Диэлектрики для изоляторов

Диэлектрик как вещество, практически не проводящее электрический ток. Концентрация свободных носителей заряда в диэлектрике. Способность диэлектрика поляризоваться во внешнем электрическом поле. Тепловое старение внутренней изоляции, снижение прочности.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 03.10.2013
Размер файла 14,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Изоляция электрических установок разделяется на внешнюю и внутреннюю.

К внешней изоляции установок высокого напряжения относят изоляционные промежутки между электродами (проводами линий электропередачи (ЛЭП), шинами распределительных устройств (РУ), наружными токоведущими частями электрических аппаратов и т.д.), в которых роль основного диэлектрика выполняет атмосферный воздух. Изолируемые электроды располагаются на определенных расстояниях друг от друга и от земли (или заземленных частей электроустановок) и укрепляются в заданном положении с помощью изоляторов.

К внутренней изоляции относится изоляция обмоток трансформаторов и электрических машин, изоляция кабелей, конденсаторов, герметизированная изоляция вводов, изоляция между контактами выключателя в отключенном состоянии, т.е. изоляция герметически изолированная от воздействия окружающей среды корпусом, оболочкой, баком и т.д. Внутренняя изоляция как правило представляет собой комбинацию различных диэлектриков (жидких и твердых, газообразных и твердых).

В данной работе были рассмотрены диэлектрики для изоляторов и тепловое старение внутренней изоляции.

1. Диэлектрики для изоляторов

Диэлектрики, из которых изготавливаются изоляторы, должны обладать высокой механической прочностью, поскольку изоляторы, являясь элементом конструкции, несут значительную нагрузку. Так к примеру изоляторы линий электропередачи несут нагрузку от натяжения проводов, исчисляемую тоннами, а иногда и десятками тонн. Опорные изоляторы, на которых крепятся шины распределительных устройств, выдерживают громадные нагрузки от электродинамических сил, возникающих между шинами при коротких замыканиях.

Диэлектрики должны иметь высокую электрическую прочность, позволяющую создавать экономичные и надежные конструкции изоляторов. Нарушение электрической прочности изолятора может происходить или при пробое твердого диэлектрика, из которого он изготовлен, или в результате развития разряда в воздухе вдоль внешней поверхности изолятора. Пробой твердого диэлектрика означал бы выход изолятора из строя, тогда как разряд по поверхности при условии быстрого отключения напряжения не причиняет изолятору никаких повреждений. Поэтому пробивное напряжение твердого диэлектрика в изоляторе должно быть (и всегда делается) примерно в 1,5 раза более высоким, чем напряжение перекрытия по поверхности, которым и определяется электрическая прочность изолятора.

Диэлектрики должны быть негигроскопичны (не впитывать влагу) и не должны изменять своих свойств под действием различных метеорологических факторов. При неблагоприятных условиях (дождь, увлажненные загрязнения) на поверхностях изоляторов, устанавливаемых на открытом воздухе (изоляторов наружной установки), могут возникать частичные электрические дуги. Под их действием поверхность может обугливаться и на ней могут появляться проводящие следы - треки, снижающие электрическую прочность изоляторов. Поэтому диэлектрики для изоляторов наружной установки должны обладать высокой трекингостойкостю.

Всем указанным требованиям в наибольшей степени удовлетворяют глазурованный электротехнический фарфор и стекло, получившие широкое распространение, а также некоторые пластмассы.

Электрическая прочность фарфора в однородном поле при толщине образца 1,5 мм составляет 30--40 кВ/мм и уменьшается при увеличении толщины. Электрическая прочность стекла при тех же условиях -- 45 кВ/мм.

Механическая прочность фарфора и стекла зависит от вида нагрузки. Например, прочность фарфоровых образцов диаметром 2--3 см составляет при сжатии 450 МПа, при изгибе -- 70 МПа, а при растяжении -- всего 30 МПа. Поэтому наиболее высокой механической прочностью обладают изоляторы, в которых фарфор работает на сжатие.

Стекло по механической прочности не уступает фарфору и тоже лучше всего работает на сжатие. Стеклянные изоляторы в процессе изготовления подвергаются закалке: нагреваются до температуры примерно 700 0С и затем обдуваются холодным воздухом. Во время закалки наружные слои стекла твердеют значительно раньше внутренних, поэтому при последующей усадке внутренних слоев в толще стекла образуются растягивающие усилия. Такая предварительно напряженная конструкция имеет высокую прочность на сжатие.

Изоляторы из закаленного стекла имеют ряд преимуществ перед фарфоровыми: технологический процесс их изготовления полностью автоматизирован; прозрачность стекла позволяет легко обнаружить при внешнем осмотре мелкие трещины и другие внутренние дефекты; повреждение стекла приводит к разрушению диэлектрической части изолятора, которое легко обнаружить при осмотре линии электропередачи эксплуатационным персоналом.

Полимерные изоляторы наружной установки изготовляются из эпоксидных компаундов на основе циклоалифатических смол, из кремнийорганической резины, из полиэфирных смол с минеральным наполнителем и добавкой фторопласта. Такие изоляторы имеют высокую электрическую прочность и достаточную трекинг стойкость. Высокая механическая прочность полимерных изоляторов достигается посредством армирования их стеклопластиком. Применение полимерных изоляторов на линиях электропередачи позволяет существенно уменьшить массу подвесных изоляторов. В закрытых помещениях изоляторы не подвержены влиянию атмосферных осадков, поэтому для их изготовления в некоторых случаях используется бакелизированная бумага. Для уменьшения гигроскопичности такие изоляторы покрываются снаружи водостойкими лаками. Однако наибольшее распространение для внутренней установки получили изоляторы из фарфора и стекла, отличающиеся от изоляторов наружной установки более простой формой.

Поскольку перекрытие изоляторов происходит в результате развития разряда в воздухе вдоль поверхности, на разрядные напряжения изоляторов оказывают влияние те же факторы, которые влияют на разрядные напряжения воздушных промежутков, т. е. давление, температура и абсолютная влажность воздуха. Помимо этого на разрядные напряжения изоляторов влияет состояние их поверхности. Условия развития разряда по поверхности изоляторов наружной установки существенно изменяются, если на их поверхностях имеются увлажненные загрязнения или же они смачиваются дождем. Тогда разрядные напряжения значительно уменьшаются. В связи с этим по существующей методике испытанные изоляторы подвергаются воздействию сухоразрядного, мокроразрядного и влагоразрядного напряжений.

Сухоразрядные напряжения определяются при сухой и чистой поверхности изоляторов и приводятся к нормальным атмосферным условиям. При измерениях мокроразрядных и влагоразрядных напряжений искусственный дождь и увлажненные загрязнения создаются по стандартным методикам. Это обеспечивает возможность сопоставления результатов, полученных в разное время или в разных лабораториях, и объективность оценки изоляторов различной конструкции.

2. Тепловое старение внутренней изоляции

диэлектрик электрическое поле изоляция

При рабочих температурах (60-130°С) в диэлектрических материалах возникают или резко ускоряются химические реакции, которые приводят к постепенному изменению структуры и свойств материалов - к ухудшению свойств всей изоляции в целом. Эти процессы именуют тепловым старением.

Для твердых диэлектриков наиболее характерным является постепенное снижение механической прочности в процессе теплового старения. со временем это приводит к повреждению изоляции под действием механических нагрузок и затем уже к пробою.

В жидких диэлектриках в результате теплового старения образуются газообразные, жидкие и твердые продукты реакций. По мере накопления этих продуктов, загрязняющих изоляцию, проводимость и диэлектрические потери растут, а электрическая прочность снижается.

В комбинированной внутренней изоляции, содержащей жидкие и твердые материалы, тепловое старение влечет за собой как снижение механической прочности соответствующих элементов, так и ухудшение электрических характеристик всей изоляции.

Темпы теплового старения внутренней изоляции определяются скоростями химических реакций, зависящими от температуры в соответствии с уравнением Аррениуса:

v=v•exp(-WA/kT)

где v - скорость химической реакции.

Срок службы изоляции при тепловом старении обратно пропорционален скорости химических реакций. При разных температурах T1 и T2 отношения сроков службы изоляции:

ф12=2-(T1-T2)/?T

где DТ - повышение температуры, вызывающее сокращение срока службы изоляции при тепловом старении в 2 раза.

Значение DТ для разных видов внутренней изоляции лежит в пределах от 8 до 12°С и в среднем составляет 10°С.

Старение изоляции при механических нагрузках

Под действием механических нагрузок в материалах происходят медленные процессы старения, имеющие место даже тогда, когда нагрузки значительно меньше разрушающих, а деформации носят упругий характер. В этом случае в напряженном материале возникает упорядоченное движение локальных дефектов (на молекулярном уровне) и за счет этого образуются и постепенно увеличиваются в размерах микротрещины. Когда количество и размеры микротрещин достигают некоторых критических значений, наступает разрушение.

Процесс старения в твердой изоляции при одновременном воздействии механических нагрузок и сильных электрических полей может значительно ускоряться из-за того, что в образующихся в изоляции микротрещинах возникают ЧР, которые повышают темпы разрушения изоляции.

Увлажнение как форма старения изоляции

Влага проникает во внутреннюю изоляцию главным образом из окружающего воздуха. В некоторых случаях она может образовываться в самой изоляции в результате термоокислительных процессов. В аварийных ситуациях влага может попадать в изоляцию из системы охлаждения и других устройств.

Появление влаги в изоляции приводит к резкому снижению сопротивления утечки, т.к. во влаге содержатся диссоциированные примеси. Растут диэлектрические потери. Снижается напряжение теплового пробоя. Происходит дополнительный нагрев изоляции, что влечет за собой ускорение темпов теплового старения.

При неравномерном увлажнении искажается электрическое поле в изоляции и снижается пробивное напряжение изоляции.

Влага может быть удалена из изоляции путем сушки. Изоляция некоторых видов оборудования (кабелей, вводов) сушке не поддается. В таких случаях увлажнение может рассматриваться как особая форма необратимого старения изоляции.

Допустимые рабочие нагрузки на внутреннюю изоляцию

Для ограничения интенсивности процессов старения необходимо ограничить уровень длительно действующих на изоляцию электрических, тепловых и механических нагрузок.

Для того, чтобы длительное воздействие рабочего напряжения не приводило к сокращению сроков службы изоляции, необходимо обеспечить отсутствие ЧР при рабочем напряжении. Отсюда следует основное условие выбора допустимых рабочих напряжений:

UД.Р.<UЧ.Р.

Размещено на Allbest.ru

...

Подобные документы

  • Диэлектрики (изоляторы) — вещества, практически не проводящие электрический ток. Физические свойства: потери и пробой диэлектрика, поляризация во внешнем электрическом поле. Пьезоэлектрики: кварц, пьезоэлектрические преобразователи; пироэлектрики.

    контрольная работа [61,6 K], добавлен 15.06.2014

  • Изучение сути закона Кулона - закона взаимодействия двух неподвижных точечных заряженных тел или частиц. Электрическое поле и линии его напряженности. Проводники и изоляторы в электрическом поле. Поляризация изоляторов (диэлектриков), помещенных в поле.

    контрольная работа [27,3 K], добавлен 20.12.2012

  • Понятие и свойства полупроводника. Наклон энергетических зон в электрическом поле. Отступление от закона Ома. Влияние напряженности поля на подвижность носителей заряда. Влияние напряжённости поля на концентрацию заряда. Ударная ионизация. Эффект Ганна.

    реферат [199,1 K], добавлен 14.04.2011

  • Способы модифицирования перфторированных мембран. Преимущества проведения синтеза полианилина в матрице в условиях внешнего электрического поля. Параметры, позволяющие провести экономическую оценку эффективности данных мембран в электрическом поле.

    курсовая работа [124,4 K], добавлен 18.07.2014

  • Электрический заряд и закон его сохранения в физике, определение напряженности электрического поля. Поведение проводников и диэлектриков в электрическом поле. Свойства магнитного поля, движение заряда в нем. Ядерная модель атома и реакции с его участием.

    контрольная работа [5,6 M], добавлен 14.12.2009

  • Диэлектрические материалы для создания электрической изоляции токоведущих частей в электротехнических и радиоэлектронных устройствах. Электропроводность диэлектриков. Образцы для определения электрической прочности твердых электроизоляционных материалов.

    реферат [201,9 K], добавлен 07.11.2013

  • Удельное сопротивление полупроводников. Строение кристаллической решетки кремния. Дефекты точечного типа и дислокации. Носители заряда и их движение в электрическом поле. Энергетические уровни и зоны атома. Распределение носителей в зонах проводимости.

    презентация [150,3 K], добавлен 27.11.2015

  • Ознакомление с основами движения электрона в однородном электрическом поле, ускоряющем, тормозящем, однородном поперечном, а также в магнитном поле. Анализ энергии электронов методом тормозящего поля. Рассмотрение основных опытов Дж. Франка и Г. Герца.

    лекция [894,8 K], добавлен 19.10.2014

  • Формы электрических полей. Симметричная и несимметричная система электродов. Расчет максимальной напряженности кабеля. Виды и схема развития пробоя твердого диэлектрика. Характеристики твердой изоляции. Зависимость пробивного напряжения от температуры.

    контрольная работа [91,5 K], добавлен 28.04.2016

  • Экспериментальные методы измерения подвижности носителей зарядов в диэлектриках. Эффект переключения диэлектрических пленок в высокопроводящее состояние. Исследование подвижностей носителей заряда времяпролетным методом. Изготовление пленочных образцов.

    дипломная работа [484,3 K], добавлен 13.10.2015

  • Электромагнитное поле как особая форма материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами. Электрическое поле покоящегося заряда. Преобразование Лоренца. Поле релятивистского и нерелятивистского заряда.

    контрольная работа [380,0 K], добавлен 23.12.2012

  • Электрический заряд. Взаимодействие заряженных тел. Закон Кулона. Закон сохранения заряда. Електрическое поле. Напряженность электрического поля. Электрическое поле точечного заряда. Принцип суперпозиции полей. Электромагнитная индукция. Магнитный поток.

    учебное пособие [72,5 K], добавлен 06.02.2009

  • Понятия разрядного напряжения и резконеоднородного поля. Внешняя и внутренняя изоляция электрических установок. Коронный разряд у электродов с малым радиусом кривизны во внешней изоляции. Целесообразность применения внутренней изоляции электроустановок.

    реферат [24,3 K], добавлен 07.01.2011

  • Изучение устройств для подвешивания и изоляции проводов и кабелей на опорах воздушной линии электропередачи или воздушных линий связи. Конструкция подвесных изоляторов. Описания проходных, штыревых и линейных изоляторов. Состав тарельчатых изоляторов.

    презентация [752,2 K], добавлен 20.04.2017

  • Элементарный электрический заряд. Закон сохранения электрического заряда. Напряженность электрического поля. Напряженность поля точечного заряда. Линии напряженности силовые линии. Энергия взаимодействия системы зарядов. Циркуляция напряженности поля.

    презентация [1,1 M], добавлен 23.10.2013

  • Определение начальной энергии частицы фосфора, длины стороны квадратной пластины, заряда пластины и энергии электрического поля конденсатора. Построение зависимости координаты частицы от ее положения, энергии частицы от времени полета в конденсаторе.

    задача [224,6 K], добавлен 10.10.2015

  • Главная особенность газообразных диэлектриков. Основные требования к газам, применяемым в качестве электрической изоляции. Показатель преломления некоторых газов. Относительная электрическая прочность элегаза при различных расстояниях между электродами.

    презентация [358,0 K], добавлен 26.05.2014

  • Способность диэлектриков проводить электрический ток, характер движения электронов, переходы. Определения механизма проводимости — наблюдение тока в магнитном поле, определение знака термоэлектродвижущей силы. Проводимость первого и второго порядка.

    реферат [18,4 K], добавлен 20.09.2009

  • Свойства активных диэлектриков. Вещества, обладающие самопроизвольной поляризацией. Внешнее электрическое поле. Направление электрических моментов доменов. Применение сегнетоэлектриков для изготовления малогабаритных низкочастотных конденсаторов.

    контрольная работа [22,4 K], добавлен 29.08.2010

  • Особенности газообразных и жидких, органических полимерных, слоистых диэлектриков, композиционных порошковых пластмасс, электроизоляционных лаков и компаундов, неорганических стекол и ситаллов, керамики. Их электрические свойства, область применения.

    контрольная работа [24,5 K], добавлен 29.08.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.