Современные методы контроля технического состояния деталей вагонов

Методы контроля проникающими веществами. Технология капиллярного и пенетрантного контроля. Физико-химический процесс сорбции (адсорбции, абсорбции). Диффузия как следствие взаимодействия пенетранта с воздухом, сжатым в тупиковом конце капилляра.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 30.11.2014
Размер файла 495,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Методы контроля проникающими веществами. Капиллярный контроль, пенетрантный контроль

1.1 Общие сведения о методе

1.2 Сущность метода капиллярного контроля

1.3 Основные физические явления, используемые в капиллярной дефектоскопии

2. Процессы капиллярной дефектоскопии

3. Технология и средства контроля

4. Чувствительность капиллярного контроля и ее проверка

5. Объекты контроля

6. Задачи

Список используемых источников

Введение

Важное направление развития КМК - его автоматизация. Рассмотренные ранее средства автоматизируют контроль однотипных небольших изделий.

Автоматизация контроля изделий разного типа, в том числе крупногабаритных, возможна с применением адаптивных роботов-манипуляторов, т. е. обладающих способностью приспосабливаться к изменяющимся условиям. Такие роботы успешно используются на окрасочных работах, которые во многом подобны операциям при КМК.

Наиболее трудно поддается автоматизации осмотр поверхности изделий и принятие решения о наличии дефектов. В настоящее время для улучшения условий выполнения этой операции применяют осветители и УФ-облучатели большой мощности. Чтобы уменьшить действие на контролера УФ-излучения, применяют световоды и телевизионные системы. Однако это не решает задачи полной автоматизации с устранением влияния субъективных качеств контролера на результаты контроля.

Создание автоматических систем оценки результатов контроля требует разработки соответствующих алгоритмов для ЭВМ. Работы ведутся по нескольким направлениям: определение конфигурации индикаций (протяженность, ширина, площадь), соответствующей недопустимым дефектам, и корреляционное сравнение изображений контролируемого участка объектов до и после обработки дефектоскопическими материалами. Кроме отмеченной области, ЭВМ в КМК применяют для сбора и анализа статистических данных с выдачей рекомендаций на корректировку технологического процесса, для оптимального подбора дефектоскопических материалов и технологии контроля.

Важное направление исследований - изыскание новых дефектоскопических материалов и технологии их применения, имеющее целью повышение чувствительности и производительности контроля. Предложено применение в качестве пенетранта ферромагнитных жидкостей. В них в жидкой основе (например, керосине) взвешены ферромагнитные частицы очень малого размера (2...10 мкм), стабилизированные ПАВ, в результате чего жидкость ведет себя как однофазная система. Проникновение такой жидкости в дефекты интенсифицируется магнитным полем, а обнаружение индикаций возможно магнитными датчиками, что облегчает автоматизацию контроля.

Очень перспективное направление совершенствования капиллярного контроля - использование электронного парамагнитного резонанса. Сравнительно недавно получены вещества типа стабильных нитроксильных радикалов. В них имеются слабосвязанные электроны, которые могут резонировать в электромагнитном поле частотой от десятков гигагерц до мегагерц, причем спектральные линии определяются с большой степенью точности. Нитроксильные радикалы стабильны, малотоксичны, способны растворяться в большинстве жидких веществ. Это дает возможность вводить их в жидкие пенетранты. Индикация основывается на регистрации спектра поглощения в возбуждающем электромагнитном поле радиоспектроскопа. Чувствительность этих приборов очень велика, они позволяют обнаруживать скопления 1012 парамагнитных частиц и более. Таким образом, решается вопрос об объективных и высокочувствительных средствах индикации при капиллярной дефектоскопии.

1. Методы контроля проникающими веществами. Капиллярный контроль, пенетрантный контроль

1.1 Общие сведения о методе

Капиллярный метод контроля (КМК) основан на капиллярном проникновении индикаторных жидкостей в полость несплошностей материала объекта контроля и регистрации образующихся индикаторных следов визуально или с помощью преобразователя. Метод позволяет обнаруживать поверхностные (т. е. выходящие на поверхность) и сквозные (т. е. соединяющие противоположные поверхности стенки ОК.) дефекты, которые могут быть обнаружены также при визуальном контроле. Такой контроль, однако, требует больших затрат времени, особенно при выявлении слабораскрытых дефектов, когда выполняют тщательный осмотр поверхности с применением средств увеличения. Преимущество КМК в многократном ускорении процесса контроля.

Обнаружение сквозных дефектов входит в задачу методов течеискания, которые рассмотрены в гл. 10. В методах течеискания наряду с другими способами используют КМК, причем индикаторную жидкость наносят с одной стороны стенки ОК, а регистрируют с другой. В этой главе рассмотрен вариант КМК, при котором индикацию выполняют с той же поверхности ОК, с которой наносят индикаторную жидкость. Основными документами, регламентирующими применение КМК, являются ГОСТ 18442-8 0, 28369-89 и 24522-80. пенетрант диффузия сорбция капиллярный

Процесс капиллярного контроля состоит из следующих основных операций (рис. 1):

а) очистка поверхности 1 ОК и полости дефекта 2 от загрязнений, жира и т. д. путем их механического удаления и растворения. Этим обеспечивается хорошая смачиваемость всей поверхности ОК индикаторной жидкостью и возможность проникновения ее в полость дефекта;

б) пропитка дефектов индикаторной жидкостью. Для этого она должна хорошо смачивать материал изделия и проникать в дефекты в результате действия капиллярных сил. По этому признаку метод называют капиллярным, а индикаторную жидкость - индикаторным пенетрантом или просто пенетрантом (от лат. Penetrо - проникаю, достаю);

в) удаление с поверхности изделия излишков пенетранта, при этом пенетрант в полости дефектов сохраняется. Для удаления используют эффекты диспергирования и эмульгирования, применяют специальные жидкости-очистители;

Рис. 1 - Основные операции при капиллярной дефектоскопии

г) обнаружение пенетранта в полости дефектов. Как отмечено выше, это делают чаще визуально, реже - с помощью специальных устройств-преобразователей. В первом случае на поверхности наносят специальные вещества-проявители 4, извлекающие пенетрант из полости дефектов за счет явлений сорбции или диффузии. Сорбционный проявитель имеет вид порошка или суспензии. Пенетрант пропитывает весь слой проявителя (обычно довольно тонкий) и образует следы (индикации) 5 на его наружной поверхности. Эти индикации обнаруживают визуально. Различают яркостный или ахроматический метод в котором индикации имеют более темный тон по сравнению с белым проявителем; цветной метод, когда пенетрант обладает ярким оранжевым или красным цветом, и люминесцентный метод, когда пенетрант светится под действием ультрафиолетового облучения. Заключительная операция при КМК - очистка ОК от проявителя.

В литературе по капиллярному контролю дефектоскопические материалы обозначают индексами: индикаторный пенетрант - «И», очиститель - «М», проявитель - «П». Иногда после буквенного обозначения следуют цифры в скобках или в виде индекса, означающие особенность применения данного материала.

1.2 Сущность метода капиллярного контроля

Капиллярный метод неразрушающего контроля (ГОСТ 18442-80) основан на капиллярном проникновении внутрь дефекта индикаторной жидкости, хорошо смачивающей материал объекта контроля (ОК) с последующей регистрацией индикаторных следов.

Капиллярный метод контроля пригоден для выявления несплошностей с поперечными размером 0,1-500 мкм, в том числе сквозных, на поверхности черных и цветных металлов, сплавов, керамики, стекла и т. п. Широко применяется для контроля целостности сварного шва.

Красящий пенетрант наносится на поверхность ОК. Благодаря особым качествам, которые обеспечиваются подбором определенных физических свойств пенетранта: поверхностного натяжения, вязкости, плотности, он, под действием капиллярных сил, проникает в мельчайшие дефекты, имеющие выход на поверхность объекта контроля. Проявитель, наносимый на поверхность объекта контроля через некоторое время после осторожного удаления с поверхности пенетранта, растворяет находящийся внутри дефекта краситель и за счет диффузии «вытягивает» оставшийся в дефекте пенетрант на поверхность объекта контроля. Имеющиеся дефекты видны достаточно контрастно. Индикаторные следы в виде линий указывают на трещины или царапины, отдельные точки - на поры.

Процесс обнаружения дефектов капиллярным методом разделяется на 5 стадий.

1 стадия - предварительная очистка поверхности. Чтобы краситель мог проникнуть в дефекты на поверхности, ее предварительно следует очистить водой или органическим очистителем. Все загрязняющие вещества (масла, ржавчина, и т. п.) любые покрытия (ЛКП, металлизация) должны быть удалены с контролируемого участка. После этого поверхность высушивается, чтобы внутри дефекта не оставалось воды или очистителя.

2 стадия - нанесение пенетранта. Пенетрант, обычно красного цвета, наносится на поверхность путем распыления, кистью или погружением ОК в ванну, для хорошей пропитки и полного покрытия пенетрантом. Как правило, при температуре 5-50°С, на время 5-30 мин.

3 стадия - удаление излишков пенетранта. Избыток пенетранта удаляется протиркой салфеткой, промыванием водой. Или тем же очистителем, что и на стадии предварительной очистки. При этом пенетрант должен быть удален с поверхности, но никак не из полости дефекта. Поверхность далее высушивается салфеткой без ворса или струей воздуха. Используя при этом очиститель есть риск вымывания пенетранта и неправильной его индикации.

4 стадия - нанесение проявителя. После просушки сразу же на ОК наносится проявитель, обычно белого цвета, тонким ровным слоем.

5 стадия - контроль. Инспектирование ОК начинается непосредственно после окончания процесса проявки и заканчивается согласно разным стандартам не более, чем через 30 мин. Интенсивность окраски говорит о глубине дефекта, чем бледнее окраска, тем дефект мельче. Интенсивную окраску имеют глубокие трещины. После проведения контроля проявитель удаляется водой или очистителем.

Наиболее удобны распылители, например аэрозольные баллоны. Можно наносить проявитель и окунанием. Сухие проявители наносятся в вихревой камере, либо электростатически. После нанесения проявителя следует выждать время от 5 мин для крупных дефектов, до 1 часа для мелких дефектов. Дефекты будут проявляться, как красные следы на белом фоне.

Сквозные трещины на тонкостенных изделиях с помощью капиллярного контроля можно обнаруживать, нанося проявитель и пенетрант с разных сторон изделия. Прошедший насквозь краситель будет хорошо виден в слое проявителя.

Согласно ГОСТ 18442-80 класс чувствительности капилярного контроля определяется в зависимости от размера выявляемых дефектов. В качестве параметра размера дефекта принимается поперечный размер дефекта на поверхности объекта контроля - так называемая ширина раскрытия дефекта. Нижний порог чувствительности, т. е. минимальная величина раскрытия выявленных дефектов ограничивается тем, что весьма малое количество пенетранта; задержавшееся в полости небольшого дефекта, оказывается недостаточным, чтобы получить контрастную индикацию при данной толщине слоя проявляющего вещества. Существует также верхний порог чувствительности, который определяется тем, что из широких, но неглубоких дефектов пенетрант вымывается при устранении излишков пенетранта на поверхности. Установлено 5 классов чувствительности (по нижнему порогу) в зависимости от размеров дефектов (табл.1).

Таблица 1

Класс чувствительности

Ширина раскрытия дефекта, мкм

I

Менее 1

II

От 1 до 10

III

От 10 до 100

IV

От 100 до 500

технологический

Не нормируется

За рубежом установлены другие шкалы чувствительности пенетрантов. Например, в немецком промышленном стандарте DIN 54 152, чувствительность пенетрантов также разделяется на четыре класса, но шкала чувствительности обратная (табл.2).

Таблица 2

Класс чувствительности

Ширина раскрытия дефекта, мкм (±20%)

Толщина никелевого покрытия, мкм (±10%)

I - низкий

4

100

II - средний

2

60

III - высокий

1

60

IV - очень высокий

0,6

50

Чувствительность дефектоскопических материалов определяется на контрольных образцах, т.е. на пластинах определенной шероховатости с заранее нанесенными на них нормированными трещинами. Это, как правило, стальные, алюминиевые или титановые пластины. С помощью контрольных образцов можно судить о возможностях того, или иного набора; степени ухудшения свойств с течением времени; правильности применяемых методик.

1.3 Основные физические явления, используемые в капиллярной дефектоскопии

Поверхностное натяжение и смачивание. Наиболее важной характеристикой индикаторных жидкостей является их способность к смачиванию материала изделия. Смачивание вызывается взаимным притяжением атомов и молекул (в дальнейшем - молекул) жидкости и твердого тела.

Как известно, между молекулами среды действуют силы взаимного притяжения. Молекулы, находящиеся внутри вещества, испытывают со стороны других молекул в среднем одинаковое действие по всем направлениям. Молекулы же, находящиеся па поверхности, подвергаются неодинаковому притяжению со стороны внутренних слоев вещества и со стороны, граничащей с поверхностью среды.

Поведение системы молекул определяется условием минимума свободной энергии, т. е. той части потенциальной энергии, которая изотермически может обратиться в работу. Свободная энергия молекул на поверхности жидкости и твердого тела больше, чем внутренних, когда жидкость или твердое тело находятся в газе или вакууме. В связи с этим они стремятся приобрести форму с минимальной наружной поверхностью. В твердом теле этому препятствует явление упругости формы, а жидкость в невесомости под влиянием этого явления приобретает форму шара. Таким образом, поверхности жидкости и твердого тела стремятся сократиться, и возникает давление поверхностного натяжения.

Величину поверхностного натяжения определяют работой (при постоянной температуре), необходимой для образования единицы, площади поверхности раздела двух находящихся в равновесии фаз. Ее часто называют силой поверхностного натяжения, понижая под этим следующее. На границе раздела, сред выделяют произвольную площадку. Натяжение рассматривают как результат действия распределенной силы, приложенной к периметру, этой площадки. Направление сил - по касательной к границе раздела и перпендикулярно периметру. Силу, отнесенную к единице длины периметра, называют силой поверхностного натяжения. Два равноправных определения поверхностного натяжения соответствуют двум применяемым для его измерения единицам: Дж/м2 = Н/м.

Для воды в воздухе (точнее, в воздухе, насыщенном испарениями с поверхности воды) при температуре 26°C нормальном атмосферном давлении сила поверхностного натяжения у = (7,275 ± 0,025) 10-2 Н/м. Это значение уменьшается с увеличением температуры. В различных газовых средах поверхностное натяжение жидкостей практически не изменяется.

Рассмотрим каплю жидкости, лежащую на поверхности: твердого тела (рис. 2). Силой тяжести пренебрегаем. Выделим элементарный цилиндр в точке А, где соприкасаются твердое тело, жидкость и окружающий газ. На единицу длины этого цилиндра действуют три силы поверхностного натяжения: твердое тело - газ утг, твердое тело - жидкость утж и жидкость - газ ужг = у. Когда капля находится в состоянии покоя, равнодействующая проекций этих сил на поверхность твердого тела равна нулю:

(1.3.1)

Угол 9 называют краевым углом смачивания. Если утг>утж, то он острый. Это значит, что жидкость смачивает твердое тело (рис. 9.2, а). Чем меньше 9, тем сильнее смачивание. В пределе утг>утж + у отношение (утг - утж)/ст в (1.3.1) больше единицы, чего не может быть, так как косинус угла всегда по модулю меньше единицы. Предельный случай и = 0 будет соответствовать полному смачиванию, т. е. растеканию жидкости по поверхности твердого тела до толщины молекулярного слоя. Если утж>утг, то cos и отрицателен, следовательно, угол и тупой (рис. 2, б). Это означает, что жидкость не смачивает твердое тело.

Рис. 2. Смачивание (а) и несмачивание (б) поверхности жидкостью

Поверхностное натяжение у характеризует свойство самой жидкости, a у cos и - смачиваемость этой жидкостью поверхности данного твердого тела. Составляющую силы поверхностного натяжения у cos и, «растягивающую» каплю вдоль поверхности, иногда называют силой смачивания. Для большинства хорошо смачивающих веществ cos и близок к единице, например, для границы стекла с водой он равен 0,685, с керосином - 0,90, с этиловым спиртом - 0,955.

Сильное влияние на смачивание оказывает чистота поверхности. Например, слой масла на поверхности стали или стекла резко ухудшает ее смачиваемость водой, cos и становится отрицательным. Тончайший слой масла, иногда сохраняющийся на поверхности ОК и трещин очень мешает применению пенетрантов на водяной основе.

Микрорельеф поверхности ОК вызывает увеличение площади смачиваемой поверхности. Для оценки краевого угла смачивания иш на шероховатой поверхности пользуются уравнением:

где и - краевой угол для гладкой поверхности; б - истинная площадь шероховатой поверхности с учетом неровности ее рельефа, а б0 - проекция ее на плоскость.

Растворение состоит в распределении молекул растворяемого вещества среди молекул растворителя. В капиллярном методе контроля растворение применяют при подготовке объекта к контролю (для очистки полости дефектов). Растворение газа (обычно воздуха), собравшегося у конца тупикового капилляра (дефекта) в пенетранте, существенно повышает предельную глубину проникновения пенетранта в дефект.

Для оценки взаимной растворимости двух жидкостей применяют эмпирическое правило, согласно которому «подобное растворяется в подобном». Например, углеводороды хорошо растворяются в углеводородах, спирты - в спиртах и т. д. Взаимная растворимость жидкостей и твердых тел в жидкости, как правило, увеличивается при повышении температуры. Растворимость газов, как правило, уменьшается с повышением температуры и улучшается при повышении давления.

Сорбция (от лат. Sorbeo - поглощаю) - это физико-химический процесс, в результате которого происходит поглощение каким-либо веществом газа, пара или растворенного вещества из окружающей среды. Различают адсорбцию - поглощение вещества на поверхности раздела фаз и абсорбцию - поглощение вещества всем объемом поглотителя. Если сорбция происходит преимущественно в результате физического взаимодействия веществ, то ее называют физической.

В капиллярном методе контроля для проявления используют главным образом явление физической адсорбции жидкости (пенетранта) на поверхности твердого тела (частиц проявителя). Это же явление вызывает осаждение на дефекте контрастных веществ, растворенных в жидкой основе пенетранта.

Диффузия (от лат. Diffusio - распространение, растекание) - движение частиц (молекул, атомов) среды, приводящее к переносу вещества и выравнивающее концентрацию частиц разного сорта. В капиллярном методе контроля явление диффузии наблюдается при взаимодействии пенетранта с воздухом, сжатым в тупиковом конце капилляра. Здесь этот процесс неотличим от растворения воздуха в пенетранте.

Важное применение диффузии при капиллярной дефектоскопии - проявление с помощью проявителей типа быстросохнущих красок и лаков. Частицы пенетранта, заключенного в капилляре, входят в контакт с таким проявителем (в первый момент - жидким, а после застывания - твердым), нанесенным на поверхность ОК, и диффундируют через тонкую пленку проявителя к противоположной его поверхности. Таким образом, здесь используется диффузия молекул жидкости сначала через жидкое, а потом через твердое тело.

Процесс диффузии обусловлен тепловым движением молекул (атомов) или их ассоциаций (молекулярная диффузия). Скорость переноса через границу определяется коэффициентом диффузии, который является постоянным для данной пары веществ. Диффузия возрастает с повышением температуры.

Диспергирование (от лат. Dispergo - рассеиваю) - тонкое размельчение какого-либо тела в окружающей среде. Диспергирование твердых тел в жидкости играет существенную роль при очистке поверхности от загрязнений.

Эмульгирование (от лат. Emulsios - выдоенный) - образование дисперсной системы с жидкой дисперсной фазой, т. е. диспергирование жидкости. Пример эмульсии - молоко, состоящее из мельчайших капель жира, взвешенных в воде. Эмульгирование играет существенную роль при очистке, удалении, излишков пенетранта, приготовлении пенетрантов, проявителей. Для активизации эмульгирования и сохранения эмульсии в стабильном состоянии применяют вещества-эмульгаторы.

Поверхностно-активные вещества (ПАВ) - вещества, способные накапливаться на поверхности соприкосновения двух тел (сред, фаз), понижая ее свободную энергию. ПАВ добавляют в средства для очистки поверхности ОК, вводят в пенетранты, очистители, поскольку, они являются эмульгаторами.

Важнейшие ПАВ растворяются в воде. Их молекулы имеют гидрофобную и гидрофильную части, т. е. смачиваемую и несмачиваемую водой. Проиллюстрируем действие ПАВ при смывании масляной пленки. Обычно вода ее не смачивает и не удаляет. Молекулы ПАВ адсорбируются на поверхности пленки, ориентируются к ней своими гидрофобными концами, а гидрофильными - к водяной среде. В результате происходит резкое усиление смачиваемости, и жировая пленка смывается.

Суспензия (от лат. Supspensio - подвешиваю) - грубодисперсная система с жидкой дисперсной средой и твердой дисперсной фазой, частицы которой достаточно крупны и довольно быстро выпадают в осадок или всплывают. Суспензии приготавливают обычно механическим размельчением и размешиванием.

Люминесценция (от лат. Lumen - свет) - свечение некоторых веществ (люминофоров), избыточное над тепловым излучением, обладающее длительностью 10-10 с и больше. Указание на конечную длительность нужно, чтобы отличать люминесценцию от других оптических явлений, например, от рассеяния света.

В капиллярном методе контроля люминесценцию используют как один из способов контраста для визуального обнаружения индикаторных пенетрантов после проявления. Для этого люминофор, либо растворяют в основном веществе пенетранта, либо само вещество пенетранта является люминофором.

Яркостный и цветовой контрасты в КМК рассматривают с точки зрения возможности глаза человека фиксировать люминесцентное свечение, цветные и темные индикации на светлом фоне. Все данные относят к глазу среднего человека. Возможность различать степень яркости объекта называют контрастной чувствительностью. Ее определяют по различимому глазом изменению коэффициента отражения. В цветном методе контроля вводят понятие яркостно-цветового контраста [13], одновременно учитывающее яркость и насыщенность следа от дефекта, который нужно обнаружить.

Способность глаза различать мелкие объекты, обладающие достаточным контрастом, определяют минимальным углом зрения. Установлено что объект в виде полосы (темной, цветной или люминесцирующей) глаз способен заметить с расстояния 200 мм при ее минимальной ширине более 5 мкм. В рабочих условиях различают объекты на порядок больше - шириной 0,05...0,1 мм.

2. Процессы капиллярной дефектоскопии

Рис. 3. К понятию капиллярного давления

Заполнение сквозного макрокапилляра. Расcтрим хорошо известный из курса физики опыт: капиллярная трубка диаметром 2r вертикально погружена одним концом в смачивающую жидкость (рис. 3). Под действием сил смачивания жидкость в трубке поднимется на высоту l над поверхностью. Это явление капиллярного впитывания. Силы смачивания действуют на единицу длины окружности мениска. Суммарная их величина Fк=уcosи2рr. Этой силе противодействует вес столба сgрr2l, где с - плотность, a g - ускорение силы тяжести. В состоянии равновесия уcosи2рr = сgрr2l. Отсюда высота подъема жидкости в капилляре l= 2у cos и/(сgr).

В этом примере силы смачивания рассматривались как приложенные к линии соприкосновения жидкости и твердого тела (капилляра). Их можно рассматривать также как силу натяжения поверхности мениска, образуемого жидкостью в капилляре. Эта поверхность представляет собой как бы: растянутую пленку, стремящуюся сократиться. Отсюда вводится понятие капиллярного давления, равное отношению действующей на мениск силы FK к площади поперечного сечения трубки:

(2.1.)

Капиллярное давление увеличивается с увеличением смачиваемости и уменьшением радиуса капилляра.

Более общая формула Лапласа для давления от натяжения поверхности мениска имеет вид рк=у(1/R1+1/R2), где R1 и R2 - радиусы кривизны поверхности мениска. Формула 9.2 используется для круглого капилляра R1=R2=r/cos и. Для щели шириной b с плоскопараллельными стенками R1®Ґ, R2=b/(2cosи). В результате:

(2.2)

На явлении капиллярного впитывания основана пропитка дефектов пенетрантом. Оценим время, необходимое для пропитки [17]. Рассмотрим расположенную горизонтально капиллярную трубку, один конец которой открыт, а другой помещен в смачивающую: жидкость. Под действием капиллярного Давления мениск жидкости движется в направлении открытого конца. Пройденное расстояние l связано с временем приближенной зависимостью.

(2.3)

где м - коэффициент динамический сдвиговой вязкости. Из формулы видно, что время, необходимое для прохождения пенетрантом через сквозную трещину, связано с толщиной стенки l, в которой возникла трещина, квадратичной зависимостью: оно тем меньше чем меньше вязкость и больше смачиваемость. Ориентировочная кривая 1 зависимости l от t показана на рис. 4. Следует иметь; в виду, что при заполнении пенетрантом реальной; трещины отмеченные закономерности сохраняются лишь при условии одновременного касания пенетрантом всего периметра трещины и ее равномерной ширины. Невыполнение этих условий вызывает нарушение соотношения (9.4), однако влияние отмеченных физических свойств пенетранта на время пропитки сохраняется.

Рис. 4. Кинетика заполнения пенетрантом капилляра: сквозного (1), тупикового с учетом (2) и без учета (3) явления диффузионной пропитки

Заполнение тупикового капилляра отличается тем, что газ (воздух), сжатый вблизи тупикового конца, ограничивает глубину проникновения пенетранта (кривая 3 на рис. 9.4). Рассчитывают предельную глубину заполнения l1 исходя из равенства давлений на пенетрант снаружи и изнутри капилляра. Наружное давление складывается из атмосферного ра и капиллярного рк. Внутреннее давление в капилляре рв определяют из закона Бойля-Мариотта. Для капилляра постоянного сечения: pаl0S = pв(l0-l1)S; рв = раl0/(l0-l1), где l0 - п олная глубина капилляра. Из равенства давлений находим:

Величина рк<<ра, поэтому глубина заполнения, рассчитанная по этой формуле, составляет не более 10 % полной глубины капилляра (задача 9.1).

Рассмотрение заполнения тупиковой щели с непараллельными стенками (хорошо имитирующей реальные трещины) или конического капилляра (имитирующего поры) более сложно, чем капилляров постоянного сечения. Уменьшение поперечного сечения по мере заполнения вызывает увеличение капиллярного давления, но еще быстрее уменьшается объем, заполненный сжатым воздухом, поэтому глубина заполнения такого капилляра (при одинаковом размере устья) меньше, чем капилляра постоянного сечения (задача 1).

Реально предельная глубина заполнения тупикового капилляра оказывается, как правило, больше расчетного значения. Это происходит за счет того, что воздух, сжатый вблизи конца капилляра, частично растворяется в пенетранте, диффундирует в него (диффузионное заполнение). Для протяженных тупиковых дефектов иногда возникает благоприятная для заполнения ситуация, когда заполнение начинается с одного конца по длине дефекта, а вытесняемый воздух выходит с другого конца.

Кинетика движения смачивающей жидкости в тупиковом капилляре формулой (9.4) определяется лишь в начале процесса заполнения. В дальнейшем при приближении l к l1 скорость процесса заполнения замедляется, асимптотически приближаясь к нулю (кривая 2 на рис. 4).

По оценкам время заполнения цилиндрического капилляра радиусом порядка 10-3 мм и глубиной l0 = 20 мм до уровня l = 0,9l1 не более 1 с. Это значительно меньше времени выдержки в пенетранте, рекомендуемого в практике контроля, которое составляет несколько десятков минут. Различие объясняется тем, что после процесса довольно быстрого капиллярного заполнения начинается значительно более медленный процесс диффузионного заполнения. Для капилляра постоянного сечения кинетика диффузионного заполнения подчиняется закономерности типа (9.4): lp = KЦt, где lр - глубина диффузионного заполнения, но коэффициент К в тысячи раз меньше, чем для капиллярного заполнения (см. кривую 2 на рис. 9.4). Он растет пропорционально увеличению давления в конце капилляра рк/(рк+ра). Отсюда следует необходимость длительного времени пропитки.

Удаление избытка пенетранта с поверхности ОК обычно выполняют с помощью жидкости-очистителя. Важно подобрать такой очиститель, который хорошо удалял бы пенетрант с поверхности, в минимальной степени вымывая его из полости дефекта.

Процесс проявления. В капиллярной дефектоскопии используют диффузионные или адсорбционные проявители. Первые - это быстросохнущие белые краски или лаки, вторые - порошки или суспензии.

Процесс диффузионного проявления состоит в том, что жидкий проявитель контактирует с пенетрантом в устье дефекта и сорбирует его. Зачтем пенетрант диффундирует в проявитель сначала - как в слой жидкости, а после высыхания краски - как в твердое капиллярно-пористое тело. Одновременно происходит процесс растворения пенетранта в проявителе, который в данном случае неотличим от диффузии. В процессе пропитки пенетрантом свойства проявителя изменяются: он уплотняется. Если применяется проявитель в виде суспензии, то на первой стадии проявления происходит диффузия и растворение пенетранта в жидкой фазе суспензии. После высыхания суспензии действует описанный ранее механизм проявления.

3. Технология и средства контроля

Схема общей технологии капиллярного контроля показана на рис. 5. Отметим основные ее этапы.

Рис. 5. Технологическая схема капиллярного контроля

Подготовительные операции имеют целью вывести на поверхность изделия устья дефектов, устранить возможность возникновения фона и ложных индикаций, очистить полость дефектов. Способ подготовки зависит от состояния поверхности и требуемого класса чувствительности.

Механическую зачистку производят, когда поверхность Изделия покрыта окалиной или силикатом. Например, поверхность некоторых сварных швов покрыта слоем твердого силикатного флюса типа «березовая кора». Такие покрытия закрывают устья дефектов. Гальванические покрытия, пленки, лаки не удаляют, если они трескаются вместе с основным металлом изделия. Если такие покрытия наносят на детали, в которых уже могут быть дефекты, то контроль выполняют до нанесения покрытия. Зачистку выполняют резанием, абразивной шлифовкой, обработкой металлическими щетками. Этими способами удаляется часть материала с поверхности ОК. Ими нельзя зачищать глухие отверстия, резьбы. При шлифовании мягких материалов дефекты могут перекрываться тонким слоем деформированного материала.

Механической очисткой называют обдувание дробью, песком, косточковой крошкой. После механической очистки предусматривают удаление ее продуктов с поверхности. Очистке моющими средствами и растворами подвергают все поступающие на контроль объекты, в том числе прошедшие механическую зачистку и очистку.

Дело в том, что механическая зачистка не очищает полости дефектов, а иногда ее продукты (шлифовальная паста, абразивная пыль) могут способствовать их закрытию. Очистку выполняют водой с добавками ПАВ и растворителями, в качестве которых используют спирты, ацетон, бензин, бензол и др. С их помощью удаляют консервирующую смазку, некоторые лакокрасочные покрытия: При необходимости обработку растворителями выполняют несколько раз.

Для более полной очистки поверхности ОК и полости дефектов применяют способы интенсификации очистки: воздействие парами органических растворителей, химическое травление (помогает удалению с поверхности продуктов коррозии), электролиз, прогрев ОК, воздействие низкочастотными ультразвуковыми колебаниями.

После очистки проводят сушку поверхности ОК. Этим удаляют остатки моющих жидкостей и растворителей из полостей дефектов. Сушку интенсифицируют повышением температуры, обдувом, например используют струю теплового воздуха из фена.

Пропитка пенетрантом.

К пенетрантам предъявляют целый ряд требований. Хорошая смачиваемость поверхности ОК - главное из них. Для этого пенетрант должен иметь достаточно высокое поверхностное натяжение и краевой угол, близкий к нулю при растекании по поверхности ОК. Как отмечалось в § 9.3, чаще всего в качестве основы пенетрантов используют такие вещества, как керосин, жидкие масла, спирты, бензол, скипидар, у которых поверхностное натяжение (2,5...3,5)10-2 Н/м. Реже используют пенетранты на водяной основе с добавками ПАВ. Для всех этих веществ cos и не менее 0,9.

Второе требование к пенетрантам - низкая вязкость. Она нужна для сокращения времени пропитки. Третье важное требование - возможность и удобство обнаружения индикаций. По контрасту пенетранта КМК разделяют на ахроматический (яркостный), цветной, люминесцентный и люминесцентно-цветной. Кроме того, существуют комбинированные КМК, в которых индикации обнаруживают не визуально, а с помощью различных физических эффектов. По типам пенетрантов, точнее по способам их индикации, осуществляют классификацию КМК. Примером ахроматического КМК является так называемая «керосиновая проба», до настоящего времени довольно широко применяемая в некоторых производствах. В ней в качестве пенетранта используют керосин, а в качестве проявителя -- мел, на котором выступивший керосин оставляет темные следы. Для придания цветового контраста в названные выше смачивающие вещества добавляют оранжевые или красные красители типа «50», «Ж», «Судан». Люминесцирующими свойствами обладают некоторые из смачивающих веществ: нориол, трансформаторное масло. Люминесценция вызывается или усиливается введением специальных добавок (флюороля, дефектоля, триэтаноламина). Люминесценции индикаций несколько лучше обнаруживается глазом, чем цветовой контраст, но требует УФ-облучателей и выполняется в условиях затемнения. Существуют люминесцентно-цветные пенетранты, которые можно обнаруживать обоими способами. Пример такого пенетранта - родамин С, растворяемый в этиловом спирте.

В рецептуре некоторых пенетрантов предусмотрено введение небольшого количества эмульгаторов ОП-7, ОП-10. Они способствуют повышению смачивающих свойств, образованию эмульсий плохо растворимых добавок в смачивающей жидкости. Дополнительными требованиями к пенетрантам являются минимальная вредность для окружающего персонала, хотя полностью избежать вредного действия иногда не удается; минимальное корродирующее действие на изделие (антикоррозионный пенетрант не должен содержать более 1 % серы и хлора); небольшая стоимость.

Отметим некоторые комбинированные методы, где пенетрант в индикациях обнаруживают с помощью преобразователей. В капиллярно-радиоактивном методе используют пенетрант в виде спирта с добавками радиоактивного хлористого цезия-137. Это позволяет обнаруживать дефекты по гамма-излучению. Метод очень чувствителен, но опасен для персонала. В капиллярно-вихретоковом методе применяют пенетранты, обнаруживаемые по их электропроводности с помощью вихретокового датчика. Такие пенетранты (например, раствор олеиновой кислоты и оксида магния в керосине) применяют при контроле неэлектропроводящих материалов.

Специфическим видом пенетранта является фильтрующаяся суспензия. В жидкий пенетрант добавляют нерастворимый порошок с диаметром частиц 0,01...0,1 мм, обладающий цветовым контрастом или люминесценцией. Порошок не проникает в дефект, а фильтруется и скапливается у его устья.

Такой пенетрант не требует проявления. В настоящее время промышленность выпускает готовые пенетранты для контроля. Поэтому необходимость в точном знании рецептуры отпадает. Люминесцентные пенетранты марок ЛЖ с различными индексами пригодны для контроля металлов, пластмасс, стекла, керамики при температуре 15…35°C. Цветной пенетрант марки К применяют для контроля металлов, стекла, керамики при температурах -40...+40°С. Специальные виды пенетрантов дли контроля при повышенной температуре, методом фильтрующейся суспензии, люминесцентно-цветным, комбинированными методами промышленность не выпускает.

Пропитку пенетрантом выполняют погружением в ванну, намазыванием кистью, поливанием, разбрызгиванием пульверизатором или из аэрозольного баллона. Пенетрант оставляют на поверхности ОК от 10 до 30 мин, а в среднем - 20 мин.

Существует ряд способов интенсификации процесса пропитки: вакуумирование ОК перед пропиткой; воздействие на ОК повышенным давлением после нанесения на него пенетранта; воздействие на ОК во время контакта его с пенетрантом упругих механических колебаний или статистического нагружения, увеличивающего раскрытие дефектов, электрическое взаимодействие частиц пенетранта, которым сообщается электрический заряд, с ОК, которому сообщается заряд другого знака; воздействие на пенетрант, находящийся вблизи поверхности ОК, УЗ-колебаниямй.

Основные требования к УЗ-колебаниям, используемым для интенсификации пропитки, - возникновение кавитации, т. е. образования и захлопывания небольших пузырьков. Применяют колебания частотой 15...25 кГц, интенсивностью, на порядок превышающей; пороговое значение для возникновения кавитации 0,1...0,2 кВт, Эффект УЗ-пропитки не зависит от направления колебаний вибратора относительно поверхности ОК, однако УЗ-колебания экранируются объектом.

Удаление излишков пенетранта с поверхности ОК необходимо, чтобы исключить образование фона (при неполном удалении пенетранта), возникновение ложных индикаций (при сохранении пенетранта на отдельных участках, в углублениях). При выполнении этой операции важно сохранить пенетрант в полости дефектов. Удаление выполняют протиркой сухими или влажными салфетками, промыванием очистителем. Международный стандарт рекомендует сначала применять протирку, а потом промывку.

В качестве очистителей используют воду (для пенетрантов на основе скипидара), водные растворы ПАВ и органические растворители. Поверхностно-активное вещество помогает образовать эмульсию из нерастворимого в воде пенетранта, после чего он легко смывается, хотя при этом происходит частичное вымывание пенетранта из широких дефектов. Сохранению пенетранта в дефектах способствует промывка сильной струей воды без добавок ПАВ. Здесь очистка обеспечивается механическим действием струи воды. Широко применяют органические очистители, выпускаемые промышленностью: ОЖ-1 (этиловый спирт с эмульгатором) и малокеросиновую смесь.

После промывки ОК сушат; для ускорения сушки обдувают теплым воздухом. Здесь полезно проверить путем осмотра, не осталось ли следов пенетранта на поверхности.

В некоторых случаях после или вместо промывки применяют операцию гашения. Это устранение люминесценции или цветового контраста индикаторного пенетранта в результате химического воздействия веществ гасителей. Например, для нориола гасителем является розерцин. С помощью гасителей устраняют фон, возникающий, когда на поверхности изделия имеются неглубокие неровности, например, от механообработки. В этом случае поверхность покрывают 5 %-ным раствором розерцина в воде с добавкой ацетона. Гаситель 1 действует на тонкий поверхностный слой пенетранта, в частности на пенетрант, оставшийся в неглубоких неровностях. На пенетрант, находящийся в полостях дефектов, более глубоких, чем неровности, гаситель не действует. После извлечения из дефектов проявителем пенетрант сохраняет контрастные свойства.

Проявление - это процесс извлечения пенетранта, оставшегося в полости дефектов, и образования индикаций. В качестве проявителя используют порошок, суспензию, краски, лаки, липкую ленту. Важно нанести проявитель равномерно, тонким (порядка 0,1 мм) сплошным слоем. Более толстый слой проявителя затрудняет его пропитку пенетратом, извлеченным из трещин. Малое количество пенетранта не достигает противоположной поверхности слоя проявителя. Сказанное не относится к проявителю в виде липкой ленты.

Проявление порошком (сухой способ), основано на явлении физической адсорбции и капиллярном эффекте. В качестве проявителя используют белый тонкодисперсный (10-4...10-2 мм) порошок оксида магния, углекислого магния, углекислого кальция, талька. Насыпать тонкий ровный слой порошка довольно трудно, поэтому порошок обычно наносят распылением струей воздуха.

Более удобна для нанесения суспензия (мокрый способ). Жидкая фаза суспензии хорошо смачивает поверхность ОК. Применяют суспензию порошка углекислого магния или каолина в воде или спирте. Суспензию наносят погружением в нее ОК, кистью, распылением из аэрозольного баллона или в электрическом поле (как при нанесении пенетранта).

Проявление лаком или краской основано на явлении диффузии. Применяют нитроэмаль, цинковые белила с добавкой растворителя. Промышленность выпускает готовые проявители типов ПР (с различными индексами) и ЛА. Наносят лакокрасочный проявитель такими же способами, как эмульсию.

Время проявления варьируют от 5 до 25 (в среднем 15) мин в зависимости от свойств проявителя. Жидкие проявители обязательно должны высохнуть. Процесс проявления интенсифицируют чаще всего повышением температуры, реже - вакуумированием, вибрацией (для выявления усталостных трещин).

Важное требование к дефектоскопическим материалам - их совместимость. Выбранный пенетрант должен хорошо смачивать поверхность материала ОК, смываться очистителем без вымывания из дефектов, проявляться рекомендуемым проявителем. Поэтому дефектоскопические материалы рекомендуется употреблять в виде наборов, выпускаемых промышленностью (см. [16], кн. 1, с. 152). Все сведения о дефектоскопических материалах, технологии их применения рекомендуется суммировать в виде формуляра, пример которого показан на рис. 6.

Осмотр объекта контроля - очень ответственная операция. При цветном и ахроматическом методах обязательное требование - хорошее освещение поверхности объекта контроля. При использовании люминесцентных ламп «дневного света» общая освещенность рабочего места должна быть 300...750 лк, а комбинированная освещенность - 750...2500 лк. При использовании ламп накаливания освещенность соответственно 200...500 и 500...3000 лк. Часто применяют бестеневую систему освещения из нескольких ламп. При использовании люминесцентных ламп принимают меры для устранения пульсаций. При люминесцентном способе контроля осмотр проводят в затемненном помещении с подсветкой видимым светом не более 10 лк. Для люминесценции дефектов используют УФ-облучение ртутными лампами с длиной волны 315...400 нм. Такая лампа имеет колбу из кварцевого стекла, пропускающего ультрафиолетовые лучи, темный светофильтр, не пропускающий видимое излучение, и зеркальный рефлектор, концентрирующий облучение в направлении места осмотра объекта контроля.

Рис. 6. Пример формуляра на набор дефектоскопических материалов

Рис. 7. Стационарная установка КД-20Л для люминесцентного контроля

Промышленностью освоен выпуск нескольких типов аппаратов для УФ-облучения. Для контроля мелких и средних деталей; применяют стационарные установки. Например, установка КД-20Л (рис. 7) имеет облучатель, подвижный в трех направлениях, контролируемое изделие располагают на столе переменной высоты. Для контроля крупногабаритных изделий применяют переносные установки, например установку типа КД-32Л (рис. 8) масой 5 кг.

Ультрафиолетовая облученность объекта контроля должна лежать в пределах 750...3000 мкВт/см2. Ее проверяют по схеме рис. 9, а. В затемненном помещении под проверяемым УФ-облучателем 1 устанавливают белый люминесцентный экран, изготовленный по технологии, изложенной в ГОСТ 18442 - 80. Расстояние D должно быть равным расстоянию от облучателя до места контроля. Параллельно экрану устанавливают датчик люксметра 2 типа Ю-16 или Ю-116, перед входным окном которого располагают светофильтр 3 из стекла типа ЖС4 толщиной 5 мм. Светофильтр поглощает УФ- и пропускает видимое излучение. Облученность определяют по показаниям люксметра в относительных единицах. За относительную единицу интегральной облученности принимают облученность, при которой люминесцирующий экран излучает световой поток, создающий освещенность в 1 лк.

Проверяют также подсветку объекта контроля видимым светом, излучаемым УФ-облучателем 1. Для этого датчик 2 с фильтром 3 располагают на месте экрана (рис. 9, б). Подсветка не должна превосходить 30 лк.

Рис. 8. Переносная установка КД-32Л для люминесцентного контроля

Рис. 9. Схема проверки ультрафиолетовой облученности (а) и подсветки видимым светом (б) от ультрафиолетового облучателя

Чем глубже дефект, тем быстрее появляется изображение, больше яркость и размер индикаций. С учетом этого полезно производить осмотр 2 раза: через 5...10 мин после начала проявления, когда глубокие дефекты дают четкие индикации, правильнее отображающие форму дефекта, и в конце проявления, когда индикации от глубоких дефектов расплылись, но стали более заметными и появились индикации от неглубоких дефектов. Результаты контроля заносят в журнал и составляют заключение по контролю.

Окончательную очистку объекта после контроля осуществляют влажной протиркой, промывкой водой или растворителем, обдувкой песком или другим абразивным материалом. Пленочный проявитель отклеивают. Иногда выжигают проявитель нагреванием. Если на эксплуатационные качества объекта контроля следы процесса капиллярной дефектоскопии не влияют то операцию очистки не проводят.

Расход дефектоскопических материалов зависит от качества поверхности контролируемого объекта, ее расположения, консистенции материалов, способа их нанесения. Расход пенетранта 0,3...0,5 л/м2. Большее значение соответствует неровной поверхности объекта контроля, вертикальному расположению поверхности. Очистителя расходуется в 2...3 раза больше, чем пенетранта. Расход порошкообразного проявителя 40...50 г, а суспензии - 300 г на 1 л пенетранта.

4. Чувствительность капиллярного контроля и ее проверка

Пороги и классы чувствительности. Чувствительность КМК определяют по размеру наименьших выявляемых реальных или искусственно инициированных дефектов. Согласно ГОСТ 18842-80 основным параметром дефекта, по которому оценивают чувствительность, служит ширина его раскрытия. Поскольку глубина и длина дефекта также оказывают существенное влияние на возможность его обнаружения (в частности, глубина, должна быть существенно больше раскрытия), эти параметры считают стабильными.

Нижний порог чувствительности, т. е. минимальная величина раскрытия выявленных дефектов ограничивается тем, что весьма малое количество пенетранта; задержавшееся в полости небольшого дефекта, оказывается недостаточным, чтобы получить контрастную индикацию при данной толщине слоя проявляющего вещества. Существует также верхний порог чувствительности, который определяется тем, что из широких, но неглубоких дефектов пенетрант вымывается при устранении излишков пенетранта с поверхности.

Порог чувствительности конкретного выбранного способа КМК зависит от условий контроля и дефектоскопических материалов. Установлено пять классов чувствительности (по нижнему порогу) в зависимости от размеров дефектов (табл. 3).

Для достижения высокой чувствительности (низкого порога чувствительности) нужно применять хорошо смачивающие высококонтрастные пенетранты, лакокрасочные проявители (вместо суспензий или, порошков), увеличивать УФ-облученность или освещенность объекта. Оптимальное сочетание этих факторов позволяет обнаруживать дефекты раскрытием в десятые доли мкм.

В табл. 4 приведены рекомендации по выбору способа и условий контроля, обеспечивающих требуемый класс чувствительности. Освещенность приведена комбинированная: первое число соответствует лампам накаливания, а второе - люминесцентным. Позиции 2,3,4,6 основаны на применении выпускаемых промышленностью наборов дефектоскопических материалов.

Таблица 3 - Классы чувствительности

Класс чувствительности

Минимальная ширина раскрытия дефекта, мкм

1

Менее 1

2

1...10

3

10...100

4

100...500

Технологический

Не нормируют

Не следует без необходимости стремиться к достижению более высоких классов чувствительности: это требует более, дорогостоящих материалов, лучшей подготовки поверхности изделия, увеличивает время контроля. Например, для применения люминесцентного метода необходимо затемненное помещение, ультрафиолетовое излучение, оказывающее вредное действие на персонал. В связи с этим применение этого, метода целесообразно только тогда, когда требуется достижение высокой чувствительности и производительности. В других случаях следует применять цветной или более простой и дешевый, яркостный метод. Метод фильтрующейся суспензии - самый высокопроизводительный. В нём отпадает операция проявления. Однако этот метод уступает другим по чувствительности.

Комбинированные методы в силу сложности их реализации применяют довольно редко, только в случае необходимости решения каких-либо специфических задач, например, достижения очень высокой чувствительности, автоматизации поиска дефектов, контроля неметаллических материалов.

Проверку порога чувствительности способа КМК согласно ГОСТ 23349-78 выполняют с помощью специально отобранного или подготовленного реального образца ОК с дефектами. Применяют также образцы с инициированными трещинами. Технология изготовления таких образцов сводится к тому, чтобы вызвать появление поверхностных трещин заданной глубины.

Согласно одному из способов образцы изготовляют из листовой легированной стали в виде пластин толщиной 3...4 мм. Пластины рихтуют, шлифуют, азотируют с одной стороны на глубину 0,3...0,4 мм и эту поверхность еще раз шлифуют на глубину около 0,05...0,1 мм. Параметр шероховатости поверхности RaЈ0,4 мкм. Благодаря азотированию поверхностный слой становится хрупким.

Образцы деформируют либо растяжением, либо изгибом (путем вдавливания шарика или цилиндра со стороны, противоположной азотированной). Усилие деформации плавно увеличивают до появления характерного хруста. В результате в образце возникает несколько трещин, проникающих на всю глубину азотированного слоя.

Таблица 4. Условия достижения требуемой чувствительности

...

Подобные документы

  • Основные виды контроля состояния силового трансформатора во время работы и при периодических обследованиях, выявление его дефектов. Газохроматографический анализ масла и методы его интерпретации. Использование автоматизированных систем контроля.

    дипломная работа [291,4 K], добавлен 19.05.2011

  • Состав элегазового электротехнического оборудования, задачи контроля его параметров. Канал контроля влажности элегаза. Мониторинг подстанционного оборудования. Диапазон величин контролируемых параметров. Конструкции системы диагностики и контроля КРУЭ.

    курсовая работа [33,9 K], добавлен 01.02.2012

  • Современные методы диагностики нагревательных приборов. Разработка операционно-технологического процесса на ремонт электродвигателя, корпуса и устранения вибрации тепловой пушки. Основные неисправности, схема типового ремонта. Виды и методы контроля.

    курсовая работа [808,5 K], добавлен 15.03.2014

  • Метод неразрушающего контроля состояния поверхности полупроводниковых пластин, параметров тонких поверхностных слоёв и границ раздела между ними. Методика измерений на эллипсометре компенсационного типа. Применение эллипсометрических методов контроля.

    реферат [1,1 M], добавлен 15.01.2009

  • Методы учета и контроля ядерных материалов в "мокром" хранилище отработавшего ядерного топлива реакторных установок ВВЭР-1000. Требования к применению средств контроля доступа и проведению физической инвентаризации. Порядок оценки безвозвратных потерь.

    дипломная работа [780,3 K], добавлен 16.01.2014

  • Классификация и модели тепловой дефектоскопии. Модель активного теплового контроля пассивных дефектов. Оптическая пирометрия. Приборы теплового контроля. Схемы яркостного визуального пирометра с исчезающей нитью. Пирометр спектральных отношений.

    реферат [1,9 M], добавлен 15.01.2009

  • Способы организации контроля технического состояния высоковольтных кабельных линий. Аппаратные средства, борьба с помехами при регистрации частичных разрядов. Техническое исполнение системы "КМК-500". Управление затратами на поддержание оборудования.

    презентация [4,2 M], добавлен 07.03.2016

  • Краткий обзор наиболее распространенных видов приборов учета и различных способов автоматизированного контроля и учета электроэнергии. Состав и содержание основных стадий проектирования системы автоматизированной системы контроля и учета электроэнергии.

    отчет по практике [35,5 K], добавлен 24.06.2015

  • Анализ состава системы учета и контроля ядерных материалов, методика комплексной оценки ее состояния. Расчет показателей качества измерений и организации системы, оценка степени подготовки персонала. Изучение методов определения весовых коэффициентов.

    дипломная работа [163,2 K], добавлен 27.01.2014

  • Перспективы методов контроля оптической толщины покрытий различного функционального назначения. Контроль толщины оптических покрытий на основе тугоплавких оксидов формируемых методом электронно-лучевого синтеза. Расчёт интерференционных покрытий.

    дипломная работа [2,7 M], добавлен 18.03.2015

  • Особенности разработки схемы теплового контроля водяного котла утилизатора КУВ-35/150, способы организации процесса регулирования питания. Этапы расчета узла измерения расхода сетевой воды за котлом. Анализ функциональной схемы теплового контроля.

    дипломная работа [1,8 M], добавлен 15.01.2013

  • Особенности жидкого состояния вещества. Изменения свойств веществ при изменении агрегатного состояния. Современные представления о структуре металлической жидкости. Влияние микронеоднородности металлических расплавов на их физико-химические свойства.

    курсовая работа [419,9 K], добавлен 17.12.2011

  • Контрольно-измерительные системы и аппаратура гидротехнических сооружений электростанции. Диагностика гидроагрегатов при помощи контроля биений вала. Методы выявления дефектов. Аппаратура для наблюдений за взаимными смещениями секций сооружений.

    реферат [204,0 K], добавлен 04.05.2019

  • Физические свойства и область применения монокристаллов лангатата. Производственная структура предприятия ОАО "Фомос-Материалс", задачи и функции службы технического контроля. Технологический процесс изготовления пьезоэлектрических подложек из лангасита.

    отчет по практике [511,6 K], добавлен 19.07.2012

  • Структурная схема контроля трансформаторных подстанций. Характеристика семейства PROFIBUS. Принцип действия измерительного трансформатора постоянного тока. Режим управления преобразователем частоты. Оценка погрешности каналов измерения напряжения и тока.

    курсовая работа [1,2 M], добавлен 29.05.2010

  • Сущность метода магнитной дефектоскопии. Расчет составляющих напряженности поля. Разработка автоматизированной системы магнитопорошкового контроля оси колесной пары вагон. Регулирование скорости вращения асинхронных двигателей с короткозамкнутым ротором.

    дипломная работа [4,6 M], добавлен 19.06.2014

  • Выбор измерительного прибора для допускового контроля параметров. Определение доверительных границ неисключенной доверительной погрешности результата измерения. Назначение и принцип действия цифровых универсальных вольтметров и их составных частей.

    курсовая работа [1,7 M], добавлен 14.04.2019

  • Особенности конструкции и диагностирования трансформаторных вводов. Метод контроля вводов путем измерения тангенса угла диэлектрических потерь и емкости изоляции. Дефектоскопия, основанная на хроматографическом анализе растворенных в масле газов (ХАРГ).

    реферат [1,6 M], добавлен 25.02.2011

  • Характеристика системы электроснабжения промышленного предприятия. Проектирование и расчет автоматизированной системы контроля и учета энергоносителей. Анализ технических параметров и выбор электрических счетчиков, микроконтроллеров, трансформаторов тока.

    контрольная работа [858,7 K], добавлен 29.01.2014

  • Величина избыточной поверхностной энергии. Понятие адсорбции и адсорбционная терминология. Общая характеристика межмолекулярного взаимодействия при физадсорбции. Изотермы, изобары и изостеры адсорбции. Термодинамика поверхностных избытков Гиббса.

    презентация [46,4 K], добавлен 04.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.