Роль задач неопределенного анализа в формировании исследовательских умений учащихся

Решение неопределенных уравнений только в целых числах. Применение в современной математике направления, занимающегося исследованиями диофантовых уравнений, поиском способов их решений. Изобретение Ферма, его интерес к поиску целочисленных решений.

Рубрика Математика
Вид статья
Язык русский
Дата добавления 12.04.2019
Размер файла 47,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

РОЛЬ ЗАДАЧ НЕОПРЕДЕЛЕННОГО АНАЛИЗА В ФОРМИРОВАНИИ ИССЛЕДОВАТЕЛЬСКИХ УМЕНИЙ УЧАЩИХСЯ

Минибаева М.Н. (науч. рук. ? Дорофеев А.В.)

Стерлитамакский филиал «Башкирский государственный университет»

Стерлитамак, Республика Башкортостан

Задачи неопределенного анализа или задачи Диофантовой «Арифметики» решаются с помощью уравнений, проблемы решения уравнений скорее относятся к алгебре, чем к арифметике. Почему же тогда мы говорим, что эти уравнения относятся к арифметическим? Дело в том, что эти задачи имеют специфические особенности.

Во-первых, они сводятся к уравнениям или к системам уравнений с целыми коэффициентами. Как правило, эти системы неопределённые, т.е. число уравнений в них меньше числа неизвестных.

Во-вторых, решения требуется найти только целые, часто натуральные.

Для выделения таких решений из всего бесконечного их множества приходится пользоваться свойствами целых чисел, а это уже относится к области арифметики. Дадим определение диофантовым уравнениям.

Диофантовы уравнения-алгебраические уравнения или системы алгебраических уравнений с целыми коэффициентами, для которых надо найти целые или рациональные решения. При этом число неизвестных в уравнениях больше числа уравнений. Ни один крупный математик не прошёл мимо теории диофантовых уравнений.

Современной постановкой диофантовых задач мы обязаны Ферма. Именно он поставил перед европейскими математиками вопрос о решении неопределённых уравнений только в целых числах. Надо сказать, что это не было изобретением Ферма - он только возродил интерес к поиску целочисленных решений. А вообще задачи, допускающие только целые решения, были распространены во многих странах в очень далёкие от нас времена. В нынешней математике существует целое направление, занимающееся исследованиями диофантовых уравнений, поиском способов их решений. Называется оно диофантовым анализом и диофантовой геометрией, поскольку использует геометрические способы доказательств.

Наиболее изучены задачи неопределенного анализа (диофантовы уравнения) первой и второй степени. Рассмотрим сначала уравнения первой степени. Так как решение линейного уравнения с одним неизвестным не представляет интереса, то обратимся к уравнениям с двумя неизвестными. Мы рассмотрим два метода решения этих уравнений.

Первый способ решения таких уравнений - алгоритм Евклида. Можно найти наибольший делитель натуральных чисел a и b, не раскладывая эти числа на простые множители, применяя процесс деления с остатком. Для этого надо разделить большее из этих чисел на меньшее, потом меньшее из чисел на остаток при первом делении, затем остаток при первом делении на остаток при втором делении и вести этот процесс до тех пор, пока не произойдёт деление без остатка. Последний отличный от нуля остаток и есть искомый НОД(a,b). Чтобы доказать это утверждение, представим описанный процесс в виде следующей цепочки равенств:

уравнение число математика диофантовый

если a>b,то а=bq0+r1, b=r1q1+r2 r1=r2q2+r3 (1)

rn-1=rnqn.

Здесь r1,….,rn-положительные остатки, убывающие с возрастанием номера.

Из первого равенства следует, что общий делитель чисел a и b делит r1 и общий дилитель b и r1 делит а, поэтому НОД (a,b) = НОД (r1,r2)=….= НОД (rn1, rn) = НОД (rn,0)= rn. Обратимся снова к системе (1). Из первого равенства, выразив остаток r1 чирез а и b, получим r1=а- bq0. Подставляя его во второе равенство, найдём r2=b(1+q0q1)-aq1. Продолжая этот процесс дальше, мы сможем выразить все остатки через а и b, в том числе и последний rn=Аа+Вb. В результате нами доказано предложение: если d-наибольший общий делитель натуральных чисел а и b, то найдутся такие целые числа А и В, что d= Аа+Вb. Заметим, что коэффициенты А и В имеют разные знаки; если НОД(a,b)=1, то Аа+Вb=1. Как найти числа А и В видно из алгоритма Евклида. Перейдём теперь к решению линейного уравнения с двумя неизвестными. Оно имеет вид:

аx+by=c. (2)

Возможны два случая: либо c делится на d= НОД(a,b), либо нет. В первом случае можно разделить обе части на d и свести задачу к решению в целых числах уравнения a1x+b1y=c1, коэффициенты которого а1=а/d и b1=b/d взаимно просты. Во втором случае уравнение не имеет целочисленных решений: при любых целых x и y число аx+by делится на d и поэтому не может равняется числу с, которое на d не делится. Итак, мы можем ограничиться случаем, когда в уравнении (2) коэффициенты взаимно просты. На основании предыдущего предложения найдутся такие целые числа x0 и y0, что ax0+by0=1, откуда пара (сx0,cy0) удовлетворяет уравнению (2) Вместе с ней уравнению (2) удовлетворяет бесконечное множество пар (x,y) целых чисел, которые можно найти по формулам

x=cx0+bt,y=cy0-at. (3)

Здесь t-любое целое число. Нетрудно показать, что других целочисленных решений нет уравнение ax+by=c не имеет. Решение, записанное в виде (3), называется общим решением уравнения (2). Подставив вместо t конкретное целое число, получим его частное решение. Найдём, например, целочисленные решения уже встречавшегося нам уравнения 2x+5y=17. Применив к числам 2 и 5 алгоритм Евклида, получим 2*3-5=1.

Значит пара cx0=3*17, cy0=-1*17 удовлетворяет уравнению 2x+5y=17. Поэтому общее решение исходного уравнения таково x=51+5t, y=-17-2t, где t принимает любые целые значения. Очевидно, неотрицательные решения отвечают тем t, для которых выполняются неравенства

Отсюда найдем -51 ?t? -17. Этим неравенствам удовлетворяют числа - 10, -9, 52.

Соответствующие частные решения запишутся в виде пар (1,3), (6,1).

Применим этот же метод к решению одной из древних китайских задач о птицах.

Задача: Сколько можно купить на 100 монет петухов, кур и цыплят, если всего надо купить 100 птиц, причем петух стоит 5 монет, курица - 4, а 4 цыпленка - 1 монету?

Для решения этой задачи обозначим искомое число петухов через х, кур - через y, а цыплят через 4z (из условия видно, что число цыплят должно делится на 4). Составим систему уравнений:

которую надо решить в целых неотрицательных числах. Умножив первое уравнение системы на 4, а второе -- на (-1) и сложив результаты, придем к уравнению -х+15z=300 с целочисленными решениями х= -300+ 15t, z = t. Подставляя эти значения в первое уравнение, получим y = 400 - 19t. Значит, целочисленные решения системы имеют вид х= -300+15t, y = 400-19t, z = t. Из условия задачи вытекает, что

откуда 20?t?21 1/19, т.е. t = 20 или t = 21. Итак, на 100 монет можно купить 20 кур и 80 цыплят, или 15 петухов, 1 курицу и 84 цыпленка Второй метод решения диофантовых уравнений первой степени по своей сути не слишком отличается от рассмотренного в предыдущем пункте, но он связан с ещё одним интересным математическим понятием. Речь идёт о непрерывных или цепных дробях. Чтобы определить их вновь обратимся к алгоритму Евклида. Из первого равенства системы (1) вытекает, что дробь а/b можно записать в виде суммы целой части и правильной дроби: a/b=q0+r1/b. Но r1/b=1/b, и на основании второго равенства той же системы имеем b/r1=q1+r2/r1. Значит, a/b=q0+1/q1+r2/r1. Далее получим a/b=q0+1/q1+1/q2+r3/r2. Продолжим этот процесс до тех пор, пока не придём к знаменателю qn. В результате мы представим обыкновенную дробь a/b в следующем виде: a/b=q0+1/q1+1/q2+…+1/qn. Эйлер назвал дроби такого вида непрерывными. Приблизительно в то же время в Германии появился другой термин- цепная дробь. Так за этими дробями и сохранились оба названия. В качестве примера представим дробь 40/3t в виде цепной:

40/3t=1+9/3t=1/3t/9=1+1/3+4/9=1+1/3+1/9/4=1+1/3+1/2+1/4.

Цепные дроби обладают следующим важным свойством: если действительное число а записать в виде непрерывной дроби, то подходящая дробь Pk/Qk даёт наилучшее приближение числа a среди всех дробей, знаменатели которых не превосходят Qk. Именно в процессе поиска наилучшего приближения значений квадратных корней итальянский математик Пиетро Антонио Катальди (1552-1626) пришёл в 1623 году к цепным дробям, с чего и началось изучение. Их свойства не связаны ни с какой системой исчисления, по этой причине цепные дроби эффективно используются в теоретических исследованиях. Но широкого практического применения они не получили, так как для них нет удобных правил выполнения арифметических действий, которые имеются для десятичных дробей.

Рассмотрим Диофантовы уравнения и решим их.

1. Решить в целых числах уравнение 3x+5y=7.

Решение.

Имеем x=7-5y/3=6-3y-2y+1/3=2-y+1-2y/3,

1-2y=3k,

y=1-3k/2=1-2k-k/2=-k+1-k/2,

1-k=2t, k=1-2t, y=1-3(1-2t)/2=-1+3t, x=7-5(-1+3t)/3=4-5t (t-любое число).

2. Решить в целых числах уравнение 6xІ+5yІ=74.

6xІ-24=50-5yІ, или 6(xІ-4)=5(10-yІ), откуда xІ-4=5u,т.е. 4+5u?0, откуда u?-4/5.

Аналогично:

10-yІ=6u, т.е. 10-6u?0, u?5/3.

Целое число u удовлетворяет неравенству

-4/5?u?5/3, значит. u=0 и u=1.

При u=0, получим 10=yІ, где y-не целое, что неверно. Пусть u=1, тогда xІ=9, yІ=4.

Ответ: x1=3, x2=3, x3=-3, x4=-3, y1=2, y2=-2, y3=2, y4=-2.

3. Решить в целых числах уравнение xі+yі-3xy=2.

Решение.

Если x и y оба нечётны или одно из них нечётно, то левая часть уравнения есть нечётное число, а правая-чётное. Если же x=2m и y=2n, то 8mі+8nі-12mn=2, т.е. 2(2mі+2nі-3mn)=1, что невозможно ни при каких целых m и n.

4. Доказать, что уравнение 2xІ+5yІ=7 не имеет решений в целых числах.

Доказательство.

Из уравнения видно, что y должен быть нечётным числом. Положив y=2z+1, получим 2xІ-20zІ-20z-5=7, или xІ-10zІ-10z=6, откуда следует что x есть чётное число. Положим x=2u. Тогда 2uІ-5z(z=1)=3, что невозможно, так как z(z+1) есть чётное число.

5. Доказать, что при любом целом положительном значении а уравнение

xІ+yІ=аі разрешимо в целых числах.

Доказательство.

Положим x+y=аІ, x-y=а, откуда x=a(a+1)/2 и y=a(a-1)/2. Поскольку при любом целом значении а в числителе каждой из данных дробей стоит произведение чётного и нечётного чисел, определённые таким образом x и y представляют сорбой целые числа и удовлетворяют исходному уравнению.

6. Решите в целых числах уравнение (x+1)(xІ+10)=yі.

Решение.

Непосредственно видим, что пары чисел (0;1) и (-1;0) являются решениями уравнения. Других решений нет, так как xі<(x+1)(xІ+1)<(x+1)(x+1)І=(x+1) і, то (x+1)(xІ+1)?yі ни для какого целого y (располагающегося между кубами последовательных целых чисел).

Исследование - один из видов познавательной деятельности человека, предполагающий установление, обнаружение, понимание действительности, получение новых знаний.

Проблема - это затруднение, сложный вопрос, задача, требующие разрешения, т.е. действий, направленных в первую очередь на исследование всего, что связано с данной проблемной ситуацией.

Умение видеть проблемы, поиск проблемы - интегральное свойство мышления. Развивается оно в течение длительного времени в самых разных видах деятельности.

Приведенные примеры задач и другие задачи неопределенного анализа могут помочь учителю математики в формировании исследовательских умений учащихся.

Библиографический список

1. Н.Я. Виленкин, Л.П. Шибасов, З.Ф. Шибасова «За страницами учебника математики», М.: Просвещение, 1996. -- 320 с.

2. Математическая энциклопедия: Для школьников, абитуриентов, преподавателей школ, лицеев, колледжей и вузов / И.А. Кушнир. - Киев: Астарта, 1995. - 767 с.

Размещено на Allbest.ru

...

Подобные документы

  • Проблема решения уравнений в целых числах: от Диофанта до доказательства теоремы Ферма. Сущность теоремы о делимости данного числа на произведение двух взаимно простых чисел, особенности ее применения к решению неопределенных уравнений в целых числах.

    курсовая работа [108,5 K], добавлен 10.03.2014

  • Подход к решению уравнений. Формулы разности степеней. Понижение формы члена уравнения. Компьютерный поиск данных чисел. Система Диофантовых уравнений. Значения натурального ряда. Уравнения с нечётным числом членов решений в натуральных числах.

    доклад [166,1 K], добавлен 26.04.2009

  • Доказательство великой теоремы Ферма для n=3 методами элементарной алгебры с использованием метода решения параметрических уравнений. Диофантово уравнение, решение в целых числах, отсутствие решения в целых положительных числах при показателе степени n=3.

    творческая работа [23,8 K], добавлен 17.10.2009

  • Решение уравнения теоремы Пифагора в целых числах. Доказательство теоремы Ферма в целых положительных числах при четных показателях степени. Применение методов решения параметрических уравнений и замены переменных. Доказательство теоремы Пифагора.

    доклад [26,6 K], добавлен 17.10.2009

  • Диофант и история диофантовых уравнений. О числе решений линейных диофантовых уравнений (ЛДУ). Нахождение решений для некоторых частных случаев ЛДУ. ЛДУ c одной неизвестной и с двумя неизвестными. Произвольные ЛДУ.

    курсовая работа [108,7 K], добавлен 13.06.2007

  • Культ античной Греции. Вопросы элементарной геометрии. Книга Диофанта "Арифметика". Решение неопределенных уравнений, диофантовых уравнений высоких степеней. Составление системы уравнений. Нахождение корней квадратного уравнения, метод Крамера.

    реферат [49,0 K], добавлен 18.01.2011

  • Понятие Диофантовых уравнений, их сущность и особенности, методика и этапы решения. Великая теорема Ферма и порядок ее доказательства. Алгоритм решения иррациональных уравнений. Метод поиска Пифагоровых троек. особенности решения уравнения Каталана.

    учебное пособие [330,2 K], добавлен 23.04.2009

  • Характеристика уравнений с разделяющимися переменными. Сущность метода Бернулли и метода Лагранжа, задачи Коша. Решение линейных уравнений n-го порядка. Фундаментальная система решений - набор линейно независимых решений однородной системы уравнений.

    контрольная работа [355,9 K], добавлен 28.02.2011

  • Исследование доказательства теоремы Ферма в общем виде. Показано, что кроме уравнения второй степени уравнения Ферма не содержат других решений в целых числах. Предложено к рассмотрению 4 метода доказательства теоремы при целых x, y.

    статья [20,8 K], добавлен 29.08.2004

  • Метод исследования Диофантовых уравнений и решенные этим методом: теорема Ферма, уравнение Пелля, эллиптических кривых, иррациональные корни уравнения, поиск Пифагоровых троек, уравнение Каталана, гипотезы Билля. Закон распределения простых чисел.

    доклад [323,1 K], добавлен 01.05.2009

  • Теория решения диофантовых уравнений. Однородные уравнения. Общие линейные уравнения. Единственности разложения натурального числа на простые множители. Решение каждой конкретной задачи в целых числах с помощью разных методов. Основные неизвестные х и у.

    материалы конференции [554,8 K], добавлен 13.03.2009

  • Доказательство гипотезы Биля методами элементарной алгебры: сочетание методов решения параметрических уравнений и замены переменных (теорема Ферма). Ее формулировка в виде неопределенного уравнения, которое не имеет решения в целых положительных числах.

    творческая работа [32,7 K], добавлен 29.05.2009

  • Понятие и характерные признаки равносильных уравнений, требования к множеству их решений. Теорема о равносильности уравнений и порядок ее доказательства, значение в современной математике. Порядок и основные этапы нахождения корней уравнения-следствия.

    презентация [15,1 K], добавлен 17.03.2011

  • Понятие и содержание равносильных уравнений, факторы их оценивания. Теорема о равносильности уравнений и ее доказательство. Причины и пути приобретения посторонних корней при разрешении данных уравнений. Нахождение и сравнение множества решений.

    презентация [16,0 K], добавлен 26.01.2011

  • Решение систем уравнений методом Гаусса, с помощью формул Крамера. Построение пространства решений однородной системы трех линейных уравнений с четырьмя неизвестными с указанием базиса. Определение размерности пространства решений неоднородной системы.

    контрольная работа [193,5 K], добавлен 28.03.2014

  • Представление великой теоремы Ферма как диофантового уравнения. Использование для ее доказательства метода замены переменных. Невозможность решения теоремы в целых положительных числах. Необходимые условия и значения чисел для решения, анализ уравнений.

    статья [35,2 K], добавлен 21.05.2009

  • Интервал сходимости степенного ряда, исследование его сходимости на концах этого интервала. Решение дифференциальных уравнений и частных решений, удовлетворяющих начальному условию. Нахождение неопределенных интегралов методом замены переменных.

    контрольная работа [72,2 K], добавлен 08.04.2013

  • Оригинальный метод доказательства теоремы Ферма. Использование бинома Ньютона для решения диофантового уравнения. Решение теоремы Ферма при нечетных показателях степени n, при целых положительных и натуральных числах. Преобразование уравнения Ферма.

    статья [16,4 K], добавлен 17.10.2009

  • Доказательство утверждения "Уравнение al+bq=cq (где l и q больше или равно 3) не имеет решений в отличных от нуля попарно взаимно простых целых числах a, b и c таких, чтобы a - было четным, b и c - нечетными целыми числами". Частный случай теоремы Ферма.

    творческая работа [856,3 K], добавлен 08.08.2010

  • Решение дифференциальных уравнений. Численный метод для заданной последовательности аргументов. Метод Эйлера относиться к численным методам, дающим решение в виде таблицы приближенных значений искомой функции. Применение шаговых методов решения Коши.

    дипломная работа [1,2 M], добавлен 16.12.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.