Сущность метода координат в пространстве

Метод координат как один из главных способов определения положения точки и тела с помощью чисел или других символов. Базис пространства - любая упорядоченная тройка некомпланарных векторов. Основные условия существования декартовой системы координат.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 24.05.2017
Размер файла 504,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Введение

Данная тема актуальна на сегодняшний момент для любого выпускника средней школы так как:

- позволяет многие экзаменационные геометрические задачи решать аналитически, что требует меньшего объема знаний по геометрии и значительно сокращает время выполнения;

- данный метод лежит в основе аналитической геометрии, которая изучается в курсе высшей математики.

Цель работы: систематизировать знания по данной теме и рассмотреть применение данного метода при решении различных стереометрических задач.

Для достижения цели были поставлены следующие задачи:

- изучить теоретический материал по теме;

- систематизировать и обобщить изученный материал;

- выявить особенности применения метода;

- рассмотреть применение метода координат к решению стереометрических задач;

- сравнить применение метода координат с другими методами к решению стереометрических задач.

1. Метод координат: история развития.

Метод координат - это способ определять положение точки или тела с помощью чисел или других символов.

Числа, с помощью которых определяется положение точки, называют координатами точки.

Хорошо известные нам географические координаты определяют положение точки на поверхности Земли - каждая точка на земной поверхности имеет две координаты: широту и долготу.

Чтобы определить положение точки в пространстве, нужны три числа. Например, чтобы определить положение спутника, можно указать высоту его над поверхностью Земли, а также широту и долготу точки, над которой он находится.

С помощью метода координат можно изложить почти весь курс школьной геометрии без единого чертежа, используя только числа и алгебраические операции. Например, окружность можно определить как совокупность точек, удовлетворяющих уравнению: , а прямую линию как совокупность точек удовлетворяющих уравнению: . Таким образом, с помощью данного метода удалось связать между собой, казалось бы, совершенно разные науки алгебру и геометрию. Данное установление связи было, по существу, революцией в математике. Оно восстановило математику как единую науку.

Создателем метода координат считают французского философа и математика Рене Декарта (1596-1650), который в последней части большого философского трактата Декарта, вышедшего в 1637 году, дал описание метода координат и его применение к решению геометрических задач.

Развитие идей Декарта привело к возникновению особой ветви математики, которую теперь называют аналитической геометрией.

Само это название выражает основную идею теории. Аналитическая геометрия - это та часть математики, которая решает геометрические задачи аналитически (т.е. алгебраическими) средствами.

Наряду с Декартом основоположником аналитической геометрии является замечательный французский математик П.Ферма. С помощью метода координат Ферма изучил прямые линии и кривые второго порядка. Изучение аналитической геометрии в пространстве трех измерений существенно продвинул в XVIII веке А.Клеро. Явно и последовательно аналитическую геометрию на плоскости и в трехмерном пространстве изложил Л.Эйлер в 1748 г. в учебнике «Введение в анализ бесконечных».

В XIX веке был сделан еще один шаг в развитии геометрии - изучены многомерные пространства. Основной идеей для творцов теории была аналогия с «Геометрией» Декарта. У него точка на плоскости - это пара чисел , точка в трехмерном пространстве - тройка чисел ; в новой теории точка четырехмерного пространства - это четверка чисел . У Декарта - уравнение окружности на плоскости, - уравнение поверхности шара в трехмерном пространстве; в новой теории поверхность сферы в четырехмерном пространстве. Аналогичным образом в n-мерной геометрии рассматриваются плоскости, прямые, расстояния между точками, углы между прямыми и т.д.

Идеи многомерной геометрии прочно вошли в математику в конце XIX века, а в самом начале XX века, они нашли применение в специальной теории относительности, где к трем пространственным координатам добавляется четвертая - время. Таким образом, идеи геометрии Декарта, развитые учеными последующих поколений, лежат в основе современной науки.

2. Координаты точки в пространстве

Говорят, что задана прямоугольная (декартовая) система координат, если через точку пространства проведены три попарно перпендикулярные прямые, на каждой из них выбрано направление и выбрана единица измерения отрезков. Плоскости, проходящие соответственно через оси координат и , и , и , называются координатными плоскостями и обозначаются , ,.

координата базис некомпланарный декартовый

Рис. 1

Координатами точки в пространстве называются координаты проекций этой точки на координатные оси.

Координаты точек: , , , , , , .

В пространстве, кроме координатных осей, удобно рассматривать еще координатные плоскости, т.е. плоскости, проходящие через две какие-либо оси. Таких плоскостей три:

Рис. 2

Плоскость (проходящая через оси и )- множество точек вида, где и - любые числа;

Плоскость (проходящая через оси и )- множество точек вида , где и - любые числа;

Плоскость (проходящая через оси и )- множество точек вида , где и - любые числа.

Для любой точки М пространства можно найти три числа , которые будут служить ее координатами.

Рис. 3

Чтобы найти первое число , проведем через точку М плоскость, параллельную координатной плоскость (перпендикулярную к оси x). Точка пересечения этой плоскости с осью (точка М1) имеет на этой оси координату . Это число - координата точки М1 на оси - называется абсциссой точки М.

Рис. 4

Чтобы найти вторую координату, через точку М проводят плоскость параллельную плоскости (перпендикулярную к оси y), находят на оси y точку М2. Число y - координата точки М2 на оси y - называется ординатой точки М.

Третью координату точки М найдем, проведя аналогичные построения, но перпендикулярно оси z. Полученное число z назовем аппликатой точки М.

Рис. 5

3. Задание фигур в пространстве

Также как на плоскости, координаты в пространстве дают возможность задавать с помощью чисел и числовых соотношений не только точки, но и линии, поверхности и другие множества точек. Посмотрим, например, какое множество точек получится, если задать только две координаты, а третью считать произвольной.

Ш Условие , где и - заданные числа

Рис. 6

(например, ), задают в пространстве прямую, параллельную оси .

Все точки такой прямой имеют одну и ту же абсциссу и одну ординату. Координата может принимать любые значения.

Ш Точно также условия , где b и c заданные числа, определяют прямую, параллельную оси .

Рис. 7

Ш Условия, где a и c заданные числа, задают прямую, параллельную оси .

Рис. 8

Ш Если задать только одну координату, например : это плоскость, параллельная координатной плоскости (т.е. плоскости, проходящей через ось и ось ) и отстоящая от нее на расстояние 1 в направлении положительной полуоси .

Рис. 9

Ш Рассмотрим еще несколько примеров, показывающих как можно задать в пространстве различные множества с помощью уравнений и других соотношений между координатами.

1) Рассмотрим уравнение .

Поскольку расстояние точки от начала координат задается выражением , то ясно, что в переводе на геометрический язык соотношение означает, что точка с координатами , находится на расстоянии R от начала координат. Значит, множеством всех точек, для которых выполняется соотношение , является поверхность шара - сфера с центром в начале координат и радиусом R.

2) Рассмотрим, где расположены точки, координаты которых удовлетворяют соотношению .

Так как это соотношение означает, что расстояние точки от начала координат меньше единицы, то искомое множество - это множество точек, лежащих внутри шара с центром в начале координат и радиусом, равным единице.

4. Разложение вектора по координатным векторам. Координаты вектора

Базисом пространства называется любая упорядоченная тройка некомпланарных векторов , , , обозначаемая символом .

Частным случаем является прямоугольный ортонормированный базис , где - единичный вектор оси абсцисс, через - единичный вектор оси ординат и через - единичный вектор оси аппликат, т.е. , , , .

Этот базис и начало отсчета О определяют прямоугольную декартову систему координат в пространстве.

Рис. 10

Любой вектор пространства можно разложить по координатным векторам, т.е. представить в виде:

,

причем коэффициенты разложения определяются единственным образом.

Рис. 11

Числа называются координатами вектора , т.е. . Так как нулевой вектор можно представить в виде , то все координаты нулевого вектора равны нулю, .

Заключение

При выполнении работы была поставлена цель: систематизировать знания по данной теме и рассмотреть применение данного метода при решении различных стереометрических задач.

Считаю, что поставленная цель была достигнута.

Ш Теоретический материал по теме был рассмотрен не только в рамках школьной программы, было введено понятие нормали.

Ш Изученный теоретический материал был систематизирован.

Ш При использовании метода к решению задач были выявлены особенности применения метода:

• умение правильного введения системы координат,

• правильное определения координат точек,

• знание аналитического аппарата метода.

Ш Было рассмотрено применение метода как к решению различных

Список литературы

1. Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев, Л.С. Киселева, Э.Г. Позняк. Геометрия, 10-11. М., Просвещение, 2003.

2. В.Н. Литвиненко. Практикум по элементарной математике. Стереометрия: Учебное пособие. - М.: Вербум - М, 2000.

3. И.М. Гельфанд, Е.Г. Глаголева, А.А. Кириллов. Метод координат. - М.: Наука, 1968.

4. С.Г. Григорьев. Векторная алгебра и аналитическая геометрия. Учебное пособие по высшей математике. - М.: Информационно-внедренческий центр «Маркетинг», 2000.

5. И. Иванова, З. Ильченкова. Применение координатного вектора к решению стереометрических задач. // Математика, 2007, №2.

Размещено на Allbest.ru

...

Подобные документы

  • Определение положения точки в пространстве. Правая декартова (или прямоугольная) система координат. Способы измерения дуг. Определение координат точки в пространстве. Определение окружности и ее радиуса. Построение сферической системы координат.

    контрольная работа [59,3 K], добавлен 13.05.2009

  • Основы тензорного анализа. Геометрический смысл и формула расчета коэффициентов Ламе. Взаимный базис; полярная, цилиндрическая и сферическая системы координат. Рассмотрение способов преобразования векторов при переходе к криволинейным координатам.

    курсовая работа [4,0 M], добавлен 06.11.2013

  • Краткая историческая сводка о системе координат. Криволинейные, полярные и сферические системы координат. Рене Декарт - французский философ, физик и математик. Декартова прямоугольная система координат (на плоскости и в трёхмерном пространстве).

    презентация [640,7 K], добавлен 29.06.2010

  • Вычисление скалярного и векторного произведений векторов, заданных в прямоугольной декартовой системе координат. Расчет длины ребра пирамиды по координатам ее вершин. Поиск координат симметричной точки. Определение типа линии, описываемой уравнением.

    контрольная работа [892,1 K], добавлен 12.05.2016

  • Метод координат как глубокий и мощный аппарат. Основные особенности декартовых координат на прямой, на плоскости и в пространстве. Понятие вектора как направленного отрезка. Рассмотрение координат вектора и важнейших в аналитической геометрии вопросов.

    курсовая работа [573,7 K], добавлен 27.08.2012

  • Вектор в декартовой системе координат как упорядоченная пара точек (начало вектора и его конец). Линейные операции с векторами. Базис на плоскости и в пространстве. Свойства скалярного произведения. Кривые второго порядка. Каноническое уравнение параболы.

    учебное пособие [312,2 K], добавлен 09.03.2009

  • Поняття полярної системи координат, особливості завдання координат точки у ній. Формули переходу від декартової до полярної системи координат. Запис рівняння заданої кривої в декартовій системі координат з використанням вказаної формули переходу.

    контрольная работа [2,4 M], добавлен 01.04.2012

  • Знакомство с примерами возникновения свободных колебаний. Поиск геометрической интерпретации главных координат. Анализ основных формул для нахождения нормальных координат. Поиск коэффициентов распределения, колебание координат на собственной частоте.

    курсовая работа [366,2 K], добавлен 11.07.2012

  • Полярная система координат. Построение линий в полярной системе координат с помощью математического пакета MathCAD. Уравнение в полярных координатах логарифмической спирали. Полярное уравнение архимедовой спирали. Координаты, применяемые в математике.

    научная работа [3,2 M], добавлен 18.01.2011

  • Выражение для градиентов в криволинейной системе координат. Коэффициенты Ламе в цилиндрической системе координат. Дивергенция векторного поля. Выражение для ротора в криволинейной ортогональной системе координат. Выражение для оператора Лапласа.

    контрольная работа [82,8 K], добавлен 21.03.2014

  • Истоки, понятие аналитической геометрии. Метод координат на плоскости. Аффинная и Декартова система координат на плоскости, прямая и окружность. Аналитическое задание геометрических фигур. Применение аналитического метода к решению планиметрических задач.

    курсовая работа [1,2 M], добавлен 12.05.2009

  • Метод координат. Основные задачи аналитической геометрии на прямой и на плоскости. Основные линии второго порядка. Алгебраическая и геометрическая интерпретация векторов. Уравнение поверхности и уравнение линии в пространстве. Общее уравнение плоскости.

    учебное пособие [687,5 K], добавлен 04.05.2011

  • Понятие числовой прямой. Типы числовых промежутков. Определение координатами положения точки на прямой, на плоскости, в пространстве, система координат. Единицы измерения для осей. Определение расстояния между двумя точками плоскости и в пространстве.

    реферат [123,9 K], добавлен 19.01.2012

  • Специфика декартовых координат и способ их использования при вычислении двойного интеграла, сведенного к повторному интегрированию. Примеры решения задач и особенности определения тройного интеграла в системе цилиндрических и сферических координат.

    презентация [69,7 K], добавлен 17.09.2013

  • Определение точки пересечения высот треугольника и координат вектора. Сущность базиса системы векторов и его доказательство. Определение производных функций, исследование ее и построение графика. Неопределенные интегралы и их проверка дифференцированием.

    контрольная работа [168,7 K], добавлен 26.01.2010

  • Схема и разность векторов. Умножение вектора на число. Координаты точки и вектора. Компланарные векторы и прямоугольная система координат. Длина, скалярное произведение, его свойства и угол между векторами. Переместительный и сочетательный законы.

    творческая работа [481,5 K], добавлен 23.06.2009

  • Особенности изложения школьного курса по математике по теме "Многоуголная система координат". Способы нахождения точки, которые лежат на оси абсцисс. Построение треугольника по трем точкам. Как найти координаты точек пересечения сторон треугольника.

    презентация [442,0 K], добавлен 21.04.2011

  • Вимоги до ставлення цілей викладання геометрії в загальноосвітній школі. Суть методу координат на площині та його основні задачі стосовно геометричних місць точок. Афінна система координат. Елементи використання на практиці важливих точок трикутника.

    дипломная работа [1,4 M], добавлен 04.08.2013

  • Введение рассматриваемых систем координат и их положение. Расположение магниторезистивных датчиков на осях. Расчёт проекции горизонтальной составляющей вектора напряженности магнитного поля. Обоснование необходимости использования акселерометра.

    контрольная работа [68,2 K], добавлен 23.09.2011

  • Определение алгебраической линии на плоскости. Теорема о независимости порядка линии от выбора аффиной системы координат. Классификация алгебраической линии. Понятие алгебраической линии на плоскости и окружности как составляющих метода координат.

    курсовая работа [197,3 K], добавлен 29.09.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.