Алгоритм Маркова

Понятие нормального алгоритма Маркова как одного из стандартных способов формального определения понятия алгоритма. Особенности понятия ассоциативного исчисления. Характеристика суперпозиции, объединения, разветвления и итерации алгоритмов и их специфика.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 03.10.2014
Размер файла 16,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Нормальный алгоритм Маркова

Заключение

Список использованных источников

Введение

Нормамльный алгоримтм (алгоримфм) Мамркова (НАМ, также марковский алгоритм) -- один из стандартных способов формального определения понятия алгоритма (другой известный способ -- машина Тьюринга). Понятие нормального алгоритма введено А. А. Марковым (младшим) в конце 1940-хгодов в работах по неразрешимости некоторых проблем теории ассоциативных вычислений. Традиционное написание и произношение слова «алгорифм» в этом термине также восходит к его автору, многие годы читавшему курс математической логики на механико-математическом факультете МГУ.

Нормальный алгоритм описывает метод переписывания строк, похожий по способу задания на формальные грамматики. НАМ является Тьюринг-полнымязыком, что делает его по выразительной силе эквивалентным машине Тьюринга и, следовательно, современным языкам программирования. На основе НАМ был создан функциональный язык программирования Рефал.

Нормальный алгоритм Маркова обычно понимают как некий упорядоченный набор продукций(замен подстрок). Продукции могут быть как и обыкновенными(выполняться столько раз, сколько это возможно) так и финальными(выполняются только 1 раз и после них работа алгоритма заканчивается). Продукции выполняются начиная с первой. Если первую выполнить нельзя -- делаем вторую итд. Если же после какой-либо продукции можно опять выполнить какую-то из предудущих -- выполняем. Работа алгоритма закнчивается тогда, когда нет следующей для выполнения продукции и все предыдущие нельзя выполнить или после выполнения какой-нибудь финальной продукции.

1. Нормальный алгоритм Маркова

Для формализации понятия алгоритма российский математик А.А. Марков предложил использовать ассоциативные исчисления.

Рассмотрим некоторые понятия ассоциативного исчисления. Пусть имеется алфавит (конечный набор различных символов). Составляющие его символы будем называть буквами. Любая конечная последовательность букв алфавита (линейный их ряд) называется словом в этом алфавите.

Рассмотрим два слова N и М в некотором алфавите А. Если N является частью М, то говорят, что N входит в М.

Зададим в некотором алфавите конечную систему подстановок

N - М, S - Т,...,

где N, М, S, Т,... - слова в этом алфавите. Любую подстановку N-M можно применить к некоторому слову К следующим способом: если в К имеется одно или несколько вхождений слова N, то любое из них может быть заменено словом М, и, наоборот, если имеется вхождение М, то его можно заменить словом N.

Например, в алфавите А = {а, b, с} имеются слова N = ab, М = bcb, К = abcbcbab, Заменив в слове К слово N на М, получим bcbcbcbab или abcbcbbcb, и, наоборот, заменив М на N, получим aabcbab или аbсаbаb.

Подстановка ab - bcb недопустима к слову bacb, так как ни ab, ни bcb не входит в это слово. К полученным с помощью допустимых подстановок словам можно снова применить допустимые подстановки и т.д. Совокупность всех слов в данном алфавите вместе с системой допустимых подстановок называют ассоциативным исчислением. Чтобы задать ассоциативное исчисление, достаточно задать алфавит и систему подстановок.

Слова P1 и Р2 в некотором ассоциативном исчислении называются смежными, если одно из них может быть преобразовано в другое однократным применением допустимой подстановки.

Последовательность слов Р, P1, Р2,..., М называется дедуктивной цепочкой, ведущей от слова Р к слову М, если каждое из двух рядом стоящих слов этой цепочки - смежное.

Слова Р и М называют эквивалентными, если существует цепочка от Р к М и обратно.

Пример:

Алфавит Подстановки

{а, b, с, d, е} ас - сa,

ad - da; eca - ae

bc - cb; eda - be

bd - db; edb - be

Слова abcde и acbde - смежные (подстановка bc - cb). Слова abcde - cadbe эквивалентны.

Может быть рассмотрен специальный вид ассоциативного исчисления, в котором подстановки являются ориентированными: N > М (стрелка означает, что подстановку разрешается производить лишь слева направо). Для каждого ассоциативного исчисления существует задача: для любых двух слов определить, являются ли они эквивалентными или нет.

Любой процесс вывода формул, математические выкладки и преобразования также являются дедуктивными цепочками в некотором ассоциативном исчислении. Построение ассоциативных исчислений является универсальным методом детерминированной переработки информации и позволяет формализовать понятие алгоритма.

Введем понятие алгоритма на основе ассоциативного исчисления: алгоритмом в алфавите А называется понятное точное предписание, определяющее процесс над словами из А и допускающее любое слово в качестве исходного. Алгоритм в алфавите А задается в виде системы допустимых подстановок, дополненной точным предписанием о том, в каком порядке нужно применять допустимые подстановки и когда наступает остановка.

Пример:

Алфавит: Система подстановок В:

А = {а, b, с} cb - cc

сса - аb

ab - bса

Предписание о применении подстановок: в произвольном слове Р надо сделать возможные подстановки, заменив левую часть подстановок на правую; повторить процесс с вновь полученным словом.

Так, применяя систему подстановок В из рассмотренного примера к словам babaac и bсaсаbс получаем:

babaac > bbcaaac > остановка

bcacabc > bcacbcac > bcacccac > bсасаbс > бесконечные процесс (остановки нет), так как мы получили исходное слово.

Предложенный А.А. Марковым способ уточнения понятия алгоритма основан на понятии нормального алгоритма, который определяется следующим образом. Пусть задан алфавит А и система подстановок В. Для произвольного слова Р подстановки из В подбираются в том же порядке, в каком они следуют в В..Если подходящей подстановки нет, то процесс останавливается. В противном случае берется первая из подходящих подстановок и производится замена ее правой частью первого вхождения ее левой части в Р. Затем все действия повторяются для получившегося слова P1. Если применяется последняя подстановка из системы В, процесс останавливается.

Такой набор предписаний вместе с алфавитом А и набором подстановок В определяют нормальный алгоритм. Процесс останавливается только в двух случаях: 1) когда подходящая подстановка не найдена; 2) когда применена последняя подстановка из их набора. Различные нормальные алгоритмы отличаются друг от друга алфавитами и системами подстановок.

Приведем пример нормального алгоритма, описывающего сложение -натуральных чисел (представленных наборами единиц).

Пример:

Алфавит: Система подстановок В:

А = (+, 1) 1 + > + 1

+ 1 > 1

1 > 1

Слово Р: 11+11+111

Последовательная переработка слова Р с помощью нормального алгоритма Маркова проходит через следующие этапы:

Р = 11 + 11 + 111 Р5 = + 1 + 111111

Р1 = 1 + 111 + 111 Р6 = ++ 1111111

Р2 = + 1111 + 111 Р7 = + 1111111

Р3 = + 111 + 1111 Р8 = 1111111

Р4 = + 11 + 11111 Р9 = 1111111

Заключение

Нормальный алгоритм Маркова можно рассматривать как универсальную форму задания любого алгоритма. Универсальность нормальных алгоритмов декларируется принципом нормализации: для любого алгоритма в произвольном конечном алфавите А можно построить эквивалентный ему нормальный алгоритм над алфавитом А,

Разъясним последнее утверждение. В некоторых случаях не удается построить нормальный алгоритм, эквивалентный данному в алфавите А, если использовать в подстановках алгоритма только буквы этого алфавита. Однако, можно построить требуемый нормальный алгоритм, производя расширение алфавита А (добавляя к нему некоторое число новых букв). В этом случае говорят, что построенный алгоритм является алгоритмом над алфавитом А, хотя он будет применяться лишь к словам в исходном алфавите A. алгоритм марков ассоциативный исчисление

Если алгоритм N задан в некотором расширении алфавита А, то говорят, что N есть нормальный алгоритм над алфавитом А.

Условимся называть тот или иной алгоритм нормализуемым, если можно построить эквивалентный ему нормальный алгоритм, и ненормализуемым в противном случае. Принцип нормализации теперь может быть высказан в видоизмененной форме: все алгоритмы нормализуемы.

Данный принцип не может быть строго доказан, поскольку понятие произвольного алгоритма не является строго определенным и основывается на том, что все Известные в настоящее время алгоритмы являются нормализуемыми, а способы композиции алгоритмов, позволяющие строить новые алгоритмы из уже известных, не выводят за пределы класса нормализуемых алгоритмов. Ниже перечислены способы композиции нормальных алгоритмов.

I. Суперпозиция алгоритмов. При суперпозиции двух алгоритмов А и В выходное слово первого алгоритма рассматривается как входное слово второго алгоритма В. Результат суперпозиции С может быть представлен в виде С(р) = В(А(р)),

II. Объединение алгоритмов. Объединением алгоритмов А и В в одном и том же алфавите называется алгоритм С в том же алфавите, преобразующий любое слово р, содержащееся в пересечении областей определения алгоритмов А и В, в записанные рядом слова А(р) и В(р).

III. Разветвление алгоритмов. Разветвление алгоритмов представляет собой композицию D трех алгоритмов А, В и С, причем область определения алгоритма D является пересечением областей определения всех трех алгоритмов А, В и С, а для любого слова р из этого пересечения D(p) = А(р), если С(р) = е, D(p) = B(p), если С(р) = е, где е - пустая строка.

IV. Итерация алгоритмов. Итерация (повторение) представляет собой такую композицию С двух алгоритмов А и В, что для любого входного слова р соответствующее слово С(р) получается в результате последовательного многократного применения алгоритма А до тех пор, пока не получится слово, преобразуемое алгоритмом В.

Нормальные алгоритмы Маркова являются не только средством теоретических построений, но и основой специализированного языка программирования, применяемого как язык символьных преобразований при разработке систем искусственного интеллекта. Это один из немногих языков, разработанных в России и получивших известность во всем мире.

Существует строгое доказательство того, что по возможностям преобразования нормальные алгоритмы Маркова эквивалентны машинам Тьюринга.

Список использованной литературы

1. А.Ахо, Дж.Хопкрофт, Дж.Ульман. Построение и анализ вычислительных алгоритмов. / М., Мир, 1979г., 536С.

2. Аляев Ю., Козлов О. Алгоритмизация и языки программирования Pascal, C++, VisualBasic. - М.: Финансы и статистика, 2003.

3. Голицына О.Л., Попов И.И. Основы алгоритмизации и программирования: Учебное пособие.- М.: Форум: Инфра-М, 2004.

4. Игошин В.И. Математическая логика и теория алгоритмов: Учебное пособие для студентов учреждений высшего профессионального образования.- М.: Издательский центр «Академия», 2008.

5. Крупский В.Н., Плиско В.Е. Теория алгоритмов: Учебное пособие.- М.: Издательский центр «Академия», 2005.

6. Семакин И.Г., Шестаков А.П. Основы программирования: Учебник. - М.: Мастерство, 2001

7. Успенский, В. А.; Семенов, А. Л. Теория алгоритмов: математические основы, 3 -е изд. - М.: Наука, 2005.

Размещено на Allbest.ru

...

Подобные документы

  • Основные понятия теории марковских цепей. Теория о предельных вероятностях. Области применения цепей Маркова. Управляемые цепи Маркова. Выбор стратегии. Оптимальная стратегия является марковской - может зависеть еще и от момента времени принятия решения.

    реферат [75,6 K], добавлен 08.03.2004

  • Цепь Маркова как простой случай последовательности случайных событий, области ее применения. Теорема о предельных вероятностях в цепи Маркова, формула равенства Маркова. Примеры для типичной и однородной цепи Маркова, для нахождения матрицы перехода.

    курсовая работа [126,8 K], добавлен 20.04.2011

  • Нове уточнення поняття алгоритму вітчизняним математиком Марковим: 7 уточнених ним параметрів. Побудова алгоритмів з алгоритмів. Універсальний набір дій по управлінню обчислювальним процесом. Нормальні алгоритми Маркова. Правило розміщення результату.

    реферат [48,7 K], добавлен 30.03.2009

  • Доказательство существования или отсутствия алгоритма для решения поставленной задачи. Определение алгоритмической неразрешимости задачи. Понятия суперпозиции функций и рекурсивных функций. Анализ схемы примитивной рекурсии и операции минимизации.

    курсовая работа [79,5 K], добавлен 12.07.2015

  • Цепи Маркова как обобщение схемы Бернулли, описание последовательности случайных событий с конечным или счётным бесконечным числом исходов; свойство цепей, их актуальность в информатике; применение: определение авторства текста, использование PageRank.

    дипломная работа [348,5 K], добавлен 19.05.2011

  • Остовное дерево связного неориентированного графа. Алгоритм создания остовного дерева, его нахождение. Сущность и главные особенности алгоритма Крускала. Порядок построения алгоритма Прима, вершина наименьшего веса. Промежуточная структура данных.

    презентация [140,8 K], добавлен 16.09.2013

  • Основные понятия теории марковских цепей, их использование в теории массового обслуживания для расчета распределения вероятностей числа занятых приборов в системе. Методика решения задачи о наилучшем выборе. Понятие возвратных и невозвратных состояний.

    курсовая работа [107,2 K], добавлен 06.11.2011

  • Потоки в сетях, структура и принципы формирования алгоритма Форда-Фалкерсона, особенности его реализации программным методом. Минимальные остовные деревья. Алгоритм Борувки: понятие и назначение, сферы и специфика практического использования, реализация.

    курсовая работа [311,3 K], добавлен 15.06.2015

  • Минимальное остовное дерево связного взвешенного графа и его нахождение с помощью алгоритмов. Описание алгоритма Краскала, возможность строить дерево одновременно для нескольких компонент связности. Пример работы алгоритма Краскала, код программы.

    курсовая работа [192,5 K], добавлен 27.03.2011

  • Основные определения математической логики, булевы и эквивалентные функции. Общие понятия булевой алгебры. Алгебра Жегалкина: высказывания и предикаты. Определение формальной теории. Элементы теории алгоритмов, рекурсивные функции, машина Тьюринга.

    курс лекций [651,0 K], добавлен 08.08.2011

  • Механизмы реализации эвристических алгоритмов муравьиной колонии. Основная идея - использование механизма положительной обратной связи, помогающего найти наилучшее приближенное решение в сложных задачах оптимизации. Области применения алгоритма муравья.

    реферат [361,6 K], добавлен 07.05.2009

  • Основные понятия теории графов. Матричные способы задания графов. Выбор алгоритма Форда–Бэллмана для решения задачи поиска минимальных путей (маршрутов) в любую достижимую вершину нагруженного орграфа. Способы выделения пути с наименьшим числом дуг.

    курсовая работа [109,1 K], добавлен 22.01.2016

  • Понятие генетического алгоритма и механизм минимизации функции многих переменных. Построение графика функции и ее оптимизация. Исследование зависимости решения от вида функции отбора родителей для кроссинговера и мутации потомков, анализ результатов.

    контрольная работа [404,7 K], добавлен 04.05.2015

  • Методы решения задачи коммивояжера. Математическая модель задачи коммивояжера. Алгоритм Литтла для нахождения минимального гамильтонова контура для графа с n вершинами. Решение задачи коммивояжера с помощью алгоритма Крускала и "деревянного" алгоритма.

    курсовая работа [118,7 K], добавлен 30.04.2011

  • Теоретические основы метода отсечения, его назначение и функции в решении задач целочисленного линейного программирования. Сущность и практическая реализация первого и второго алгоритма Гомори. Применение алгоритма Дальтона, Ллевелина и Данцига.

    курсовая работа [208,1 K], добавлен 12.10.2009

  • Понятия и определения орграфа и неориентированного графа, методы решения. Неориентированные и ориентированные деревья. Подробное описание алгоритмов нахождения кратчайших путей в графе: мультиграф, псевдограф. Матрица достижимостей и контрдостижимостей.

    курсовая работа [251,0 K], добавлен 16.01.2012

  • Форма для ввода целевой функции и ограничений. Характеристика симплекс-метода. Процесс решения задачи линейного программирования. Математическое описание алгоритма симплекс-метода. Решение задачи ручным способом. Описание схемы алгоритма программы.

    контрольная работа [66,3 K], добавлен 06.04.2012

  • Изучение основных вопросов теории графов и области ее применения на практике. Разработка алгоритма кластеризации по предельному расстоянию и построение минимального остовного дерева каждого кластера. Результаты тестирований работы данного алгоритма.

    курсовая работа [362,9 K], добавлен 24.11.2010

  • Основные понятия теории графов. Содержание метода Дейкстры нахождения расстояния от источника до всех остальных вершин в графе с неотрицательными весами дуг. Программная реализация исследуемого алгоритма. Построение матриц смежности и инцидентности.

    курсовая работа [228,5 K], добавлен 30.01.2012

  • Выбор основного алгоритма решения задачи. Требования к функциональным характеристикам программы. Минимальные требования к составу и параметрам технических средств и к информационной и программной совместимости. Логические модели, блок-схемы алгоритмов.

    курсовая работа [13,1 K], добавлен 16.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.