главнаяреклама на сайтезаработоксотрудничество Библиотека Revolution
 
 
Сколько стоит заказать работу?   Искать с помощью Google и Яндекса
 



Обучение решению задач на проценты в курсе алгебры основной школы

Теоритические основы изучения процентов в курсе алгебры основной школы. Понятие процента, основные задачи на проценты. Методические основы изучения процентов по учебному комплекту под редакцией г.в. дорофеева.

Рубрика: Педагогика
Вид: дипломная работа
Язык: русский
Дата добавления: 08.08.2007
Размер файла: 155,8 K

Полная информация о работе Полная информация о работе
Скачать работу можно здесь Скачать работу можно здесь

рекомендуем


Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже.

Название работы:
E-mail (не обязательно):
Ваше имя или ник:
Файл:


Cтуденты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны

Подобные работы


1. Развитие функциональной линии в курсе алгебры 7-9 классов (на примере учебников по алгебре под ред. Г.В. Дорофеева)
Теоретические основы изучения функциональной линии в курсе алгебры основной школы. Подходы к изучению понятия "функция". Функциональная пропедевтика. Методические рекомендации по изучению функциональной линии по учебникам.
дипломная работа [3,1 M], добавлена 08.08.2007

2. Преобразование графиков функций в курсе алгебры основной школы
Психолого-педагогические основы обучения математике в школе. Физиологические особенности подростков, особенности развития их личности и познавательной сферы. Двуполушарный подход в обучении - средство развития мышления. Работа с графиками в курсе алгебры.
дипломная работа [927,2 K], добавлена 05.11.2011

3. Изучение метода координат в курсе геометрии основной школы
Теоретические основы использования метода координат в основной школе. Суть метода координат. Методические основы изучения метода координат. Этапы решения задач методом координат. Задачи, обучающие координатному методу.
дипломная работа [1,1 M], добавлена 08.08.2007

4. Основные принципы построения методики изучения стохастической линии в курсе математики основной школы
Методика изучения вероятностно-статистической (стохастической) линии в курсе математики основной школы. Анализ восприятия материала учащимися: степень заинтересованности; уровень доступности; трудности при изучении этого материала; качество усвоения.
дипломная работа [121,3 K], добавлена 28.05.2008

5. Методика изучения алгебраических функций в восьмилетней школе
Предпосылки развития функциональной содержательно-методической линии в курсе алгебры основной школы. Определение понятия функции. Методика изучения прямой и обратной пропорциональной зависимости, линейной, квадратной и кубической функции в VII классе.
курсовая работа [626,2 K], добавлена 08.02.2011

6. Методические особенности изучения квадратного трехчлена на уроках алгебры в 7-9 классах
Понятие квадратного трехчлена и квадратичной функции, их место в школьном курсе алгебры. Определение порядка раскрытия темы по решению квадратных уравнений и неравенств на уроках математики. Разработка методики по изучению квадратного трехчлена в школе.
дипломная работа [1,6 M], добавлена 18.07.2013

7. Методика обучения решению задач с параметрами на уроках алгебры основной школы
Особенности развития учащихся среднего школьного возраста. Роль математики в формировании и развитии интелектуальных качеств личности. Содержание "линии задач с параметрами" в программе математики средней школы на примере учебников А.Г. Мордковича.
дипломная работа [46,8 K], добавлена 25.04.2011

8. Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах
Психолого-педагогические основы изучения интеграла в школьном курсе математики. Анализ школьных учебников алгебры и начал анализа. Физические модели при изучении темы "Интеграл". Изучение свойств определенного интеграла с помощью физических моделей.
дипломная работа [140,2 K], добавлена 28.05.2008

9. Методика изучения геометрических величин в курсе геометрии средней школы
История возникновения и развития геометрических величин. Роль и место величин в процессе обучения. Методика изучения длин, величин углов, площадей и объемов фигур в курсе геометрии средней школы. Разработка тестов и заданий для самостоятельной работы.
курсовая работа [93,5 K], добавлена 25.11.2010

10. Методика обучения теме "Теорема Безу" в школьном курсе алгебры
Принципы технологии академика Монахова. Дидактические принципы организации обучения алгебре и характеристика возрастных особенностей подростков. Методические особенности изучения теоремы Безу: авторская программа, методические рекомендации и банк задач.
дипломная работа [909,4 K], добавлена 20.10.2011


Другие документы, подобные Обучение решению задач на проценты в курсе алгебры основной школы


2

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РОССИЙСКОЙ ФЕДЕРАЦИИ

ВЯТСКИЙ ГОСУДАРСТВЕННЫЙ ГУМАНИТАРНЫЙ УНИВЕРСИТЕТ

Математический факультет

Кафедра математического анализа и методики преподавания математики

Выпускная квалификационная работа

ОБУЧЕНИЕ РЕШЕНИЮ ЗАДАЧ НА ПРОЦЕНТЫ

В КУРСЕ АЛГЕБРЫ ОСНОВНОЙ ШКОЛЫ

(по учебному комплекту под редакцией Г.В. Дорофеева)

Выполнила студентка V курса математического факультета Киселёва Е.Н.

/ подпись/

Научный руководитель

к.п.н., доцент Крутихина М.В.

/ подпись/

Рецензент

к.п.н., доцент Ситникова И.В.

/ подпись/

Допущена к защите в ГАК

Зав. кафедрой Крутихина М.В.

« » 2004 г.

Декан факультета Варанкина В.И.

« » 2004 г.

КИРОВ

2004

Содержание

  • ВВЕДЕНИЕ..............................................................................................................3
  • Глава I. ТЕОРИТИЧЕСКИЕ ОСНОВЫ ИЗУЧЕНИЯ ПРОЦЕНТОВ В КУРСЕ АЛГЕБРЫ ОСНОВНОЙ ШКОЛЫ. 5
    • § 1. Особенности учебного комплекта по математике под редакцией Г.В. Дорофеева. 5
    • § 2. Понятие процента, основные задачи на проценты. 8
    • § 3. Изучение темы «Проценты» в современной школе 12
  • Глава II. МЕТОДИЧЕСКИЕ ОСНОВЫ ИЗУЧЕНИЯ ПРОЦЕНТОВ ПО УЧЕБНОМУ КОМПЛЕКТУ ПОД РЕДАКЦИЕЙ Г.В. ДОРОФЕЕВА. 21
    • § 1. Методические рекомендации изложения темы «Проценты » по учебному комплекту под редакцией Г.В. Дорофеева для V - IX классов. 21
    • § 2. Методические рекомендации для проведения урока «Простые проценты» по учебнику «Математика. Алгебра. Функции. Анализ данных» 9 кл. под редакцией Г.В. Дорофеева. 34
    • § 3. Методические рекомендации к проведению факультатива «Задачи на проценты» в IX классе. 39
    • § 4. Опытное преподавание 46
  • ЗАКЛЮЧЕНИЕ. 48
  • СПИСОК ЛИТЕРАРУРЫ 49

ВВЕДЕНИЕ

В настоящее время уделяется большое внимание школьному образованию как первой ступени образовательного процесса. Одна из важнейших его задач - обеспечить учащимся глубокие и прочные знания, а также умение рационально применять их в учебной и практической деятельности.

Большое практическое значение имеет умение решать задачи на проценты, потому что понятие процента широко используется как в реальной жизни, так и в различных областях науки.

В школьном курсе эта тема изучается в V - VI классе, но в силу возрастных особенностей школьников не может быть полностью освоена. Далее этому вопросу не уделяется значительного внимания. Задачи на проценты становятся прерогативой химии, которая внедряет свой взгляд на проценты, а в математике их место только в рамках задач на повторение и задач повышенной трудности. Таким образом, учениками забываются проблемы универсальности процентов и разнообразия сфер их применения. В связи с этим является актуальным вопрос о том, чтобы задачи на проценты заняли достойное место в VII - IX классах. В этот период школьники изучают различные виды уравнений и их систем, закрепление которых ведется на текстовых задачах, а присутствие процентов в содержании текстовых задач дает возможность связать абстрактные математические понятия с реальной жизнью.

Такая тенденция прослеживается в учебном комплекте по математике под ред. Г.В. Дорофеева. В VI классе авторы комплекта уделяют внимание формированию понятия процента, а в VII - IX классах рассматривают основные задачи на проценты и различные способы их решения. Причем следует отметить большое разнообразие задач. Но для такого богатого материала не имеется четкой методики изучения, так как комплект еще «молодой» и особенно в школах не распространен.

Поэтому цель данной работы состоит в разработке методических рекомендаций по изучению темы «Проценты» по учебникам [20], [15], [18],[17], [16].

Объектом исследования является обучение математике в V - IX классов.

Предмет исследования - обучение решению задач на проценты в курсе алгебры VII - IX классов.

В данной работе выдвинута следующая гипотеза: Обучение решению задач на проценты будет более эффективным, если:

1. Формирование понятия процента начать в V - VI классе.

2. Рассматривать различные типы задач на проценты в течение всего курса алгебры VII - IX класса.

3. Использовать символическую наглядность, как при формировании понятия процента, так и при изучении основных типов задач.

Задачи данной работы:

1. Выявить особенности учебного комплекта по математике под ред. Г.В. Дорофеева.

2. Провести анализ содержания данного комплекта с точки зрения изложения темы «Проценты».

3. Разработать методические рекомендации по изучению темы «Проценты».

4. Осуществить опытное преподавание.

Для достижения поставленных целей, проверки гипотезы и решения сформулированных выше задач были использованы следующие методы исследования:

1. Изучение учебно-методической и математической литературы.

2. Анализ школьных учебников.

3. Опытное преподавание.

4. Наблюдение во время проведения занятий с учащимися.

Глава I. ТЕОРИТИЧЕСКИЕ ОСНОВЫ ИЗУЧЕНИЯ ПРОЦЕНТОВ В КУРСЕ АЛГЕБРЫ ОСНОВНОЙ ШКОЛЫ.

§ 1. Особенности учебного комплекта по математике под редакцией Г.В. Дорофеева.

В учебный комплект по математике под редакцией Г.В. Дорофеева Г.В. Дорофеев - заведующий отделом математического образования Института общего и среднего образования Российской академии наук, профессор, родоначальник литературы для абитуриентов. входят учебники [20], [15], [18],[17], [16]. Это комплект нового поколения. В нем учтены результаты опыта преподавания математики последних десятилетий, а также отражены современные методические и педагогические тенденции. Содержание комплекта полностью соответствует современным образовательным стандартам. Он рекомендован Министерством общего и профессионального образования Российской Федерации для преподавания математики в средней школе.

Основные идеи этого курса - это общекультурная ориентация содержания, интеллектуальное развитие учащихся средствами математики на материале, отвечающем интересам и возможностям детей. Одним из главных отличий данного комплекта является то, что большое внимание уделяется арифметике, формированию вычислительной культуры в ее современном понимании. Это прикидка, оценка и проверка результатов действий. Сделан упор на обучение арифметическим, логическим приемам решения текстовых задач.

В учебниках комплекта принята следующая система подачи материала. Теоретический материал каждой главы разбит на пункты, которые завершаются перечнем упражнений. Предложенные упражнения имеют два уровня сложности: первый ориентирован на базовый уровень обучения, второй содержит развивающие задания. В конце главы выделен пункт «Для тех, кому интересно», в которых предлагается материал, не предусмотренный школьной программой, но предлагаемый на школьных олимпиадах. Это позволяет сделать знания учащихся более прочными, пробудить интерес к математике. Это уравнения с параметрами, делимость натуральных чисел, примеры использования комбинаторного правила умножения и другие вопросы математики. Для более успешного усвоения материала в каждую главу включены вопросы для повторения и задачи для самопроверки. К каждому учебнику разработан набор справочно-методической литературы (рабочие тетради, сборники дидактических материалов), облегчающих работу, как учителю, так и ученику.

Рабочая тетрадь применяется преимущественно на начальных этапах изучения темы. Туда включены задания, которые позволяют организовать разнообразную практическую деятельность (вычеркнуть, дорисовать, закрасить). Это освобождает детей от работы непринципиального характера, позволяет увеличить объем учебной работы и сосредоточить внимание на главном.

Дидактические материалы содержат дополнительный набор упражнений по арифметике, алгебре, анализу данных, организованных в виде самостоятельной работы с заданиями разного уровня сложности. Материал может быть использован на различных этапах изучения темы и для различных групп учащихся. В конце сборника помещены материалы для внеклассной работы.

Учебники [20], [15] заложили одну из первых «сквозных» линий, которую через все классы проводит один авторский коллектив (далее он несколько изменяется, но руководство Г.В. Дорофеева остается неизменным; последние учебники этой линии для X - XI класса еще ожидаются). Наличие «сквозной» авторской линии дает некоторые преимущества в плане сохранения авторских подходов и преемственности между блоками классов. В данных учебниках принят естественный порядок изучения дробей: сначала обыкновенные, потом десятичные. Вопрос о знаке числа изучается сначала на целых числах, что методически и педагогически правильнее. Особенно выделяется наглядно-деятельностная геометрия. Есть линия «Анализ данных». Не смотря на то, что арифметическая линия не завершена по сравнению с традиционно принятым объемом содержания, изучаемого в V - VI классах, это не препятствует обучению в рамках той же авторской линии.

Учебники [18], [17], [16] являются непосредственным продолжением комплекта [20], [15]. В них получают дальнейшее развитие арифметическая, алгебраическая и вероятностно-статистическая линии курса. Некоторый материал, изучавшийся раньше в V - VI классах перенесен в следующие классы. В рамках одной линии учебников такой подход не нарушает целостности изучения материала. В содержание курса алгебры VII - IX классов включен блок арифметических вопросов. Уделено внимание дальнейшему развитию вычислительной культуры школьников, обучению различным приемам выполнения действий с дробями, в том числе с использованием калькулятора, вычислению процентов и вероятностно-статистических характеристик. В VII классе рассмотрены также практически значимые вопросы об отношении, пропорции, прямой и обратной пропорциональности. В VIII классе уделено внимание формированию вычислительных умений извлечения квадратного корня и отработке его простейших свойств. Отработка этих умений проводится на арифметических выражениях без использования символики. После этого в качестве обобщения авторы предлагают алгебраический подход к понятию корня. При изучении прогрессий в IX классе сделан акцент на их практическое применение, поэтому для изучения предложена тема «Простые и сложные проценты».

Отбор учебного материала и выбор методических подходов в учебниках осуществляется с учетом возможностей и особенностей детей данного возраста, что способствует более глубокому и осмысленному пониманию данных вопросов. В связи с этим авторы курса переносят рассмотрение некоторых тем на более поздние сроки. Это позволяет изучить практически значимый и интересный для детей материал, который позволяет говорить о математике, как о части общечеловеческой культуры.

В настоящее время в школе не распространен подход целостного изучения математики V - IX классов, поэтому этот комплект можно назвать комплектом нового поколения.

§ 2. Понятие процента, основные задачи на проценты.

Слово «процент» происходит от латинского pro centum, что буквально означает «на сотню», «со ста» или «за сотню». В популярной литературе возникновение этого термина связывается с внедрением в Европе десятичной системы счисления в XV в. Но идея выражения частей целого постоянно в одних и тех же величинах, вызванная практическими соображениями, родилась еще в древности у вавилонян. Ряд задач клинописных табличек посвящен исчислению процентов, однако вавилонские ростовщики считали не «со ста», а «с шестидесяти». Проценты были особенно распространены в Древнем Риме. Римляне называли процентами деньги, которые платил должник заимодавцу за каждую сотню.

По-видимому, процент возник в Европе вместе с ростовщичеством. Есть мнение, что понятие процент ввел бельгийский ученый Симон Стевин. В 1584 г. он опубликовал таблицы процентов. Употребление термина «процент» в России начинается в конце XVIII в. Долгое время под процентами понималось исключительно прибыль или убыток на каждые 100 рублей. Они применялись только в торговых и денежных сделках. Затем область их применения расширилась, проценты встречаются в хозяйственных и финансовых расчетах, статистике, науке и технике.

Интересно происхождение обозначения процента. Существует версия, что знак % происходит от итальянского pro cento (сто), которое в процентных расчетах часто сокращенно писалось cto. Отсюда путем дальнейшего сокращения в скорописи буква t превратилась в наклонную черту (/), возник современный знак процента (см. схему 1).

2

Схема 1

Также есть предположение, что знак % возник в результате опечатки. В Париже в 1685 г. была напечатана книга - руководство по коммерческой арифметике, где по ошибке наборщик напечатал знак %.

Сейчас проценты употребляются для сравнения однородных положительных количеств. Один процент - это по определению одна сотая: 1%=. Соответственно, p%=. Один процент от количества А - это, по определению, одна сотая часть количества А:

1% от А равен А .Соответственно, p% от А равен А.

Все задачи на проценты можно разделить на две основные группы.

Первая группа задач относится к той ситуации, когда даны количество А и некоторый процент p. Требуется найти количество, которое этот процент выражает.

Вопрос К1. Каково количество, составляющее p% от А?

Формула ответа: А.

Обсуждение решения: нужно обсудить, что принимается за базу в 100% .

Пример:

В городе N состоялись выборы в городскую думу, в которых приняли участие 75% избирателей. Только 10% от числа принявших участие в выборах отдали свои голоса партии «зеленых». Сколько жителей проголосовали за эту партию, если всего в городе 1 миллион избирателей?

Решение. Здесь нужно дважды применить формулу ответа на вопрос К1. По условию, в выборах приняли участие чел. От них 10% - это .

Ответ: 75000.

Вопрос К2. Каково количество, p% от которого есть А?

Формула ответа: А.

Обсуждение. Вопросы К1 и К2 родственны. Пусть искомое количество (в данном случае стопроцентная база) есть x. Тогда мы находимся в ситуации вопроса К1: А=x. Отсюда получаем формулу ответа на вопрос К2. Можно воспользоваться другим способом рассуждения при ответе на вопрос К2: если на А приходится p%, то один процент от неизвестного количества есть , соответственно неизвестное количество есть 100.

Пример:

При помоле пшеницы получается 80% муки. Сколько пшеницы нужно смолоть, чтобы получить 480 кг пшеничной муки?

Решение:

По формуле К2 искомое количество пшеницы есть 480=600 кг

Ответ: 600 кг.

Вопрос К3. Каково количество, большее чем А, на p%?

Формула ответа: А.

Обсуждение. В данном случае стопроцентная база - это А. Разница между неизвестным количеством и базой по условию составляет p%, что по формуле ответа на вопрос К1 дает А. В результате искомое количество есть А+А=А.

Вопрос К4. Каково количество, меньшее чем А, на p%?

Формула ответа: А.

Обсуждение. Аналогично предыдущему случаю. Если ответ на данный вопрос приводит к отрицательному числу, то искомое количество считают несуществующим, а сам вопрос некорректным.

Вторая группа задач освещает обратную операцию - вычисление процентов по известным количествам.

Вопрос П1. Сколько процентов составляет А от В?

Формула ответа: %.

Обсуждение. Нужно обратить внимание на то, что является стопроцентной базой (в данном случае - это В).

Пример:

В одном городе Канады 70% жителей знают французский язык и 80% - английский язык. Сколько процентов жителей этого города знают оба языка (если учесть, что каждый житель города знает хотя бы один из двух языков)?

Алгебраическое решение: Пусть x жителей знают только английский, y - только французский, z - оба языка. Тогда можно дважды применить формулу, соответствующую вопросу П1.

Сложив оба эти равенства, получим

1+

Ответ: 50%.

Геометрическое решение. Разместим всех жителей города на отрезке так, что знающие английский язык стоят на отрезке слева, а знающие французский - справа. Если этот отрезок - 100%, то общая часть этих множеств есть отрезок [30%,80%] «протяженностью» в 50% (см. рис 1.).

Рис 1.

Вопрос П2. На сколько процентов А больше чем В?

Формула ответа: %.

Обсуждение. Как и при обсуждении вопроса П1 нужно определить стопроцентную базу (в данном случае - это В).

Вопрос П3. На сколько процентов А меньше, чем В?

Формула ответа: %.

Обсуждение. Конструкция ответа аналогична предыдущему случаю.

Следует отметить, что решение данной группы задач можно проводить как алгебраическим, так и геометрическим способом.

Таким образом, можно сказать, что задачи на проценты очень разнообразны, а понятие процента используется в различных областях науки и практики.

§ 3. Изучение темы «Проценты» в современной школе.

Понятие процента имеет широкое практическое применение, поэтому оно является обязательной частью школьной программы по математике. Школьники должны научится решать основные задачи на проценты, представлять их в виде десятичных и обыкновенных дробей.

Традиционно тема «Проценты» изучается в рамках младших классов среднего звена. Можно выделить несколько подходов к изучению данной темы.

Первый подход. Рассмотрение процентов ведется как отдельная тема, без опоры на дроби. Нахождение нескольких процентов от числа осуществляется в два действия. Изучение дробей ведется отдельной темой, гораздо позже задач на проценты. Таким образом, обучение идет от частного к общему, что менее эффективно и дает меньше возможностей для развития обучаемого.

Второй подход. Задачи на проценты осваиваются как частный случай задач на дроби и все приемы решения переносятся на них, то есть изучение идет от общего случая - задач на дроби, к частному. В большинстве современных учебников реализован второй подход.

Рассмотрим более подробно изучение данной темы в некоторых современных учебниках, рекомендованных Министерством Образования России на 2003/2004 учебный год для преподавания математики в основной школе.

По учебникам [19], [21] тема «Проценты» изучается в V классе. Перед введением понятия «процент» автор предлагает рассмотреть примеры:

«Сотую часть центнера называют килограммом, сотую часть метра - сантиметром, сотую часть гектара - акром. Принято называть сотую часть любой величины процентом».

Рассматриваются три основные задачи на проценты:

Задача вида К1.

Пример 1: Бригада рабочих за день отремонтировала 40% дороги, имеющей длину 120 м. Сколько метров дороги было отремонтировано бригадой за день?

Решение:

120 м составляет 100%

1) 120:100 =1,2 м составляет 1%.

2) м отремонтировано бригадой за день.

Ответ: За день бригада отремонтировала 48 м дороги.

Задача вида К2.

Пример 2: Ученик прочитал 72 страницы, что составляет 30% числа всех страниц книги. Сколько страниц в книге?

Решение:

Неизвестное число - 100%.

1) 72:30=2,4 страницы составляет 1%.

2) страниц составляет 100%.

Ответ: В книге 240 страниц.

Задача вида П1.

Пример 3: В классе из 40 учащихся 32 правильно решили задачу. Сколько процентов учащихся правильно решили задачу?

Решение:

40 учащихся составляют 100%.

1) 40:100=0,4 составляет 1%.

2) 32:0,4=80; 32 ученика составляют 80%.

Ответ: 80% учащихся правильно решили задачу.

Однако эти виды задач не выделяются, так как в качестве основного способа решения задач на проценты принят способ приведения к единице. Он обладает определенными преимуществами:

а) проще для выполнения вычислений;

б) приучает учащихся к выделению числа, принимаемого за 100%;

в) требует проведения в процессе решения конкретной задачи соответствующих рассуждений, которые не включают запоминания правил решения того или иного вида задач на проценты.

Учебник предполагает решать некоторые задачи на проценты с помощью уравнений. Эта рекомендация относится по существу к двум видам задач: нахождение числа по данному числу его процентов и нахождение процентного отношения двух чисел. Опыт преподавания математики в V классе показывает, что учащиеся сталкиваются с определенными трудностями в процессе решения задач на проценты, что связано в основном с недостаточной осознанностью учащимися способа приведения к единице. Поэтому отработка сущности этого способа в два действия имеет решающее значение в обучении решению задач на проценты, особенно на начальном этапе усвоения знаний. Задачи, рассмотренные в примерах 2 и 3, могут быть решены с помощью уравнений. В V классе решение задач с помощью уравнений вызывают у учащихся значительные трудности.

Эта тема является одной из последних в курсе V класса. Далее авторы специально к теме не возвращается. Это не очень удачно, так как тема объективно трудная.

Несколько другой подход к этой теме в учебниках [22] [23]. Изучение процентов начинается в конце V класса. Авторы определяют процент, как иное название одной сотой. «Мы знаем, что одна вторая иначе называется половиной, одна четвертая - четвертью, три четвертых - тремя четвертями. Особое название имеет и одна сотая: одна сотая называется процентом». Учащиеся рассматривают только два вида задач:

Задача вида К1.

Пример 4. В школе 800 учащихся, 15% из них за четверть получили пятерки по математике. Сколько учеников получили пятерки по математике?

Решение:

Найдем вначале один процент, или одну сотую, от числа учащихся.

800: 100=8.

Чтобы найти 15%, нужно выполнить умножение:

=120.

Ответ: 120 учеников получили пятерки.

Большое внимание уделяется связи дробей (десятичных и обыкновенных) и процентов.

Задача вида П1.

Пример 5. Сколько процентов от 1 м составляет 1см, 9 см, 0,15 м?

В VI классе авторы снова возвращаются к этой теме. Учащиеся повторяют материал, изученный в V классе, и рассматриваются новые задачи. При этом для каждого вида задач проводится аналогия с действиями над десятичными и обыкновенными дробями, формулируется правило:

Для задачи вида К1.

«1) выразить проценты обыкновенной или десятичной дробью;

2) умножить данное число на эту дробь»

А также для задачи вида К2.

«1) выразить проценты обыкновенной или десятичной дробью;

2) разделить данное число на эту дробь»

Пример 6. За контрольную работу по математике отметку «4» получили 9 учеников. Это составляет 36% от всех учащихся класса. Сколько учащихся в классе?

Решение:

Выразим проценты обыкновенной или десятичной дробью: 36%= =0,36.

Воспользуемся правилом нахождения числа по его дроби:

9:==25 или 9:0,36=25

Ответ: в классе было 25 учащихся.

Далее рассматривается задача вида П1.

Сначала учащиеся рассматривают выражение частного двух чисел в процентах: «чтобы выразить частное в процентах, нужно частное умножить на 100 и к полученному произведению приписать знак процента».

Только после этого они переходят к решению задачи П1.

«Для этого нужно

1) первое число разделить на вторе;

2) полученное частное выразить в процентах»

Пример 7. В классе 25 учащихся, из них 20 пионеров. Сколько процентов составляют пионеры?

Решение:

Для решения нужно частное выразить в процентах. =0,8=80%.

Ответ: пионеры составляют 80%.

В конце темы рассматривается задача вида П2 и П3.

«… чтобы узнать, на сколько процентов увеличилась или уменьшилась данная величина, необходимо найти:

1) на сколько единиц увеличилась или уменьшилась эта величина;

2) сколько процентов составляет полученная разность от первоначального значения величины»

Пример 8. До снижения цен холодильник стоил 250р., после снижения - 230 р. На сколько процентов снизилась стоимость холодильника?

Решение:

Узнаем, на сколько рублей изменилась цена холодильника: 250-230=20 р.

Найдем, сколько процентов составляет полученная разность от первоначальной стоимости холодильника: =0,08=8%

Ответ: стоимость холодильника понизилась на 8%.

Правила ограничивают учащихся, не дают им рассуждать над решением. Поэтому каждая задача на проценты становится алгоритмом и вызывает затруднения, если правило забыто. Решение задач в данном курсе арифметическое. Использование уравнений при решении начинается лишь в конце года только в сложных задачах. Следовательно, не каждый ученик сможет овладеть этим умением. Поэтому нужно включить задачи на проценты при изучении уравнений.

В учебниках [7], [8] понятие процента также изучается в конце V класса. Перед введением определения рассматриваются примеры употребления понятия «процент»:

«Всхожесть семян составляет 98 процентов; в выборах президента России приняли участие 65 процентов избирателей… ». Процент определяется как обозначение сотой доли. В V классе авторы рассматривают только два вида задач: задачи вида К1 и К2. Решение этих задач осуществляется арифметическим способом. Большое внимание уделяется вопросу, какую величину взять за 100%.

Далее тема «Проценты» изучается в VI классе. Здесь рассматриваются те же виды задач, но решение осуществляется уже алгебраическим способом (составление линейных уравнений). Авторы формулируют правила нахождения части от целого и целого по его части:

«1) чтобы найти часть от целого, надо целое (соответствующее ему число) умножить на дробь (соответствующее этой части);

2) чтобы найти целое по его части, надо часть (соответствующее этой части число) разделить на соответствующую ей дробь».

После этого тема не рассматривается.

Несколько другой подход в учебниках [2], [3]. Проценты начинают изучаться в начале VI класса. Вводится понятие процента как одной сотой части числа (величины). Рассматриваются задачи трех типов:

а) нахождение процентов от данного числа К1.

Сначала рассматривается нахождение 1% от данного числа. Затем - нахождение произвольного числа процентов.

б) нахождение числа по данному числу его процентов К2.

Также в первую очередь обсуждается, как найти число, 1% которого известен. Затем эта задача рассматривается для любого произвольного числа процентов.

в) нахождение процентного отношения двух чисел П1. Авторы формулируют правило «Чтобы отношение двух чисел выразить в процентах, можно это отношение умножить на 100»

Все три типа задач решаются сначала арифметическим способом, а затем их решают, на основе свойств пропорциональности.

Пример 9. Найти 8% от 35.

Решение: Пусть x - искомое число, тогда:

, x=

Ответ: 2

Рассматриваются также задачи, в которых нужно увеличить (уменьшить) число на некоторое число процентов К3 и К4. Проценты также используются при изучении диаграмм.

В середине учебного года авторы снова предлагают вернуться к понятию процента. Они хотят установить связь между десятичными дробями и процентами, вспоминают ранее изученный материал и предлагают более сложные задачи.

Пример 10.

Цену товара увеличили на 10%, затем еще на 10%. На сколько процентов увеличили цену товара за два раза?

Здесь же рассматриваются задачи на смеси и сплавы (этот параграф отмечен, как параграф повышенной трудности). Мне кажется, что задачи такого типа для шестиклассников сложны. Поэтому не каждый учитель захочет рассматривать такие сложные задачи со всем классом и очень важный пласт задач останется не рассмотренным. Но это очень важные задачи, которым следует уделить должное внимание, возможно, в старшем возрасте.

В этом комплекте также уделяется внимание работе с калькулятором при решении задач на проценты. Данному вопросу посвящен отдельный параграф и разработана система упражнений.

В старших классах тема проценты рассматривается в рамках задач на повторение и задач повышенной трудности. В старших классах операции с процентами становятся прерогативой химии, которая внедряет свой взгляд на проценты. Поэтому вопросы универсальности процентов и разнообразия сфер их применения постепенно забываются учащимися.

Покажем, как предлагается изучать этот материал в учебных комплектах по математике для V-VI класса под ред. Г.В.Дорофеева и И.Ф. Шарыгина и для VII - IX класса под ред. Г.В.Дорофеева.

Прежде всего, нужно отметить, что при изложении темы «Проценты» реализуются многие общие методические особенности, характерные для курса в целом. Тема разворачивается по спирали и изучается в несколько этапов с VI по IX класс включительно. При каждом проходе учащиеся возвращаются к процентам на новом уровне, их знания пополняются, добавляются новые типы задач и приемы решений. Такое многократное обращение к понятию приводит к тому, что постепенно оно усваивается прочно и осознанно. Появляется возможность включать задачи, которые сейчас в действующих учебниках не могут рассматриваться просто в силу возрастных особенностей школьников.

Вопросы, связанные с процентами, позволяют сделать курс ориентированным на практику, показать учащимся, что приобретаемые ими математические знания применяются в повседневной жизни. Интерес в значительной степени поддерживается также и содержанием задач, фабулы которых приближены к современной тематике и к жизненному опыту детей, а затем и подростков. Это служит достаточно сильным мотивом для решения предлагаемых задач.

Введение процентов опирается на предметно-практическую деятельность школьников, на геометрическую наглядность и геометрическое моделирование. Широко используются рисунки и чертежи, помогающие разобраться в задаче и увидеть путь решения.

Как и во всех основных разделах курса при изложении этой темы реализованы широкие возможности для дифференцированного обучения учащихся. Задачи предлагаются в широком диапазоне сложности - от базовых, до достаточно трудных. Учитель может подобрать материал, соответствующий возможностям каждого школьника.

При обучении решению задач на проценты учащиеся знакомятся с разными способами решения задач, причем множество приемов шире, чем это бывает обычно. Ученик овладевает разнообразными способами рассуждения, обогащая свой арсенал приемов и методов. Но при этом также важно, что он имеет возможность выбора и может пользоваться тем приемом, который ему кажется более удобным.

Глава II. МЕТОДИЧЕСКИЕ ОСНОВЫ ИЗУЧЕНИЯ ПРОЦЕНТОВ ПО УЧЕБНОМУ КОМПЛЕКТУ ПОД РЕДАКЦИЕЙ Г.В. ДОРОФЕЕВА.

§ 1. Методические рекомендации изложения темы «Проценты » по учебному комплекту под редакцией Г.В. Дорофеева для V - IX классов.

Впервые о процентах учащиеся узнают в VI классе. Проценты предлагается рассматривать дважды: в начале учебного года, т.е. еще до изучения десятичных дробей (при повторении и систематизации материала, связанного с обыкновенными дробями), а затем в середине учебного года после изучения десятичных дробей. «Что такое процент» - это первая тема, изучаемая линией. На данном этапе нужно сформировать понимание процента как специального способа выражения доли величины, выработать умение выражать процент соответствующей обыкновенной дробью. Процент определяется как одна сотая часть некоторой величины. Причем перед введением определения следует рассмотреть примеры употребления процентов.

Не стоит торопиться приступать к решению задач на нахождение процента от некоторой величины. Нужно дать учащимся возможность привыкнуть к введенному понятию, освоить фактически другую терминологию. Через систему упражнений учебника ребята учатся употреблению нового термина, «переводу» задач с языка долей и дробей на язык процентов и обратно. В результате еще до решения основных задач на проценты, учащиеся прочно овладевают достаточно большим набором фактов, которые помогают им в дальнейшем. Так, они усваивают некоторые «эквиваленты»: 25% величины - это данной величины; половина некоторой величины - это 50%; 30% величины втрое больше, чем 10% и т.п.

Ребята учатся сравнивать доли величины, заданные разными способами:

больше, чем 25%;

некоторой величины больше 50% этой величины;

23% меньше четверти; вся величина - это 100% и т.д.

Предлагаются упражнения, направленные на осознанное усвоение материала.

№ 99. [15] Для каждой фразы из левого столбца подберите соответствующую фразу в правом:

1. 100% учащихся школы а) половина всех учащихся школы

2. 25% учащихся школы б) все учащиеся школы

3. 10% учащихся школы в) четверть всех учащихся

4. 50% учащихся школы г) десятая часть всех учащихся.

№ 100. [15] Папа получил премию, 40% которой он потратил на подарок маме, 60% - на подарки детям. Все ли деньги потратил папа?

С самого начала освоения понятия учащимся рекомендуется давать больше заданий, в которых требуется заштриховать, закрасить, начертить, вырезать часть фигуры. Такого типа упражнения не встречаются в вышерассмотренных учебниках.

№ 98. [15] Какая часть прямоугольника заштрихована (см. рис. 2)? Выразите эту часть в процентах.

Рис. 2

Учащихся также нужно познакомить с формой неявного использования процентов, типичной для средств массовой информации.

№ 128. [15] Объясните, используя слово «процент», что означают следующие утверждения:

а) 10 москвичей из каждых 100 нуждаются в улучшении жилья;

б) 43 человека из каждых 100 доверяют гороскопам и постоянно читают их;

в) из каждых 100 новорожденных 52 - мальчики;

г) из каждых 100 жителей Брянска 25 имеют домашних животных.

Теперь, когда учащиеся достаточно свободно и осознанно владеют понятием процента, можно перейти к задаче на нахождение процентов некоторой величины. Методически целесообразно сначала находить один процент, а потом несколько процентов этой величины.

Что касается второго приема решения (путем умножения на обыкновенную дробь), то здесь он, конечно, рассматривается, но его обязательное усвоение следует отнести на более поздние сроки.

Для успешного усвоения материала можно предложить учащимся формулировки некоторых задач в развернутом виде, т.е. к рассматриваемому в условии сюжету поставлены не один, а несколько вопросов. Так привлекается их внимание к тому, какую информацию можно извлечь из ситуации с процентами.

№ 122. [15] В кассе профкома было 900 руб. На оплату проездных билетов израсходовали 80% этой суммы. Какие вопросы можно поставить к задаче? Ответьте на них.

№ 124. [15] Средняя зарплата в России в середине 1993 г. составляла 120000 р. К концу года она увеличилась на 50%.

1) На сколько рублей увеличилась средняя зарплата?

2) Какой стала зарплата к концу года?

Специальная серия задач посвящена трудному вопросу об увеличении на 200%, 300% и т.д. Так учащиеся постепенно подходят к пониманию того, что, например, увеличение на 100% - это то же самое, что увеличение в 2 раза и т.д.

№ 139. [15] В первом квартале 1995 г. квартплата в Москве в домах с лифтом была на 100% выше квартплаты в домах без лифта. Во сколько раз квартплата в домах с лифтом была выше квартплаты в домах без лифта?

К задаче приведен рисунок для того, чтобы ход решения был более понятным (см. рис. 3).

2

Рис. 3

В рамках этой темы учащиеся уже знакомятся с решением задачи вида К1, задачи на увеличение (уменьшение) величины на несколько процентов предлагаются в качестве производных задачи К1.

Второй этап в изучении процентов связывается с десятичными дробями. После изучения десятичных дробей и операций над ними нужно снова возвратится к понятию процента. Здесь предлагается два специальных пункта. В пункте «Главная задача на проценты» школьники учатся находить процент величины умножением на десятичную дробь. Прежде чем приступить к решению задач, нужно рассмотреть с учащимися правило и упражнения на перевод процентов в десятичную дробь.

«Чтобы выразить проценты десятичной дробью, нужно число, стоящее перед знаком %, разделить на 100 или, что то же самое, умножить на 0,01»

№ 596.[15] Выразить десятичной дробью:

а) 2,5%, 18,3%, 1,6%, 54,5%;

б) 0,1%, 0,5%, 0,3%, 0,7%;

в) 120%, 137%, 240%, 350%.

Предлагается рассмотреть разные способы решения той или иной задачи.

Пример 2. [15] Мужская рубашка стоила 8200 р. Сколько она стала стоить, когда ее цена увеличилась на 35%?

Так как 35% - это 0,35, то надо найти 0,35 от 8200 р.:

(р.) (на столько повысилась цена).

Теперь найдем новую цену:

8200+2870=11070 (р.).

Можно рассуждать иначе. Старая цена составляет 100%, а новая - на 35% больше, т.е. она составляет 135%. Так как 135% - это 135:100=1,35, то цена увеличилась в 1,35 раза.

Имеем: (р.).

Также учащиеся знакомятся с задачами типа К2. Но авторы рассматривают эти задачи в рамках упражнений группы Б (более сложных).

№ 606. [15] В первый час работы продавец продал 40 кг яблок. Это составило 16% от первоначального количества яблок. Сколько килограммов яблок было у продавца первоначально?

В пункте «Выражение долей в процентах» центральной является задача об определении того, сколько процентов одна величина составляет от другой.

619. В избирательном округе 2500 избирателей. В голосовании приняли участие 1300 избирателей. Какой процент избирателей участвовал в голосовании?

Здесь принят подход, в соответствии с которым сначала находят, какую часть одна величина составляет от другой, выражают ее при необходимости десятичной дробью, а затем - в процентах.

Не следует торопиться приступать к решению новых задач. В учебнике предлагается система упражнений, в которых предлагается выразить дробь (обыкновенную или десятичную) в процентах.

№ 615. [15] Прочитайте предложение, выразив дробь в процентах:

а) бензином заполнили бака;

б) учащихся школы едут в школу на автобусе;

в) масса сушеной вишни составляет массы свежей вишни;

г) магазин продал привезенного сахара.

Одна из особенностей вычислительной линии курса состоит в формировании умений выполнять прикидку или оценку результата вычислений. При изучении процентов эта работа, естественно, продолжается. Учащимся предлагаются задачи из повседневной практики, в которых требуется найти приближенно с помощью прикидки процент от заданной величины. Для этого достаточно заменить данные другими числами, близкими к ним и удобными для расчетов. Так, если требуется прикинуть, чему равно 19% от какой-либо величины, то находят 20% этой величины, т.е. ее пятую часть.

№ 595. [15] Перед Новым годом магазин снизил цены на товары на 25%. На сколько примерно рублей понизилась цена товара, если до снижения она составляла 799 руб.? 1980 руб.? 11890 руб.?

№ 629. [15] Часть фигуры заштрихована (см. рис 4.). Определите, какой примерно процент фигуры заштрихован, выбрав наиболее подходящий ответ из данных.

Рис. 4

Третий этап в изучении процентов отнесен к 7классу. В силу возрастных возможностей семиклассников и уже накопленного ими опыта работы с процентами учащимся становятся доступными многие вопросы из тех, что традиционно не рассматривались со всем классом, а изучались лишь в качестве дополнительных в работе с сильными учениками. Учащиеся уже знакомы со всеми основными видами задач, теперь они осваивают другие способы их решения, которые были им неизвестны.

В первой главе учебника выделен пункт «Решение задач на проценты», в котором помещен материал, позволяющий вспомнить сведения из шестого класса и продвинуться в решении задач. Теперь есть возможность рассмотреть более сложные в техническом отношении задачи. Они требуют достаточно прочного навыка представления процентов дробью и наоборот, умение находить процент от величины, понимание того, какая из величин, участвующих в задаче, принимается за 100%. Поэтому в начале теоретической части пункта рассматриваются приемы, с помощью которых десятичная дробь выражается в процентах и наоборот; здесь специально выделяется вопрос о «маленьких» (меньше 1%) и «больших» (больше 100%) процентах, как наиболее трудный для усвоения.

№ 99. [18] В состав одного из поливитаминов входят минералы в следующих количествах: кальций и фосфор - по 4%, магний - 1,6%, железо - 0,07%, цинк - 0,06%. Сколько миллиграммов каждого минерала содержится в одной таблетке поливитамина, масса которой 25 г?

№ 88. [18] В конце 1996 г. рабочим была выплачена премия в 250% ежемесячной зарплаты. Какую премию получил рабочий, зарплата которого была 550 тыс. р.?

Предлагаемые в системе упражнений задачи, как правило, допускают разные способы рассуждений, и учащиеся самостоятельно выбирают более удобный и понятный для себя.

Кроме задач на нахождение процента от величины, рассматриваются задачи на нахождение величины по известному ее проценту.

№ 107. [18] После повышения цены на 30% книга стала стоить 52 рубля. Сколько стоила книга до повышения цены?

Решение. Первоначальная цена книги составляет 100%. Поэтому 52 руб., т.е. цена после подорожания, составляет 100%+30%=130% от первоначальной цены. Теперь можно решить задачу на нахождение величины по известному ее проценту.

Рассуждать можно по-разному:

1) 1% - это 52: 130=0,4(руб.), а 100% - это 0,4* 100=40(руб.);

2) 10% - 52:13=4(руб.), 100% - это 4*10=40(руб.);

3) 130% - это 1,3, поэтому 52 руб. составляют 1,3 первоначальной цены, а поэтому первоначальная цена равна 52:1,3=40(руб.).

Следует отметить еще один методический подход, использованный в изучении процентов. Первую главу заключает раздел «Для тех, кому интересно», в котором учащиеся еще раз встречаются с задачами на проценты. Здесь рассматривается восемь, если можно так выразиться, «классических олимпиадных» задач. Обычно они не включаются в учебники, т.к. являются трудными. Приведено более простое решение такого класса задач. Следует уделить им внимание хотя бы на кружке.

Задача. [18] Книга дороже альбома на 25%. На сколько процентов альбом дешевле книги? Вся методика обучения решению задач, принятая в учебнике, позволяет показать учащимся наглядный способ их решений с помощью рисунков (см. рис. 5). Хотя, конечно, эти задачи можно решать и арифметически.

Решение:

Цена альбома - 100%. Изобразим ее каким-либо отрезком

Увеличим этот отрезок на 25% т.е. на его части; получим отрезок, соответствующий цене книги.

Теперь цена книги составляет 100%. Она изображена большим отрезком. Цена альбома меньше цены книги на этого отрезка. Так как составляет 20%, то альбом дешевле книги на 20%.

Рис. 5

При изучении следующей главы «Отношения и пропорции» учащиеся активно пользуются опытом работы с процентами и приобретают новый. В систему упражнений нужно включить новые задачные ситуации.

№ 191.[18] В сплав входят медь, олово, сурьма в отношении 4:15:6. Сколько процентов сплава составляет каждый металл? («Деление в данном отношении»)

№ 252. [18] За определенное время с помощью принтера было распечатано 30 страниц. Сколько страниц распечатает принтер, производительность которого на 50% больше? («Прямая и обратная пропорциональность»)

№ 269. [18] Автомобиль за 2,4 ч проехал 60% всего пути. Через сколько минут ему останется проехать четверть всего расстояния, если он будет двигаться с той же скорость? («Решение задач с помощью пропорций»)

По мере овладения новым математическим аппаратом при изучении алгебры, учащиеся осваивают новый прием решения расчетных задач на проценты - с помощью составления уравнения.

№ 501. [18] Вкладчик открыл в банке счет. Через год на его счету было 360000 руб., что составило 120% от суммы, которую он внес первоначально. Сколько рублей внес вкладчик при открытии счета?

В VIII классе в теме «Алгебраические дроби» учащиеся снова обращаются к задачам на проценты. Задачи на «концентрацию», «сплавы», «банковские расчеты» - это хорошие примеры практических задач, позволяющих продемонстрировать, как формальные алгебраические знания применяются в реальных жизненных ситуациях. Для того чтобы помочь учащимся осознать на новом уровне подход к решению задач с процентами, стоит обратить их внимание на то, что в учебнике приводятся образцы решения ряда задач. К разобранному образцу учащиеся при желании может вернуться вновь и использовать его в качестве опоры при решении подобной задачи.

№ 187. [17] Разберите, как по условию задачи составлено уравнение и решите задачу. Клиент открыл счет в банке на некоторую сумму денег. Годовой доход по этому вкладу составляет 11%. Если бы он добавил 800 руб., то через год получил бы доход 220 руб. Какая сумма была внесена им в банк?

Решение. Пусть х руб. - сумма, которую клиент внес в банк. Тогда (х+800) руб. было бы на вкладе, если бы клиент добавил 800 руб.;

0,11(х+800) руб. - доход в 11%, который мог бы получить клиент с этой суммы.

Так как доход равен 220 руб., то имеем равенство:

0,11(х+800)=220.

№ 205. [17] Два слитка, один из которых содержит 35% серебра, а другой 65%, сплавляют и получают слиток массой 20 г., содержащий 47% серебра. Какова масса каждого из этих слитков?

При изучении темы «Системы уравнений» школьникам важно показать новый метод решения задач на проценты. Учащимся предлагается план решения.

№ 656. [17] В колбу налили некоторое количество 60%-го раствора соли и некоторое количество 80%-го раствора этой же соли. Получили 35 мл раствора, содержащего 72% соли. Сколько миллилитров каждого раствора налили в колбу?

Решите задачу, используя следующий план:

1. Обозначьте буквами количество 60%-го и 80%-го растворов соли.

2. Запишите уравнение, связывающее эти две величины и общее количество раствора.

3. Определите количество соли в получившемся растворе.

4. Запишите уравнение, связывающее количество соли в 60%-ном, 80%-ном и получившихся растворах.

5. Составьте систему и решите ее.

В IX классе в главе «Дробные уравнения» также можно предложить задачи на проценты, решение которых основано на составлении дробных рациональных уравнений.

№ 419. [16] На первые и вторые премии в конкурсе студенческих дипломных работ было выделено 15 тыс. р., причем 40% этих денег пошло на первые премии. Вторых было выдано на 4 больше, чем первых. Сколько студентов получили первые премии и сколько вторые, если известно, что вторая премия составляла 50% первой?

Завершается линия процентных вычислений в IX классе темой «Простые и сложные проценты», включенной в изучение главы «Арифметическая и геометрическая прогрессии». Сведения о простых и сложных процентах, которые сами по себе имеют большую практическую значимость, являются достаточно благоприятным материалом для применения знаний, полученных на уроках математики. Возможность опереться на сформированные навыки в работе с процентами, на умение воспользоваться калькулятором, табличным и графическим представлением информации позволило расширить диапазон решаемых задач на проценты.

В учебнике не вводятся формулы простых и сложных процентов. Учащиеся должны решать задачи, опираясь не на формулы, а на понимание на смысл понятия «процент», на умение находить процент от числа. В теме широко используется калькулятор, который позволяет рассматривать самые разнообразные задачи.

№ 639. [16] Один из акционеров предприятия имеет 100 акций, номинальная стоимость каждой из которых 50 р. Ежегодно ему выплачивается с каждой акции доход в 40% от ее номинальной стоимости.

а) Какой доход получит акционер за 1 год; за 2 года; за 10 лет; за n лет?

б) Через сколько лет его общий доход превзойдет удвоенную стоимость акций?

Авторы предлагают также задачи аналитического характера.

№ 654. [16] Виктор вложил на десять лет по 1000 р. на два разных счета - с 10% годовых и 20% годовых.

а) Каким будет доход по каждому из этих счетов через год? Во сколько раз доход по второму вкладу будет больше дохода по первому вкладу?

б) Каким будет доход по каждому из этих счетов за четвертый год? Во сколько раз доход по второму вкладу больше, чем по первому?

Как вы думаете, будет ли отношение ежегодных доходов по этим вкладам увеличиваться с течением времени и почему?

В ходе решения предлагаемых авторами задач учащиеся видят, что понятия арифметической и геометрической прогрессии, а также формулы их сумм - это не просто абстрактное отвлеченное понятие, а конкретное математическое знание, необходимое для жизни.

В данном курсе в русле новой содержательной линии «Анализ данных» формулируются приемы сбора, представления и анализа информации, так или иначе связанной с процентами.

Проценты также используются в VI - VII классах для представления информации в виде таблиц и диаграмм, а VIII - IX классах - при изучении вероятно-статистического материала.

№ 155. [15] На диаграмме показано, какой процент составляет тот или иной вид изделий от всей продукции ателье по пошиву мужской одежды.

а) Какова основная продукция данного ателье?

б) Какого цвета пиджаки ателье производит меньше всего? больше всего?

в) Сколько процентов продукции приходится на пиджаки светлого цвета? темного цвета?

г) Какой из следующих ответов может показывать , сколько процентов всех изделий составляют жилеты: 24%, 17%, 10%, 6%? (см.рис. 6)

Рис. 6

№ 675. [16] Закинул старик в реку невод. Пришел невод с таким уловом (в порядке вытаскивания):

П, О, Л, С, Я, П, К, О, З, К, П, К, Я, С, О, П, П, Л, О, О, Л, С, О, П, Л, П, К, Л, К, П, П, С, П, З, К, Я, П, З, С, О,О, Я, П, П, О, Л, С, Л, С, П,О, П, Л, К, С, О, Я, Л, П, С, О, Л, П, О, К, Л, П, О, О, П, О, Я, Л, П, С, П, О, Л, П, З.

Буквами обозначены: З - Золотая рыбка; К - Карась; Л - Лещ; О - Окунь; П - Пескарь; С - Сом; Я - Язь.

... читать дальше >>>

Поcмотреть текст работы Поcмотреть полный текст
Скачать работу можно здесь Скачать работу "Обучение решению задач на проценты в курсе алгебры основной школы" можно здесь
Сколько стоит?

Рекомендуем!

база знанийглобальная сеть рефератов