Электрический ток в плоском листе и в проводе

Поверхностный эффект в плоском листе. Амплитуда магнитного потока и среднее значение амплитуды индукции магнитного поля. Поверхностный эффект в круглом проводе. Общий вид функции Бесселя. Явление возрастания плотности тока от центра к поверхности провода.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 23.07.2013
Размер файла 53,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Поверхностный эффект в плоском листе

Ранее было показано, что переменное электромагнитное поле быстро затухает по мере проникновения в толщу проводящей среды. Это приводит к неравномерному распределению поля по сечению магнитопровода, и следовательно, к неравномерному распределению магнитного потока по сечению: на оси магнитопровода плотность магнитного потока наименьшая, а у поверхностного наибольшая.

Для более равномерного распределения магнитного потока по сечению магнитопровода и для уменьшения потерь на вихревые токи, магнитопроводы трансформаторов собираются из отдельных тонких листов электротехнической стали, изолированных друг от друга. Исследуем распространение переменного поля в таком листе.

Пусть в плоском листе толщиной , высотой h и длинной l направление магнитного потока Ф и, следовательно, векторов поля совпадают с осью.

На основании предыдущего параграфа решения для вектора будет иметь вид:

,

где .

Поле проникает в пластину с двух сторон, а на поверхности пластины с обеих сторон при векторы поля должны быть равны, следовательно:

,

тогда решение для произвольной точки:

.

Амплитуда магнитного потока Фm и среднее значение амплитуды индукции магнитного поля определяются согласно уравнению трансформаторной ЭДС.

.

Выразим из уравнения распределения по сечению листа:

,

откуда следует, что, т. е амплитуда индукции у поверхности листа превышает ее среднее значение .

Распределение магнитного поля по сечению листа в зависимости от его толщины d при частоте f=100 Гц.

2. Поверхностный эффект в круглом проводе

Электромагнитное поле в проводящей среде в общем случае описывается системой уравнений Максвелла в комплексной форме:

магнитный индукция провод ток

Если оси координат выбрать так, как показано на рис. 287, т.е. ось z совместить с осью провода и положительным направлением тока, то вектор напряженности электрического поля будет направлен по оси z (согласно закону Ома ), а вектор напряженности магнитного поля будет направлен нормально к радиусу по правилу правоходового винта.

Размещено на http://www.allbest.ru/

В цилиндрической системе координат те же уравнения примут вид:

.

Совместное решение этой системы уравнений относительно комплексных переменных и дает следующий результат:

где ,

Уравнение для переменной представляет собой уравнение Бесселя нулевого порядка при n = 0, а уравнение для переменной - уравнение Бесселя первого порядка при n = 1. Решения этих уравнений известны из математики. Окончательные решения для векторов поля получают вид:

где - функции Бесселя соответственно нулевого и первого порядка от комплексного аргумента qr и сами являются комплексными числами.

Общий вид функции Бесселя n-го порядка выражается бесконечным рядом

Значения функций Бесселя приводятся в математических справочниках в виде таблиц или диаграмм.

Анализ решения для вектора напряженности электрического поля и соответственно для вектора плотности тока показывает, что переменный ток по сечению цилиндрического провода распределяется неравномерно: его плотность возрастает по направлению от центра к поверхности примерно по экспоненциальному закону. Эта неравномерность выражена тем больше, чем больше число k и радиус провода r0.

Явление возрастания плотности тока от центра к поверхности провода получило название поверхностного эффекта. Поверхностный эффект возрастает с ростом частоты f, магнитной проницаемости , удельной проводимости . В технике сильных токов (на частоте 50 Гц) это явление сказывается незначительно в медных и алюминиевых проводах большого сечения, и в сильной степени в стальных (1) проводах любого сечения.

На расстоянии = 1/k от поверхности провода плотность тока убывает в е раз, это расстояние называют глубиной проникновения поля:

.

Как известно, сопротивление проводника постоянному току или омическое сопротивление определяется по формуле:

[Ом/м].

Внутреннее комплексное сопротивление того же проводника переменному току с учетом поверхностного эффекта может быть выражено через параметры поля:

.

Явление возрастания плотности тока от центра к поверхности провода получило название поверхностного эффекта. Поверхностный эффект возрастает с ростом частоты f, магнитной проницаемости , удельной проводимости . В технике сильных токов (на частоте 50 Гц) это явление сказывается незначительно в медных и алюминиевых проводах большого сечения, и в сильной степени в стальных (1) проводах любого сечения.

Практический интерес представляет отношение активного сопротивления провода к омическому R/R0, количественно характеризующее поверхностный эффект в проводе. Расчеты показывают, что на промышленной частоте 50 Гц увеличение активного сопротивления R / R0 незначительно для медных и алюминиевых проводов ( = 1) и существенно для стальных проводов (1). С ростом частоты f вследствие усиления поверхностного эффекта происходит увеличение активного сопротивления провода (R/R0>1).

Размещено на Allbest.ru

...

Подобные документы

  • Определение плотности тока на поверхности и на оси провода. Численное значение частоты тока. Влияние обратного провода на поле в прямом проводе. Особенности распространения электромагнитной волны в проводящей среде. Плотность тока и напряженности поля.

    задача [46,9 K], добавлен 06.11.2011

  • Общие понятия, история открытия электромагнитной индукции. Коэффициент пропорциональности в законе электромагнитной индукции. Изменение магнитного потока на примере прибора Ленца. Индуктивность соленоида, расчет плотности энергии магнитного поля.

    лекция [322,3 K], добавлен 10.10.2011

  • Теоретическая характеристика магнитного импеданса и методика его исследования. Основные факторы, влияющие на МИ-эффект. Влияние упругих растягивающих напряжений на магнитоимпеданс аморфных фольг. Датчики магнитного поля на основе магнитного импеданса.

    курсовая работа [1,2 M], добавлен 16.12.2010

  • Виды геометрической симметрии источников магнитного поля. Двойственность локальной идеализации токового источника. Опытное обнаружение безвихревого вида электромагнитной индукции. Магнито-термический эффект.

    статья [57,7 K], добавлен 02.09.2007

  • Открытие явления сверхпроводимости. Первые экспериментальные факты. Эффект Мейснера, изотопический эффект. Теория сверхпроводимости. Щель в энергетическом спектре. Образование электронных пар. Квантование магнитного потока (макроскопический эффект).

    дипломная работа [2,7 M], добавлен 24.08.2010

  • Регулирование скорости тягового электродвигателя при изменении магнитного поля. Пересчет характеристик при изменении магнитного поля и смешанном возбуждении. Особенности магнитного потока при шунтировании сопротивления и изменением числа витков обмотки.

    презентация [321,9 K], добавлен 14.08.2013

  • Анализ источников магнитного поля, основные методы его расчета. Связь основных величин, характеризующих магнитное поле. Интегральная и дифференциальная формы закона полного тока. Принцип непрерывности магнитного потока. Алгоритм расчёта поля катушки.

    дипломная работа [168,7 K], добавлен 18.07.2012

  • Процесс формирования и появления магнитного поля. Магнитные свойства веществ. Взаимодействие двух магнитов и явление электромагнитной индукции. Токи Фуко — вихревые индукционные токи, возникающие в массивных проводниках при изменении магнитного потока.

    презентация [401,5 K], добавлен 17.11.2010

  • История открытия магнитного поля. Источники магнитного поля, понятие вектора магнитной индукции. Правило левой руки как метод определения направления силы Ампера. Межпланетное магнитное поле, магнитное поле Земли. Действие магнитного поля на ток.

    презентация [3,9 M], добавлен 22.04.2010

  • Введение в магнитостатику, сила Лоренца. Взаимодействие токов. Физический смысл индукции магнитного поля и его графическое изображение. Сущность принципа суперпозиции. Примеры расчета магнитного поля прямого тока и равномерно движущегося заряда.

    лекция [324,8 K], добавлен 24.09.2013

  • Содержание закона Ампера. Напряженность магнитного поля, её направление. Закон Био-Савара-Лапласа, сущность принципа суперпозиции. Циркуляция вектора магнитного напряжения. Закон полного тока (дифференциальная форма). Поток вектора магнитной индукции.

    лекция [489,1 K], добавлен 13.08.2013

  • Основные характеристики и механизм возникновения магнитного центра Земли. Понятие энергии геодинамо. Рассмотрение природы вращения Земли. Интегральный электромагнитогидродинамический и термический эффект. Причины возникновения циклонов, тайфунов, торнадо.

    дипломная работа [2,3 M], добавлен 19.03.2012

  • Понятие и основные свойства магнитного поля, изучение замкнутого контура с током в магнитном поле. Параметры и определение направления вектора и линий магнитной индукции. Биография и научная деятельность Андре Мари Ампера, открытие им силы Ампера.

    контрольная работа [31,4 K], добавлен 05.01.2010

  • Двойное лучепреломление под влиянием внешних воздействий: механических деформациях тел, электрического поля (эффект Керра), магнитного поля (явление Коттон-Мутона). Явление вращения плоскости поляризации в теории Френеля, сущность эффекта Фарадея.

    реферат [39,9 K], добавлен 17.04.2013

  • Электродинамическое взаимодействие электрических токов. Открытие магнитного действия тока датским физиком Эрстедом - начало исследований по электромагнетизму. Взаимодействие параллельных токов. Индикаторы магнитного поля. Вектор магнитной индукции.

    презентация [11,7 M], добавлен 28.10.2015

  • Гипотезы монополя Дирака. Магнитный заряд электрона, который тождественен кванту магнитного потока, наблюдаемого в условиях сверхпроводимости. Анализ эффекта квантования магнитного потока. Закон Кулона: взаимодействие электрического и магнитного заряда.

    статья [205,4 K], добавлен 09.12.2010

  • Электрический заряд и закон его сохранения в физике, определение напряженности электрического поля. Поведение проводников и диэлектриков в электрическом поле. Свойства магнитного поля, движение заряда в нем. Ядерная модель атома и реакции с его участием.

    контрольная работа [5,6 M], добавлен 14.12.2009

  • Сущность магнетизма, поле прямого бесконечно длинного тока. Форма правильных окружностей, описываемых силовыми линиями электрического поля элемента тока. Структура латентного поля тока. Закон Био-Савара, получение "магнитного" поля из электрического.

    реферат [2,2 M], добавлен 04.09.2013

  • Свойства сверхпроводящих материалов. Определение электрического сопротивления и магнитной проницаемости немагнитных зазоров. Падение напряженности магнитного поля по участкам. Условия для работы устройства. Применение эффекта Мейснера и его изобретение.

    научная работа [254,2 K], добавлен 20.04.2010

  • Квантование магнитного потока. Термодинамическая теория сверхпроводимости. Эффект Джозефсона как сверхпроводящее квантовое явление. Сверхпроводящие квантовые интерференционные детекторы, их применение. Прибор для измерения слабых магнитных полей.

    контрольная работа [156,0 K], добавлен 09.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.