Системы отопления и теплоснабжения

Потребление тепловой энергии в России и главные факторы, оказывающие влияние на данный показатель. Классификация и виды систем теплоснабжения, схемы присоединения систем отопления к сети. Выбор системы отопления в зависимости от назначения помещения.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 17.12.2013
Размер файла 32,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

1. Потребление тепловой энергии в России

теплоснабжение отопление энергия

В топливно-энергетическом балансе приводятся следующие данные о потреблении населением тепла для отопления и горячего водоснабжения (ГВС) от централизованных источников. На протяжении 1990-х годов потребление тепла населением сокращалось, в начале 2000-х годов оно возросло. Последние годы суммарное потребление тепла от централизованных источников составляет около 510 млн. Гкал в год и не имеет выраженной тенденции изменения.

Рост потребления тепла в 2000-е годы связан с увеличением жилищной площади, снабжаемой теплом от СЦТ (Системы Центрального Теплоснабжения). Структурные изменения в экономике 1990-х годов привели к сокращению спроса на централизованное тепло со стороны промышленных потребителей. Из-за этого ухудшилась экономика централизованного теплоснабжения - увеличились удельные расходы топлива и денежные затраты. Это компенсировалось ростом тарифов, завышенной подачей тепла населению и списанием части потерь на потребителей. В то же время сокращение численности населения ограничивает рост потребления тепла на бытовые нужды.

Потребление тепла от СЦТ за период 1990-2007 гг. возросло всего на 5%. При этом за тот же период рост производства и потребления тепла в сфере децентрализованного теплоснабжения (ДТ) составил более 60% и продолжает динамично увеличиваться. Доля ДТ в общем объеме теплоснабжения населения достигла в 2007 г. 41%. Как показывают данные табл. 3, роль ДТ возрастает, и рост потребления тепла в этом сегменте достаточно устойчив.

Рациональное использование тепловой энергии напрямую зависит от систем теплоснабжения и отопления. В данной работе мы рассмотрим различные виды таких систем, а так же их выбор в зависимости от назначения здания.

2. Понятие о теплоснабжении и отоплении

Виды систем теплоснабжения

Под теплоснабжением понимают систему обеспечения теплом зданий и сооружений.

Теплоснабжение населения России технически осуществляется от централизованных источников, которые представлены ТЭЦ и котельными мощностью свыше 20 Гкал/ч, и децентрализованных источников тепла, к которым относятся малые котельные и различные индивидуальные теплогенераторы.

Система теплоснабжения состоит из следующих функциональных частей:

1. Источник производства тепловой энергии (котельная, ТЭЦ);

2. Транспортирующие устройства тепловой энергии к помещениям (тепловые сети);

3. Теплопотребляющие приборы, которые передают тепловую энергию потребителю (радиаторы отопления, калориферы).

Классификация систем теплоснабжения

По месту выработки теплоты системы теплоснабжения делятся на:

- централизованные (источник производства тепловой энергии работает на теплоснабжение группы зданий и связан транспортными устройствами с приборами потребления тепла);

- местные (потребитель и источник теплоснабжения находятся в одном помещении или в непосредственной близости).

По роду теплоносителя в системе:

- водяные;

- паровые.

По способу подключения системы отопления к системе теплоснабжения:

- зависимые (теплоноситель, нагреваемый в теплогенераторе и транспортируемый потепловым сетям, поступает непосредственно в теплопотребляющие приборы);

- независимые (теплоноситель, циркулирующий по тепловым сетям, в теплообменнике нагревает теплоноситель, циркулирующий в системе отопления).

По способу присоединения системы горячего водоснабжения к системе теплоснабжения:

- закрытая (вода на горячее водоснабжение забирается из водопровода и нагревается в теплообменнике сетевой водой);

- открытая (вода на горячее водоснабжение забирается непосредственно из тепловой сети).

Централизованное теплоснабжение.

Централизованные системы теплоснабжения, обеспечивающие наиболее экономное использование топлива, имеют наиболее высокие экономические показатели и характеризуется пониженными удельными расходами топлива на выработку тепловой энергии.

Централизованные системы теплоснабжения обеспечивают потребителей теплом низкого и среднего потенциала (до 350), на выработку которого затрачивается около 25% всего добываемого в стране топлива. Тепло, как известно, является одним из видов энергии, поэтому при решении основных вопросов энергоснабжения отдельных объектов и территориальных районов теплоснабжение должно рассматриваться совместно с другими энергообеспечивающими системами - электроснабжением и газоснабжением.

Источниками тепла в централизованных системах теплоснабжения служат или теплоэлектроцентрали (ТЭЦ), производящие одновременно и электроэнергию, и тепло, или крупные котельные, именуемые иногда районными тепловыми станциями. Системы теплоснабжения на базе ТЭЦ называются «теплофикационными».

В зависимости от организации движения теплоносителя системы теплоснабжения могут быть замкнутыми, полузамкнутыми и разомкнутыми.

В замкнутых системах потребитель использует только часть тепла, содержащегося в теплоносителе, а сам теплоноситель вместе с оставшимся количеством тепла возвращается к источнику, где снова пополняется теплом (двухтрубные закрытые системы). В полузамкнутых системах у потребителя используется и часть поступающего к нему тепла, и часть самого теплоносителя, а оставшиеся количества теплоносителя и тепла возвращаются к источнику (двухтрубные открытые системы). В разомкнутых системах, как сам теплоноситель, так и содержащееся в нем тепло полностью используется у потребителя (однотрубные системы).

Полученное в источнике тепло передают тому или иному теплоносителю (вода, пар), который транспортируют по тепловым сетям к абонентским вводам потребителей.

На абонентских вводах происходит переход тепла (а в некоторых случаях и самого теплоносителя) из тепловых сетей в местные системы теплопотребления. При этом в большинстве случаев осуществляется утилизация неиспользованного в местных системах отопления и вентиляции тепла для приготовления воды систем горячего водоснабжения.

На вводах происходит также местное (абонентское) регулирование количества и потенциала тепла, передаваемого в местные системы, и осуществляется контроль за работой этих систем.

В зависимости от принятой схемы ввода, т.е. в зависимости от принятой технологии перехода тепла из тепловых сетей в местные системы, расчетные расходы теплоносителя в системе теплоснабжения могут изменяться в 1,5-2 раза, что свидетельствует о весьма существенном влиянии абонентских вводов на экономику всей системы теплоснабжения.

В централизованных системах теплоснабжения в качестве теплоносителя используется вода и водяной пар, в связи, с чем различают водяные и паровые системы теплоснабжения.

Вода как теплоноситель имеет ряд преимуществ перед паром; некоторые из этих преимуществ приобретают особо важное значение при отпуске тепла с ТЭЦ. К последним относится возможность транспортирования воды на большие расстояния без существенной потери её энергетического потенциала, т.е. её температуры понижение температуры воды в крупных системах составляет менее 1°С на 1 км пути). Энергетический потенциал пара - его давление - уменьшается при транспортировании более значительно, составляя в среднем 0,1 - 015 МПа на 1 км пути. Таким образом, в водяных системах давление пара в отборах турбин может быть очень низким (от 0,06 до 0,2 МПа), тогда как в паровых системах оно должно составлять до 1-1,5 МПа. Повышение же давления пара в отборах турбин приводит к увеличению расхода топлива на ТЭЦ и уменьшению выработки электроэнергии на тепловом потреблении.

Кроме того, водяные системы позволяют сохранить на ТЭЦ в чистоте конденсат греющего воду пара без устройства дорогих и сложных паропреобразователей. При паровых же системах конденсат возвращается от потребителей нередко загрязненным и далеко не полностью (40-50%), что требует значительных затрат на его очистку и приготовление добавочной питательной воды котлов.

К другим достоинствам воды как теплоносителя относятся: меньшая стоимость присоединений к тепловым сетям местных водяных систем отопления, а при открытых системах еще и местных систем горячего водоснабжения; возможность центрального (у источника тепла) регулирования отпуска тепла потребителям изменением температуры воды; простота эксплуатации - отсутствие у потребителей неизбежных при паре конденсатоотводчиков и насосных установок по возврату конденсата.

Пар как теплоноситель в свою очередь имеет определенные достоинства по сравнению с водой:

а) большую универсальность, заключающуюся в возможности удовлетворения всех видов теплопотребления, включая технологические процессы;

б) меньший расход электроэнергии на перемещение теплоносителя (расход электроэнергии на возврат конденсата в паровых системах весьма невелик по сравнению с затратами электроэнергии на перемещение воды в водяных системах);

в) незначительность создаваемого гидростатического давления вследствие малой удельной плотности пара по сравнению с плотностью воды.

Неуклонно проводимая в нашей стране ориентация на более экономичные теплофикационные системы теплоснабжения и указанные положительные свойства водяных систем способствуют их широкому применению в жилищно-коммунальном хозяйстве городов и посёлков. В меньшей степени водяные системы применяются в промышленности, где более 2/3 всей потребности в тепле удовлетворяются паром. Так как промышленное теплопотребление составляет около 2/3 всего теплопотребления страны, доля пара в покрытии общего расхода тепла остаётся еще очень значительной.

Автономные системы теплоснабжения

Автономные системы теплоснабжения предназначены для отопления и горячего водоснабжения одноквартирных и блокированных жилых домов. К автономной системе отопления и горячего водоснабжения относятся: источник теплоснабжения (котел) и сеть трубопроводов с нагревательными приборами и водоразборной арматурой.

Преимущества автономных систем теплоснабжения заключаются в следующем:

·  отсутствие дорогостоящих наружных тепловых сетей;

·  возможность быстрой реализации монтажа и запуска в работу систем отопления и горячего водоснабжения;

·  низкие первоначальные затраты;

·  упрощение решения всех вопросов, связанных со строительством, так как они сосредоточены в руках владельца;

·  сокращение расхода топлива за счет местного регулирования отпуска тепла и отсутствие потерь в тепловых сетях.

Схемы присоединения систем отопления к тепловой сети

Теплопотребители подключаются к тепловым сетям двумя принципиально отличными способами - по зависимой и независимой схемам (Рис.2)

- зависимое присоединение предполагает подачу горячей воды в отопительные приборы непосредственно из наружных тепловых сетей

- независимое присоединение предполагает подачу горячей воды из наружных тепловых сетей в теплообменники. В этом случае нагрев отопительных приборов осуществляется с помощью воды, циркулирующей по внутреннему контуру теплообменников и дополнительно подогреваемой в них.

В соответствии с нормативами системы отопления, вентиляции и кондиционирования воздуха должны присоединяться к двухтрубным водяным тепловым сетям, как правило, по зависимой схеме.

Виды систем отопления. Классификация

Отопление - это искусственное поддержание температуры воздуха в помещении на уровне более высоком, чем температура наружного воздуха.

Отопление помещений, зданий и сооружений осуществляется для поддержания в них заданного уровня температур, определяемых условиями теплового комфорта или требованиями происходящих в них тепловых процессов.

Система отопления -- комплекс устройств, выполняющих функцию отопления -- котлы отопительные, сетевые насосы, устройства автоматического поддержания температуры в помещениях, радиаторы отопления и другие.

Отопительный прибор -- устройство, предназначенное для передачи тепла от теплоносителя к воздуху и ограждающим конструкциям отапливаемого помещения.

Системы отопления можно разделить на 2 основных вида - конвективные и лучистые, а так же:

1. По радиусу действия -- местные и центральные;

2. По типу источника нагрева -- газовые, мазутные, электрические, пеллетные, дровяные, угольные, дизельные, торфяные, солнечные, геотермальные.

3. По виду циркуляции теплоносителя -- с естественной и искусственной (механической, с использованием насосов);

4. По типу теплоносителя -- воздушные, водяные, паровые, комбинированные;

5. По способу разводки -- с верхней, нижней, комбинированной, горизонтальной, вертикальной;

6. По способу присоединения приборов -- однотрубные, двухтрубные, трёхтрубные, четырёхтрубные, комбинированные;

Однотрубная. Устроена следующим образом: отопительные приборы одного стояка подключены последовательно, то есть теплоноситель, постепенно охлаждаясь, проходит стояк из прибора в прибор. При этом, логично, в последний из них он попадёт значительно менее горячим, чем в первый. Эта разница компенсируется разной поверхностью теплоотдачи приборов (например, различное количество секций для чугунных радиаторов) -- меньшей в начале и большей в конце. Также может быть предусмотрен обвязка отопительного прибора с использованием байпаса, или короткозамыкающего участка.

Двухтрубная. В этом случае отопительные приборы подключены к стояку параллельно, что позволяет сохранять одинаковую температуру теплоносителя на каждом. Такие системы более металлоёмки и требуют балансировки каждого прибора отдельно.

7. По типу применяемых приборов -- конвективные, лучистые, конвективно-лучистые;

8. По ходу движения теплоносителя в магистральных трубопроводах -- тупиковые и попутные;

9. По гидравлическим режимам -- с постоянным и изменяемым режимом;

10. По режиму работы -- постоянно работающие на протяжении отопительного периода и периодические (в том числе и аккумуляционные) системы отопления.

Все эти признаки системы в реальности, как правило, смешиваются -- например, водяная система с нижней разводкой, тупиковая, с изменяемой гидравликой, с нагревательными приборами -- конвекторами, электрическая -- прямого действия и воздушная или водяная системы отопления.

Центральные системы предназначены для отопления нескольких помещений единого теплового центра. Теплоисточник (теплообменник) и отопительные приборы разделены расстоянием друг от друга: теплоноситель нагревается в теплообменнике теплового центра (котельной), далее перемещается к теплопроводам в отдельные помещения и, передав тепло через отопительные приборы в них, возвращается в тепловой центр.

Центральные системы бывают водяные, паровые, воздушные и электрические. Характерным примером центральной системы отопления является система водяного отопления здания с собственной котельной. Центральная система может быть и районной, когда группа зданий отапливается без центральной тепловой станции (районная котельная, центральный тепловой пункт - ЦТП, теплоэлектроцентраль - ТЭЦ).

Водяное отопление

В нашей стране самым распространенным видом отопления является водяное. Водяным его можно называть весьма условно, т. к. в системе в качестве теплоносителя можно использовать не только воду, но и любую жидкость с высокими значениями теплоемкости. Чаще всего такое отопление называют традиционным.

В системах центрального водяного отопления теплопроводная жидкость (вода) нагревается в тепло-генераторе (котле), затем теплоноситель поступает по теплопроводу в приборы нагревания (калориферы и радиаторы), после чего накопленная в них тепловая энергия через стенки передается воздуху помещений, вследствие чего происходит остывание теплоносителя. Охлажденный теплоноситель вновь возвращается в котел, в котором он восстанавливает свою температуру и вновь направляется в нагревательные приборы. То есть происходит непрерывная круговая циркуляция (движение) жидкости: тепло - генератор - приборы для нагревания - тепло - генератор. Традиционные системы отопления обладают невысокой стоимостью и минимальным расходом материалов. В данном случае применяются трубы намного меньшего диаметра, чем при воздушном отоплении; жидкий теплоноситель обладает высокой теплоемкостью, т. е. единица объема воды содержит большее количество тепла, чем другие теплоносители; за меньшее время создается комфортная температура в отапливаемом помещении.

Но, помимо плюсов, традиционная система отопления имеет и минусы. Например, на установку такой системы затрачивается гораздо больше времени и сил, а также иногда возникают сложности при ее эксплуатации. То есть монтаж водяного трубопровода можно выполнить только при строительстве или капитальном ремонте жилого помещения, т. к. это предусматривает множество строительных операций. И еще, для того чтобы отопительная система работала постоянно, нужен бесперебойный нагрев теплоносителя, что означает постоянный присмотр за работой источника тепла. Кроме этого, в холодное время года такой тип отопительной системы нельзя оставлять надолго без присмотра: если требуется уехать на долгий срок, нужно из системы слить воду, иначе вода замерзнет, и трубы могут лопнуть. Долгое отсутствие воды в системе также отрицательно влияет на трубопровод (в нем появляется ржавчина).

Конструктивно системы водяного отопления (как с естественным, так и с искусственным побуждением) подразделяют:

1.По месту прокладки подающей магистрали -- на системы с верхней и нижней разводкой;

2.По способу присоединения нагревательных приборов к подающим стоякам -- на однотрубные и двухтрубные;

3.По расположению стояков -- на системы с вертикальными и горизонтальными стояками;

4.По схеме прокладки магистрали -- на системы с тупиковой схемой и с попутным движением воды в магистралях.

Системы отопления с верхней и нижней разводкой

При верхней разводке горячая вода в чердачном помещении направляется в различные стояки, по ним же поступает к нагревательным приборам-радиаторам. При нижней разводке горячая вода из котла поступает в стояки снизу (из подвала). Независимо от типа разводки расширительный бак всегда располагается в наиболее высокой точке системы, т. е. в чердачном помещении.

Однотрубные и двухтрубные системы отопления

Однотрубные системы водяного отопления не имеют обратных стояков, и вода, охлажденная в нагревательных приборах, возвращается в подающие стояки. В однотрубных системах в нижние нагревательные приборы поступает смесь горячей воды и воды, охлажденной в верхних приборах. Так как температура этой смеси ниже температуры воды в приборах верхних этажей, то поверхность нагрева нижних приборов должна быть несколько увеличена.

В однотрубных системах вода циркулирует в нагревательных приборах и стояках, которые их питают, вследствие разности температур воды в тех и других. Однотрубные системы можно устраивать по двум схемам. При схеме, приведенной па рис. 4а, в верхние радиаторы поступает из стояка только часть воды, остальная вода направляется по стояку к нижерасположенным радиаторам. Количество воды для каждого нагревательного прибора можно регулировать кранами, установленными у приборов.

Другая проточная система показана на рис. 4б. Здесь вся вода из стояка проходит последовательно через все нагревательные приборы, начиная с верхней. В отличии от простой однотрубной системы, в проточной системе в нижележащие радиаторы поступает не смесь горячей и охлажденной в верхних приборах воды, а только охлажденная вода. В проточных системах нельзя ставить у нагревательных приборов обычные краны двойной регулировки. Если бы были установлены такие краны, то, перекрыв у того или иного прибора кран, уменьшили бы подачу воды во все приборы, присоединенные к стояку, а полностью закрыв один из кранов, можно прекратить циркуляцию воды через все приборы данного стояка. Между тем установка нагревательных приборов без кранов влечет за собой большие неудобства, так как тогда становится невозможным регулировать температуру воздуха в помещениях.

Однотрубные системы отопления могут выполняться только с верхней разводкой, поэтому их применяют в зданиях, где имеются чердаки и где можно располагать подающие магистрали в верхних этажах. Поэтажный пуск данных систем в действие невозможен, и в этом их недостаток. Однако по сравнению с двухтрубными системами отопления однотрубные проще в монтаже и, кроме того, имеют более красивый внешний вид. Достоинство их в том, что на устройство однотрубной системы требуется меньше труб, чем на устройство двухтрубной. Все эти положительные особенности однотрубных систем весьма существенны и вполне оправдывают их широкое применение.

Системы отопления с вертикальными и горизонтальными стояками

Если нагревательные приборы разных этажей подключаются к единому стояку, то такая система является системой с вертикальными стояками (рис. 4а и 4б). Если нагревательные приборы одного этажа подключаются к единому стояку -- это система с горизонтальными стояками. Преимуществом системы с горизонтальным расположением стояка является меньшая стоимость монтажа и экономия труб. Недостатком является сложность эксплуатации и возможность скопления воздуха в нагревательных приборах с образованием воздушных пробок.

Системы отопления тупиковые и с попутным движением воды в магистралях

Показанные на рис. 4(а, б) системы отопления относятся к так называемым тупиковым системам, в которых циркуляционные кольца не равны по длине, причем самое короткое кольцо проходит через стояк, ближайший к котлу, а самое длинное -- через стояк, наиболее отдаленный от котла.

Такие системы называют системами с попутным движением воды, причем их обычно устанавливают только в системах с насосной циркуляцией. В этих системах все стояки и нагревательные приборы находятся почти в равных условиях, что значительно облегчает регулировку. Недостаток систем с попутным движением воды состоит в том, что для их устройства требуется большее количество труб, чем для тупиковых систем.

Паровое отопление

Паровое отопление -- одна из разновидностей систем отопления зданий. В отличие от водяного или воздушного отопления, теплоносителем является водяной пар. Иногда в быту водяное отопление зданий неправильно называют «паровым», хотя в жилых и общественных зданиях применение парового отопления сейчас запрещено строительными нормами и правилами.

Особенностью парового отопления является комбинированная отдача тепла рабочим телом (паром), которое не только снижает свою температуру, но и конденсируется на внутренних стенках отопительных приборов. Удельная теплота парообразования (конденсации), которая выделяется при этом, составляет около 2300 кДж/кг, тогда как остывание пара на 50 °C дает только 100 кДж/кг.

Источником тепла в системе парового отопления может служить отопительный паровой котёл, отбор пара из паровой турбины или редукционно-охладительная установка (РОУ), снижающая давление и температуру пара энергетических котлов до безопасных для потребителя параметров. Отопительными приборами являются радиаторы отопления, конвекторы, оребрённые или гладкие трубы. Образовавшийся в отопительных приборах конденсат возвращается к источнику тепла самотёком (в замкнутых системах) или подаётся насосом (в разомкнутых системах). Давление пара в системе может быть ниже атмосферного (т. н. вакуум-паровые системы) или выше атмосферного (до 6 атм). Температура пара не должна превышать 130 °С. Изменение температуры в помещениях производится регулированием расхода пара, а, если это невозможно, периодическим прекращением подачи пара. В преддверии морозов иногда приходится заранее прогревать здание, чтобы использовать его тепловую инерцию (т. н. «перетоп»).

Преимуществами парового отопления являются:

-небольшие размеры и меньшая стоимость отопительных приборов

-малая инерционность и быстрый прогрев системы

-отсутствие потерь тепла в теплообменниках.

Недостатками парового отопления являются:

-высокая температура на поверхности отопительных приборов

-невозможность плавного регулирования температуры помещений

-шум при заполнении системы паром

-сложности монтажа отводов к работающей системе.

Из-за невысокой стоимости паровое отопление широко применялось в первой половине XX века. В настоящее время паровое отопление может применяться как при централизованном, так и при автономном теплоснабжении в производственных помещениях, в лестничных клетках и вестибюлях, в тепловых пунктах и пешеходных переходах. Целесообразно использовать такие системы на предприятиях, где пар так или иначе применяется для производственных нужд.

Системы парового отопления классифицируют по следующим признакам:

-- по начальному давлению пара - системы низкого давления (ризб < 0,07 МПа);

-- способу возврата конденсата - системы с самотечным возвратом (замкнутые) и с возвратом конденсата с помощью питательного насоса (разомкнутые);

-- конструктивной схеме прокладки трубопроводов - системы с верхней, нижней и промежуточной прокладкой распределительного паропровода, а также с прокладкой сухого и мокрого конденсатопровода.

Схема системы парового отопления низкого давления с верхней прокладкой паропровода показана на рис. 7 а. Насыщенный пар, образующийся в котле 1, пройдя сухопарник (сепаратор) 12, попадает в паропровод 5 и далее поступает в отопительные приборы 7. Здесь пар отдает свою теплоту через стенки приборов воздуху отапливаемого помещения и превращается в конденсат. Последний стекает по возвратному конденсатопроводу 10 в котел 1, преодолевая при этом давление пара в котле за счет давления столба конденсата, который поддерживается высотой 200 мм по отношению к уровню воды в сухопарнике 12.

В верхнюю часть возвратного конденсатопровода 10 вмонтирована трубка 4, соединяющая его с атмосферой для продувки в момент ввода и вывода системы из эксплуатации.

Уровень воды в сухопарнике контролируют с помощью водомерного стекла 3. Для предупреждения повышения давления пара в системе выше заданного уровня устанавливают гидравлический затвор 2 с рабочей высотой жидкости, равной h.

Регулировку системы парового отопления производят паровыми вентилями 6 и контрольными тройниками 8 с пробками, добиваясь, чтобы при работе парового котла в расчетном режиме в каждый отопительный прибор поступало такое количество пара, которое успевало бы полностью в нем сконденсироваться. В этом случае из предварительно открытого контрольного тройника выделение пара практически не наблюдается и вероятность «проскока» конденсата в воздушную трубку 4 ничтожна мала. Потери конденсата в системе парового отопления компенсируют подпиткой барабана котла специально обработанной водой (освобожденной от солей жесткости), подаваемой по трубопроводу 11.

Системы парового отопления, как уже отмечалось, бывают с верхней и нижней разводками паропровода. Недостатком нижней разводки пара (рис. 7 б) является то, что образующийся конденсат в подъемных и вертикальных стояках стекает навстречу пару и иногда перекрывает паропровод, вызывая гидравлические удары. Более спокойный слив конденсата происходит, если паропровод 5 проложен с уклоном в сторону движения пара, а конденсатопровод 9 - в сторону котла. Для слива попутного конденсата из паропровода в конденсатопровод систему снабжают специальными перепускными петлями 13.

Если сеть парового отопления имеет большое разветвление, то самотечный слив конденсата производят в специальный сборный бак 3 (рис. 8), откуда его перекачивают насосом 8 в котел 1. Насос работает периодически, в зависимости от изменения уровня воды в сухопарнике 2. Такую схему отопления называют разомкнутой; в ней для отделения конденсата от пара, как правило, используют конденсатоотводчики (конденсатные горшки) 7. Последние чаще всего имеют поплавковую или сильфонную конструкцию.

На промышленных предприятиях, имеющих производственные потребители пара повышенного давления, системы парового отопления подключают к теплофикационным магистралям по схемам высокого давления (рис. 9). Пар от собственной или районной котельной поступает в распределительную гребенку 1, где давление его контролируют манометром 3. Затем по отходящим от гребенки 1 паропроводам 2 пар направляют к производственным потребителям, а по паропроводам Т1 - к потребителям системы парового отопления. Паропроводы Т1 подсоединены к гребенке 6 парового отопления, а гребенка 6 - к гребенке 1 через редукционный клапан 4. Редукционный клапан дросселирует пар до давления не более 0,3 МПа. Разводку паропроводов высокого давления систем парового отопления выполняют, как правило, поверху. Диаметры паропроводов и поверхности нагрева отопительных приборов этих систем несколько меньше, чем у систем парового отопления низкого давления.

В производственных помещениях с повышенными требованиями к чистоте воздуха, а также в жилых, общественных, административных и административно-бытовых зданиях применять паровое отопление нельзя. Системы парового отопления допускается использовать только в непожаро- и невзрывоопасных производственных помещениях с кратковременным пребыванием людей.

Воздушное отопление

В системах воздушного отопления используется атмосферный воздух.

Воздушное отопление имеет много общего с другими видами централизованного отопления. И воздушное, и водяное отопление основаны на передаче теплоты в отапливаемые помещения от охлаждающегося теплоносителя. В центральной системе воздушного отопления, как и в системах водяного и парового отопления, имеется теплогенератор (центральная установка для нагревания воздуха) и теплопроводы (каналы и воздуховоды для перемещения теплоносителя).

Воздух для отопления обычно является вторичным теплоносителем, так как нагревается в калориферах другим, первичным теплоносителем (например продуктами сгорания). Воздух нагретый до температуры более высокой, чем в помещении, отдает избыток тепла и, охладившись, возвращается для повторного нагревания.

Этот процесс может осуществляться 2мя способами:

- нагретый воздух, попадая в обогреваемое помещение, смешивается с окружающим воздухом и охлаждается до его температуры;

- нагретый воздух не попадает в обогреваемое помещение, а перемещается в окружающих помещение каналах, нагревая их стенки.

Размещено на Allbest.ru

...

Подобные документы

  • Тепловой баланс, характеристика системы теплоснабжения предприятия. Расчет и подбор водоподогревателей систем отопления и горячего водоснабжения. Расчет установки по использованию теплоты пароконденсатной смеси для нужд горячего водоснабжения и отопления.

    курсовая работа [194,9 K], добавлен 18.04.2012

  • Определение тепловой мощности системы отопления. Выбор и обоснование схемного решения системы отопления. Выбор компрессора. Компоновка теплонасосной установки. Предохранительный клапан в контуре теплового насоса. Виброизоляция оборудования установки.

    дипломная работа [2,2 M], добавлен 25.12.2015

  • Расчет нагрузок отопления, вентиляции и горячего водоснабжения зданий жилого микрорайона. Гидравлический и тепловой расчет сети, блочно-модульной котельной для теплоснабжения, газоснабжения. Выбор источника теплоснабжения и оборудования ГРУ и ГРПШ.

    курсовая работа [1,1 M], добавлен 12.03.2013

  • Расчет воздухообмена для коровника, тепловой мощности системы отопления, требования к ней. Расчет калориферов воздушного отопления, естественной вытяжной вентиляции. Определение тепловой нагрузки котельной. Гидравлический расчет сети теплоснабжения.

    курсовая работа [1,1 M], добавлен 01.12.2014

  • Определение тепловых нагрузок помещений на систему отопления. Подбор приборов к системе отопления основной части здания и для четвертой секции, балансировка системы отопления. Гидравлический расчет системы отопления двухтрубной поквартирной системы.

    курсовая работа [101,6 K], добавлен 23.07.2011

  • Теплотехнический расчет воздухообмена, мощности систем отопления, калориферов воздушного отопления, систем вентиляции; выбор вентиляторов для приточной вентиляции. Составление и расчет тепловой схемы котельной, расхода теплоты на горячее водоснабжение.

    курсовая работа [195,8 K], добавлен 05.10.2010

  • Исследование и проектирование геотермальных установок, а также системы отопления, работающих на геотермальных источниках теплоснабжения. Расчет коэффициента эффективности для различных систем геотермального теплоснабжения. Подбор отопительных приборов.

    контрольная работа [139,6 K], добавлен 19.02.2011

  • Теплотехнический расчет наружных стен, пола, расположенного на грунте, световых проёмов, дверей. Определение тепловой мощности системы отопления. Расчет отопительных приборов. Гидравлический расчет системы водяного отопления. Расчет и подбор калорифера.

    курсовая работа [422,1 K], добавлен 14.11.2017

  • Снабжение теплом жилых, общественных и промышленных зданий (сооружений) для обеспечения коммунально-бытовых и технологических нужд потребителей. Характеристика труб, опор, компенсаторов. Схемы присоединений систем отопления и вентиляции к тепловым сетям.

    реферат [61,4 K], добавлен 07.01.2011

  • Классификация видов отопления помещений в зависимости от преобладающего способа теплопередачи. Особенности конвективной и лучистой систем отопления. Характеристика огневоздушного, водяного, парового, инфракрасного и динамического вида отопления.

    курсовая работа [1,2 M], добавлен 02.04.2015

  • Выявление наиболее экономичного вида отопления жилых помещений. Расчет количества теплоты, которое необходимо для отопления. Сравнительный анализ различных систем отопления. Формула для внутренней энергии для идеального газа. Отопление тепловыми сетями.

    реферат [53,9 K], добавлен 21.11.2010

  • Теплотехнический расчет системы. Определение теплопотерь через ограждающие конструкции, на инфильтрацию наружного воздуха. Расчет параметров системы отопления здания, основного циркуляционного кольца системы водяного отопления и системы вентиляции.

    курсовая работа [151,7 K], добавлен 11.03.2013

  • Технология монтажа систем отопления и работы, проводимые во время монтирования. Техника безопасности и испытания, проводимые для проверки надежности системы нагрева помещения. Составление спецификации элементов конструкции и комплектовочной ведомости.

    курсовая работа [30,5 K], добавлен 19.12.2010

  • Определение диаметров подающих трубопроводов и потерь напора - задача гидравлического расчета. Устройство систем отопления, их инерционность и принципы проектирования. Способы подключения отопительных приборов. Однотрубная система водяного отопления.

    реферат [154,9 K], добавлен 22.12.2012

  • Элементы и принципы функционирования систем отопления и горячего водоснабжения. Принцип работы теплосчетчика. Регуляторы давления прямого действия. Устройство тепловых пунктов. Регуляторы перепада давлений, работающие без постороннего источника энергии.

    курсовая работа [1,0 M], добавлен 14.01.2015

  • Назначение, схема и принцип действия конденсационной электростанции. Схема присоединения системы отопления с подмешивающим насосом на перемычке, достоинство и недостатки схемы. Расчет бойлерной установки для теплоснабжения промышленных предприятий.

    контрольная работа [516,6 K], добавлен 04.09.2011

  • Исследование надежности системы теплоснабжения средних городов России. Рассмотрение взаимосвязи инженерных систем энергетического комплекса. Характеристика структуры системы теплоснабжения города Вологды. Изучение и анализ статистики по тепловым сетям.

    дипломная работа [1,4 M], добавлен 10.07.2017

  • Расчет тепловых нагрузок отопления вентиляции. Сезонная тепловая нагрузка. Расчет круглогодичной нагрузки, температур и расходов сетевой воды. Расчет тепловой схемы котельной. Построение тепловой схемы котельной. Тепловой расчет котла, текущие затраты.

    курсовая работа [384,3 K], добавлен 17.02.2010

  • Система отопления как совокупность конструктивных элементов, предназначенных для получения, переноса и передачи необходимого количества теплоты в обогреваемые помещения. Рассмотрение особенностей электрификации жилого дома с разработкой теплоснабжения.

    дипломная работа [2,4 M], добавлен 14.05.2013

  • Определение понятия тепловой энергии и основных ее потребителей. Виды и особенности функционирования систем теплоснабжения зданий. Расчет тепловых потерь, как первоочередной документ для решения задачи теплоснабжения здания. Теплоизоляционные материалы.

    курсовая работа [65,7 K], добавлен 08.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.