты средствами элементарной алгебры на основе метода координат. Создание аналитической геометрии обычно приписывают Р.Декарту, изложившему ее основы в последней главе своего трактата Рассуждение о методе, озаглавленной Геометрия (1637). Однако сам метод был известен П.Ферма еще в 1629, о чем свидетельствует его переписка. Аналитическая геометрия стала неоценимым подспорьем для математического анализа, изобретенного вскоре Ньютоном (1665-1666) и Лейбницем (1675-1676).

Методы аналитической геометрии применимы к фигурам на плоскости и к поверхностям в трехмерном пространстве, а также допускают естественное обобщение и на пространства более высоких размерностей. Мы начнем с аналитической геометрии на плоскости.

Сущность метода координат состоит в следующем. На плоскости задаются две взаимно перпендикулярные прямые (координатные оси), пересекающиеся в точке О, называемой началом координат. Одна из них - ось x, или ось абсцисс, обычно выбирается горизонтальной, другая - ось y, или ось ординат, - вертикальной. Справа от O выбирается точка, у которой ставится отметка 1. Если принять отрезок от O до 1 за единицу длины, то откладывая последовательно этот отрезок вдоль прямой, мы получаем числовую ось. Считается, что эта ось продолжается вправо до бесконечности. Точки на оси x слева от O помечаются отрицательными числами, как на шкале термометра. Например, точка ?2 расположена от точки O слева на таком же расстоянии, как точка 2 справа. Аналогичным образом с той же единицей длины размечается и ось y. Положительные числа располагаются выше точки O, отрицательные - ниже.

Пусть P - любая точка на плоскости с заданной системой координат, Q - основание перпендикуляра, опущенного из P на ось x, а R - основание перпендикуляра, опущенного из P на ось y. Положение точки P полностью определяется двумя числами, называемыми координатами x и y. Первая координата указывает положение точки Q на оси x, вторая - положение точки R на оси y. На рис. 1 положение точки P полностью определяется ее координатами (2,3).

Основная задача аналитической геометрии заключается в изучении геометрических фигур с помощью соотношений между координатами точек, из которых эти фигуры образованы. Любую фигуру можно рассматривать как множество точек, удовлетворяющих некоторому геометрическому условию. Это условие можно записать в виде алгебраического уравнения, связывающего координаты x и y каждой точки фигуры. Суть метода аналитической геометрии состоит в изучении свойств фигуры с помощью соответствующего уравнения, исследуемого средствами алгебры. Этот метод позволяет устанавливать геометрические факты систематичным образом, в отличие от традиционной «синтетической» геометрии, где приходилось изобретать методы доказательства для каждого отдельного случая.

Основным инструментом аналитической геометрии служит формула для вычисления расстояния между двумя точками P1 = (x1,y1) и P2 = (x2,y2). Числа x1, y1, x2 и y2 могут быть любыми действительными числами, положительными, отрицательными или 0. На рис. 2 все числа выбраны положительными. Проведем через точку P1 горизонтальную прямую, а через точку P2 - вертикальную. Пусть R - точка их пересечения. Тогда по теореме Пифагора

Откуда

d 2 = (x2 - x1)2 + (y2 - y1)2.

Это и есть формула для вычисления расстояния между двумя точками.

Важно иметь в виду, что эта формула остается в силе независимо от того, как расположены точки P1 и P2. Например, если точка P2 расположена ниже точки P1 и справа от нее, как на рис. 3, то отрезок RP2 можно считать равным y1 - y2, а не y2 - y1. Расстояние между точками, вычисляемое по формуле, от этого не изменится, так как (y1 - y2)2 = (y2 - y1)2. Заметим, что так как величина y2 в этом случае отрицательна, разность y1 - y2 больше, чем y1, как и должно быть.

Прямая - одна из простейших геометрических фигур. Алгебраическое уравнение прямой также имеет простой вид.

Пусть B = (0,b)- точка пересечения прямой L с осью y, а P = (x,y) - любая другая точка на этой прямой. Проведем через точку B прямую, параллельную оси x, а через точку P - прямую, параллельную оси y; проведем также прямую x = 1. Пусть m - угловой коэффициент прямой L(см. рис. 4). Так как треугольники BSQ и BRP подобны, то

или, после упрощения,

Следовательно, если точка P лежит на прямой L, то ее координаты удовлетворяют уравнению (1). Обратно, нетрудно показать, что если x и yсвязаны между собой уравнением (1), то точка P непременно лежит на прямой L, проходящей через точку (0,b) и имеющей угловой коэффициентm.

Таким образом, уравнение любой прямой можно записать в виде

В обоих случаях мы получаем уравнение первой степени. Кроме того, каждое уравнение первой степени по x и y можно привести к виду (2) либо (3).

Рассмотрим произвольное уравнение первой степени

Если B № 0, мы можем записать уравнение (4) в виде

т.е. в виде (2). При B = 0 уравнение (4) сводится к уравнению

Ax = C,

т.е. к уравнению вида (3).

Таким образом, любая прямая описывается уравнением первой степени поx и y, и обратно, каждое уравнение первой степени по x и y соответствует некоторой прямой.

3.1 Парабола

Методы аналитической геометрии позволяют без особых трудностей исследовать свойства кривых, которые обычно не рассматриваются в стандартных учебниках планиметрии.

Пусть заданы точка F с координатами (0,1) и прямая y = -1 (рис. 5). Множество точек P = (x,y), для которых расстояние PF равно расстоянию PD, называется параболой. Прямая y = -1 называется директрисой параболы, а точка F - фокусом параболы. Чтобы выяснить, как располагаются точки P, удовлетворяющие условию PF = PD, запишем его с помощью координат:

x2 + (y - 1)2 = (y + 1)2 + (x - x)2,

или после упрощения x2 = 4y. Это уравнение геометрического места точек, образующих параболу.

Рассмотрим теперь точки пересечения произвольной невертикальной прямой y = mx + b с параболой x2 = 4y. Точки пересечения должны иметь координаты, удовлетворяющие одновременно обоим уравнениям, поэтому

x2 = 4mx + 4b,

x2 - 4mx - 4b = 0.

В общем случае существуют два решения x1 и x2 квадратного уравнения. Известно, что сумма этих решений x1 + x2 равна коэффициенту при x, взятому со знаком минус. Следовательно,

x1 + x2 = 4m.

Абсцисса средней точки M хорды P1P2 равна

Результат зависит только от m и не зависит от b.

Если теперь мы рассмотрим множество параллельных прямых с одним и тем же угловым коэффициентом m, но с различными значениями b, то середины всех хорд, высекаемых на этих прямых параболой, лежат на вертикальной прямой x = 2m (см. рис. 6).

Среди этих параллельных прямых есть одна особенная прямая T, пересекающая параболу только в одной точке. Эта прямая называется касательной. Точка касания P имеет координаты (2m,m2).

Преобразование уравнений.

Уравнение кривой зависит от положения координатных осей и от выбранных масштабов. Например, уравнение окружности с радиусом rединиц и с центром в начале координат имеет вид

x2 + y2 = r2.

Но если окружность расположена так, как показано на рис. 7, с центром в точке с координатами (h,k), то ее уравнение принимает более сложный вид:

(x - h)2 + (y - k)2 = r2,

в чем нетрудно убедиться, воспользовавшись формулой расстояния. Для исследования свойств кривой удобно расположить оси так, чтобы уравнение приняло по возможности более простой вид, как мы поступили в случае параболы.

До сих пор мы исследовали кривую, заданную некоторым геометрическим условием, которому должны удовлетворять все принадлежащие ей точки, и вывели уравнение относительно заданной пары координатных осей. Обратная задача состоит в том, чтобы построить кривую, соответствующую данному уравнению, и исследовать геометрические свойства этой кривой или ее графика.

Предположим, что мы хотим исследовать график кривой

Перепишем это соотношение в виде

y = x2 - 2x + 1 + 2 = (x - 1)2 + 2.

Сделав затем замену переменных xў = x - 1 и yў = y - 2, сведем (5) к следующему уравнению:

которое, конечно, гораздо проще. Теперь заданную кривую можно записать в новой системе, оси которой параллельны старым с началом координат в точке x = 1, y = 2. Помимо такого приема (называемого параллельным переносом) - сдвига осей координат по горизонтали и по вертикали на соответствующие величины, уравнения часто упрощаются после поворота системы координат на некоторый угол вокруг неподвижного начала координат O.

Оказывается, что этих двух приемов - параллельного переноса и поворота координатных осей, выполняемых по отдельности или вместе, - вполне достаточно, чтобы привести уравнение второй степени или к уравнениям двух прямых (пересекающихся, параллельных или совпадающих) или к одному из стандартных видов:

Уравнение (7) описывает параболу с фокусом в точке (0,p) и директрисой y= - p. Уравнение (8) соответствует эллипсу. Уравнение (9) описывает гиперболу

Помимо исследования графиков алгебраических уравнений, аналитическая геометрия изучает также неалгебраические, или трансцендентные, кривые, например графики экспоненциальных, логарифмических и тригонометрических функций. В качестве примера трансцендентной кривой приведем циклоиду - кривую, описываемую точкой окружности, катящейся без скольжения по прямой (рис. 8). Если в качестве прямой выбрать ось абсцисс, а радиус окружности принять равным 1, то координаты точки P будут иметь вид

где q - угол в радианах.

Циклоида обладает многими замечательными свойствами. Длина дуги циклоиды в 8 раз больше, чем длина катящейся окружности, а площадь под дугой в 3 раза больше площади катящегося круга. Если циклоиду перевернуть, то мы получим форму нити, по которой бусина соскальзывала бы до данной точки за кратчайшее время. Эти результаты доказываются методами математического анализа, а последний из них - методами вариационного исчисления. Циклоиды и аналогичные кривые, возникающие при движении одной окружности по другой, играют важную роль при проектировании зубчатых передач, действующих бесшумно и эффективно. На рис. 9 вы видите несколько других кривых и их уравнения.

Размещено на Allbest.ru

...

Подобные документы

  • Ознакомление с основами метода Гаусса при решении систем линейных уравнений. Определение понятия ранга матрицы. Исследование систем линейных уравнений; особенности однородных систем. Рассмотрение примера решения данной задачи в матрической форме.

    презентация [294,9 K], добавлен 14.11.2014

  • Теоретические основы аналитической геометрии, линейной алгебры и задач оптимизации. Общая характеристика плоскости и основных поверхностей второго порядка. Особенности решения систем линейных уравнений с использованием меню "Мастер функций" MS Excel.

    методичка [1,3 M], добавлен 05.07.2010

  • Элементы линейной алгебры. Виды матриц и операции над ними. Свойства определителей матрицы и их вычисление. Решение систем линейных уравнений в матричной форме, по формулам Крамера и методу Гаусса. Элементы дифференциального и интегрального исчислений.

    учебное пособие [1,5 M], добавлен 06.11.2011

  • Вид в матричной форме, определитель матрицы, алгебраического дополнения и всех элементов матрицы, транспоная матрица. Метод Крамера, правило Крамера — способ решения квадратных систем линейных алгебраических уравнений с определителем основной матрицы.

    задача [93,5 K], добавлен 08.11.2010

  • Исследование метода квадратных корней для симметричной матрицы как одного из методов решения систем линейных алгебраических уравнений. Анализ различных параметров матрицы и их влияния на точность решения: мерность, обусловленность и разряженность.

    курсовая работа [59,8 K], добавлен 27.03.2011

  • Основные действия над матрицами, операция их умножения. Элементарные преобразования матрицы, матричный метод решения систем линейных уравнений. Элементарные преобразования систем, методы решения произвольных систем линейных уравнений, свойства матриц.

    реферат [111,8 K], добавлен 09.06.2011

  • Алгоритм решения задач по теме "Матрицы". Исследование на совместность системы линейных алгебраических уравнений, пример их решения по правилу Крамера. Определение величины угла при вершине в треугольнике, длины вектора. Исследование сходимости рядов.

    контрольная работа [241,6 K], добавлен 19.03.2011

  • Нахождение проекции точки на прямую, проходящую через заданные точки. Изучение формул Крамера для решения систем линейных уравнений. Определение точки пересечения перпендикуляра и исходной прямой. Исследование и решение матричной системы методом Гаусса.

    контрольная работа [98,6 K], добавлен 19.04.2015

  • Система линейных уравнений. Матричное решение системы уравнений. Геометрический смысл операций с комплексными числами. Элементы аналитической геометрии в пространстве. Классификация функций. Основные элементарные функции. Раскрытие неопределенностей.

    шпаргалка [1,1 M], добавлен 12.01.2009

  • Изучение формул Крамера и Гаусса для решения систем уравнений. Использование метода обратной матрицы. Составление уравнения медианы и высоты треугольника. Нахождение пределов выражений и производных заданных функций. Определение экстремумов функции.

    контрольная работа [59,1 K], добавлен 15.01.2014

  • Изучение основ линейных алгебраических уравнений. Нахождение решения систем данных уравнений методом Гаусса с выбором ведущего элемента в строке, в столбце и в матрице. Выведение исходной матрицы. Основные правила применения метода факторизации.

    лабораторная работа [489,3 K], добавлен 28.10.2014

  • Характеристика и использование итерационных методов для решения систем алгебраических уравнений, способы формирования уравнений. Методы последовательных приближений, Гаусса-Зейделя, обращения и триангуляции матрицы, Халецкого, квадратного корня.

    реферат [60,6 K], добавлен 15.08.2009

  • Основные понятия и теоремы систем линейных уравнений, характеристика методов их решения. Критерий совместности общей системы. Структура общих решений однородной и неоднородной систем. Матричный метод решения и обобщение. Методы Крамера и Гаусса.

    курсовая работа [154,5 K], добавлен 13.11.2012

  • Основные понятия теории систем уравнений. Метод Гаусса — метод последовательного исключения переменных. Формулы Крамера. Решение систем линейных уравнений методом обратной матрицы. Теорема Кронекер–Капелли. Совместность систем однородных уравнений.

    лекция [24,2 K], добавлен 14.12.2010

  • Рассмотрение систем линейных алгебраических уравнений общего вида. Сущность теорем и их доказательство. Особенность трапецеидальной матрицы. Решение однородных и неоднородных линейных алгебраических уравнений, их отличия и применение метода Гаусса.

    реферат [66,4 K], добавлен 14.08.2009

  • Изучение способов нахождения пределов функций и их производных. Правило дифференцирования сложных функций. Исследование поведения функции на концах заданных промежутков. Вычисление площади фигуры при помощи интегралов. Решение дифференциальных уравнений.

    контрольная работа [75,6 K], добавлен 23.10.2010

  • Математические и педагогические основы исследования системы линейных уравнений. Компьютерная математика Mathcad. Конспекты уроков элективного курса "Изучение избранных вопросов по математике с использованием системы компьютерной математики Mathcad".

    дипломная работа [1001,0 K], добавлен 03.05.2013

  • Основные этапы и принципы решения системы линейных уравнений с помощью метода Крамара, обратной матрицы. Разрешение матричного уравнения. Вычисление определителя. Расчет параметров пирамиды: длины ребра, площади грани, объема, а также уравнения грани.

    контрольная работа [128,1 K], добавлен 06.09.2015

  • Решение системы линейных уравнений по правилу Крамера и с помощью обратной матрицы. Нахождение ранга матрицы. Вычисление определителя с помощью теоремы Лапласа. Исследование на совместимость системы уравнений, нахождение общего решения методом Гауса.

    контрольная работа [97,3 K], добавлен 24.05.2009

  • Сущность итерационного метода решения задачи, оценка его главных преимуществ и недостатков. Разновидности итерационных методов решения систем линейных алгебраических уравнений: Якоби, Хорецкого и верхней релаксации, их отличия и возможности применения.

    курсовая работа [39,2 K], добавлен 01.12.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.