Магнитное поле в веществе

Особенности магнитных моментов электронов и атомов. Анализ восприимчивости магнита и его проницаемости. Движение малейших крупиц и их основное влияние на возникновение элементарных микротоков. Главная характеристика парамагнитного эффекта и прецессии.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 01.10.2015
Размер файла 142,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МАГНИТНОЕ ПОЛЕ В ВЕЩЕСТВЕ

1. Магнитные моменты электронов и атомов

Микротоки. Намагниченность

Магнетиками называются вещества, способные приобретать во внешнем магнитном поле магнитные свойства - намагничиваться, т.е. создавать собственное магнитное поле.

Объяснить намагничивание вещества можно с помощью гипотезы Ампера: движение электронов в атомах и молекулах приводит к возникновению (существованию) элементарных токов, которые называют микротоками. Можно считать, что электрон в атоме движется по круговой орбите. Такое движение электрона эквивалентно круговому току

где н - частота вращения электрона,

е - заряд электрона.

Скорость частицы можно связать с частотой соотношением следовательно,

Магнитный момент электрона, движущегося вокруг ялра (орбитальный магнитный момент) равен

Электрон наряду с магнитным моментом обладает также орбитальным механическим моментом импульса

Гиромагнитное отношение g

Знак минус показывает, что инаправлены противоположно.

В квантовой механике доказывается, что механический момент импульса L может принимать только некоторые вполне определенные (дискретные) значения кратные , т.е.

,

где h - постоянная Планка h = 6,62·10-34 Дж·с, m = 1, 2, 3 …

Электрон, кроме того ведёт себя таким образом, как будто постоянно вращается вокруг собственной оси. Это свойство электрона называется спином. Спин - внутреннее свойство частицы так же присущее электрону, как и масса и заряд. Поэтому электрону приписывается собственный момент мипульса (спин) и соответственно собственный магнитный момент . Абсолютная величина спина электрона равна

Спин имеет только две проекции на направление индукции магнитного поля - вдоль и против поля

где g - гиромагнитное отношение спиновых моментов.

Магнитный момент атома - величина суммарная

Причём, эта величина довольно сложным образом учитывает, как численные значения магнитных моментов отдельных частиц, так и их направления. При этом магнитные моменты протонов и нейтронов существенно меньше магнитных моментов электронов. Поэтому их магнитными моментами можно пренебречь по сравнению с магнитными моментами электронов и можно считать, что магнитные свойства атома определяются в основном магнитными свойствами электронов.

Т.к. электроны входят в состав всех атомов, то это означает, что магнитное поле будет оказывать влияние на любое вещество, следовательно, немагнитных веществ не существует.

Каждый электрон ведёт себя как элементарный магнит. Поэтому внесение тела в магнитное поле должно сказываться на конфигурации поля и, наоборот, наличие магнитного поля будет сказываться на поведении вещества. Под действием магнитного поля все тела намагничиваются, т.е. элементарный объём тела ведёт себя как магнетик, а магнитный момент тела есть сумма магнитных моментов всех элементов объёма.

Для оценки интенсивности намагничивания тела рассматривают магнитный момент единицы объёма - намагниченность

N - общее число атомов в малом объёме.

2. Диа- и парамагнетики

Диамагнетиками называются такие вещества, у которых магнитный момент атома в отсутствии внешнего магнитного поля равен нулю.

при

Когда во внешнее магнитное поле помещают какое-либо вещество, то все атомы этого вещества оказываются в магнитном поле, которое изменяет движение электронов в атоме так, что появляется дополнительный ток, подобный индукционному току. Если вектора и образуют некоторый угол б, то в магнитном поле орбита электрона начнёт вращаться вокруг направления с некоторой угловой скоростью ( - ларморова частота прецессии). Такое движение в механике называют прецессией.

Прецессия электронной орбиты эквивалентна дополнительному движению электрона вокруг магнитного поля помимо вращения вокруг собственной оси и вращения по орбите. Это дополнительное движение электрона в магнитном поле и приводит к возникновению замкнутого индукционного тока, обладающего магнитным моментом, который ориентирован всегда против поля. Таким образом, причина появления дополнительных магнитных моментов - прецессия орбиты электрона.

Поскольку диамагнетики намагничиваются против магнитного поля, их намагниченность отрицательна.

К диамагнетикам относятся металлы Bi, Ag, Au, Cu; вода; стекло; инертные газы и др.

Диамагнетизм присущ всем веществам, но у ряда веществ диамагнитный эффект перекрывается более сильными эффектами.

Парамагнетиками называются вещества, у которых атомы в отсутствии внешнего магнитного поля обладают некоторым постоянным магнитным моментом. магнитный электрон атом прецессия

при .

Однако, вследствие теплового движения молекул их магнитные моменты ориентированы беспорядочно, поэтому . При наложении магнитного поля возникают силы, ориентирующие магнитные моменты каждого атома. Магнитные моменты стараются выстроиться по полю. Таким образом, парамагнетик намагничивается, создавая собственное магнитное поле, сонаправленное с внешним полем и усиливающего его.

Процесс ориентации магнитных моментов атомов во внешнем магнитном поле называется парамагнитным эффектом.

В парамагнетике выстраивающие силы относительно малы по сравнению с силами теплового движения, которые стремятся разрушить упорядочение. Поэтому с понижением температуры магнитная восприимчивость парамагнетиков обычно возрастает.

К парамагнетикам относятся: редкоземельные металлы, Pt, Al, Mg, Cr, O2 и др.

3. Магнитное поле в веществе

Магнитная восприимчивость и магнитная проницаемость

Ток, протекающий по проводнику, называют макротоком. Магнитное поле, создаваемое такими токами, называют полем макротоков и обозначают . Если вещество поместить в это поле , то магнитные моменты атомов вещества будут ориентированы против поля в диамагнетике и по полю в парамагнетике. Т.е. микротоки вещества создают внутреннее поле , противоположно направленное в диамагнетике и сонаправленное в парамагнетике. Тогда вектор магнитной индукции результирующего магнитного поля в веществе равен векторной сумме магнитных индукций внешнего поля и поля микротоков

,

где .

Если рассмотреть любое сечение вещества в виде цилиндра, перпендикулярного его оси, то внутри вещества молекулярные токи соседних атомов направлены навстречу друг другу и взаимно компенсируются. Не скомпенсированными будут лишь молекулярные токи на боковой поверхности цилиндра. Ток, текущий по боковой поверхности цилиндра, подобен току в соленоиде и создает внутри него поле

; N = 1; µ = 1,

Как показывает опыт, в несильных магнитных полях намагниченность прямо пропорциональна напряженности поля , вызывающего намагниченность

где ч - безразмерная величина, называемая магнитной восприимчивостью, показывает, как вещество реагирует (намагничивается) на внешнее поле.

- связь магнитной проницаемости µ и магнитной проницаемости ч.

Магнитная проницаемость показывает во сколько раз результирующее магнитное поле в веществе больше внешнего намагничивающего поля макротоков .

Для диамагнетиков:

ч < 0; µ < 1;

ч ~ 10-5 ч 10-7.

Для парамагнетиков:

ч > 0; µ > 1;

ч ~ 10-3 ч 10-5.

4. Ферромагнетики

Ферромагнетики - вещества, у которых внутреннее магнитное поле в сотни и тысячи раз превышает вызвавшее его внешнее магнитное поле.

Ферромагнетики обладают намагниченностью в отсутствии магнитного поля. Ферромагнетизм наблюдается у кристаллов переходных металлов Fe, Co, Ni и у ряда сплавов. Ферромагнетизм результат действия обменных сил

А > 0 - условие ферромагнетизма.

Ферромагнитные свойства наблюдается у веществ при температурах меньших так называемой температуры Кюри - ТК. При Т > ТК ферромагнетик переходит в парамагнитное состояние. При температурах ниже точки Кюри ферромагнетик разбивается на малые области однородной самопроизвольной (спонтанной) намагниченности - домены. Линейные размеры доменов: 10-5 -10-4 м. Внутри каждого домена вещество намагничено до насыщения. В отсутствии магнитного пола магнитные моменты доменов ориентированы в пространстве так, что результирующий магнитный момент всего ферромагнетика равен нулю. При наложении магнитного поля ферромагнетик намагничивается, т.е. приобретает отличный от нуля магнитный момент. С увеличением поля намагниченность растет сначала медленно (участок аб на рис.), затем намагниченность увеличивается в десятки раз (участок бв). Далее рост намагниченности снова замедляется (вг). Такое поведение намагниченности связано с тем, что действие поля на домены на разных стадиях процесса намагничивания - различно. В точке 0, когда ферромагнетик размагничен, площади доменов 1,3,5..., магнитные моменты которых составляют острый угол с направлением , равны площадям доменов 2,4,6..., у которых угол между направлением магнитного момента и внешнего поля - тупой. При увеличении внешнего магнитного поля вначале наблюдается увеличение площади доменов 1,3,5 за счет уменьшения площади доменов 2,4,8. В ферромагнетике появляется магнитный момент, направление которого совпадает с направлением магнитного момента доменов 1,3,5, С увеличением намагничивающего поля этот процесс идет до тех пор, пока домены с острыми углами к полю (которые обладают в магнитном поле меньшей энергией) не поглотят целиком энергетически менее выгодные домены 2,4,8 - участок аб на рисунке. Около точки б происходит сливание сонаправленных доменов, и ферромагнетик переходит в монодоменное состояние. При дальнейшем увеличении внешнего поля магнитный момент ферромагнетика поворачивается в направлении внешнего поля (парамагнитный эффект) до тех пор, пока не совпадут направление ферромагнетика и (до точки в на рис.). Участок вг на рис. соответствует насыщению ферромагнетика, когда увеличение поля приводит к очень малому увеличение магнитного момента ферромагнетика за счет тех магнитных моментов, которые вследствие теплового движения и других причин случайно были ориентированы против поля. Магнитный гистерезис - заключается в том, что намагничивание и размагничивание ферромагнетика описывается разными кривыми (намагниченность отстает в своем уменьшении от поля). При уменьшении внешнего поля от Внас. до 0 намагниченность изменяется не по кривой - оабвг - основной кривой намагничивания, а в соответствии с кривой гд. При уменьшении внешнего поля до нуля ферромагнетик обладает намагниченностью, которая называется остаточной (точка д).

На участке гд происходит сначала переориентация магнитного момента, разбиение ферромагнетика на домены, увеличение площади доменов 2,4,6 и уменьшение площади доменов 1,3,5 за счет теплового движения. При приложении противоположно направленного поля, т.е. на участке де происходит дальнейший рост площадей "четных" доменов, магнитные моменты которых теперь составляют острый угол с полем, за счет уменьшения площадей "нечетных" доменов. В точке е площади " четных" доменов равны площадям "нечетных", суммарный магнитный момент ферромагнетика равен нулю.

Поле ВК, размагничивающее ферромагнетик, называется коэрцитивной силой. При изменении магнитного ноля от ВК до -ВК и обратно, кривая, характеризующая намагниченность, образует замкнутую петлю - петлю гистерезиса. Материалы с большой коэрцитивной силой называются магнитожесткими, а с малой - магнитомягкими. Магнитомягкие материалы применяются для изготовления сердечников электромагнитов (где важно иметь большие значения максимальной индукции поля и малую коэрцитивную силу), в качестве сердечников трансформаторов и машин переменного тока (генераторов, двигателей), в сердечниках магнитов ускорителей. Магнитожесткие материалы используются в постоянных магнитах: благодаря большой коэрцитивной силе и относительно большой остаточной намагниченности эти магниты могут длительное время создавать сильные магнитные поля. Постоянные магниты применяются в магнитоэлектрических измерительных приборах, в динамиках, микрофонах, в небольших генераторах, в микроэлектродвигателях и т.д.

Антиферромагнетики - каждый магнитный момент окружен антипараллельным магнитным моментом. Спонтанная намагниченность не возникает, т.к. магнитные моменты атомов взаимно скомпенсированы. Отсутствие полной компенсации магнитных моментов подрешеток приводит к тому, что в антиферромагнетике возникает некоторая результирующая, отличная от нуля, спонтанная намагниченность.

Такие материалы как бы объединяют в себе свойства ферро- и антиферромагнетиков. Их называют ферримагнетиками или ферритами.

Размещено на Allbest.ru

...

Подобные документы

  • История магнита и магнитного компаса. Применение магнитов. Жидкий магнит. Магнитное поле Земли и последствие его возмущений. Электромагнетизм. Магнитное поле в веществе (магнетики). Наблюдение зависимости намагничивания железа от температуры.

    реферат [55,5 K], добавлен 01.03.2006

  • Основные свойства постоянных магнитов. Причины намагничивания железа при внесении его в магнитное поле. Элементарные электрические токи. Магнитное поле постоянных магнитов. Взаимодействие магнитов между собой. Магнитное поле постоянного магнита.

    презентация [364,4 K], добавлен 13.04.2012

  • Ферромагнетики как вещества, в которых ниже определенной температуры устанавливается ферромагнитный порядок магнитных моментов атомов или ионов или моментов коллективизированных электронов: характеристика и свойства. Ферритовое запоминающее устройство.

    контрольная работа [192,5 K], добавлен 15.06.2014

  • Характеристики магнитного поля и явлений, происходящих в нем. Взаимодействие токов, поле прямого тока и круговой ток. Суперпозиция магнитных полей. Циркуляция вектора напряжённости магнитного поля. Действие магнитных полей на движущиеся токи и заряды.

    курсовая работа [840,5 K], добавлен 12.02.2014

  • Магнитные моменты электронов и атомов. Намагничивание материалов за счет токов, циркулирующих внутри атомов. Общий орбитальный момент атома в магнитном поле. Микроскопические плотности тока в намагниченном веществе. Направление вектора магнитной индукции.

    презентация [2,3 M], добавлен 07.03.2016

  • Открытие связи между электричеством и магнетизмом, возникновение представления о магнитном поле. Особенности магнитного поля в вакууме. Сила Ампера, магнитная индукция. Магнитное взаимодействие параллельных и антипараллельных токов. Понятие силы Лоренца.

    презентация [369,2 K], добавлен 21.03.2014

  • Движение электронов в вакууме в электрическом и магнитном полях, между плоскопараллельными электродами в однородном электрическом поле. Особенности движения в ускоряющем, тормозящем полях. Применение метода тормозящего поля для анализа энергии электронов.

    курсовая работа [922,1 K], добавлен 28.12.2014

  • Намагниченность, напряженность магнитного поля. Факторы, характеризующие степень намагничивания магнетика. Понятие относительной магнитной проницаемости вещества. Ферромагнетики - твердые вещества, которые могут обладать спонтанной намагниченностью.

    лекция [303,4 K], добавлен 24.09.2013

  • Действие внешнего магнитного поля на вещество и процесс намагничивания. Особенности и главные свойства ферромагнетиков. Электромагнитная индукция как фундаментальное явление электромагнетизма. Гипотеза и уравнение Максвелла для электромагнетизма.

    реферат [58,6 K], добавлен 08.04.2011

  • Введение в магнитостатику. Сила Лоренца. Взаимодействие токов. Физический смысл индукции магнитного поля, его графическое изображение. Примеры расчета магнитных полей прямого тока и равномерно движущегося заряда. Сущность закона Био–Савара-Лапласа.

    лекция [324,6 K], добавлен 18.04.2013

  • История открытия магнитного поля. Источники магнитного поля, понятие вектора магнитной индукции. Правило левой руки как метод определения направления силы Ампера. Межпланетное магнитное поле, магнитное поле Земли. Действие магнитного поля на ток.

    презентация [3,9 M], добавлен 22.04.2010

  • Методика измерения магнитных свойств веществ в переменном и постоянном магнитном поле на примере магнитной жидкости. Исследование изменения магнитного потока, пронизывающего витки измерительной катушки при быстром извлечении из нее контейнера с образцом.

    лабораторная работа [952,5 K], добавлен 26.08.2009

  • Ознакомление с основами движения электрона в однородном электрическом поле, ускоряющем, тормозящем, однородном поперечном, а также в магнитном поле. Анализ энергии электронов методом тормозящего поля. Рассмотрение основных опытов Дж. Франка и Г. Герца.

    лекция [894,8 K], добавлен 19.10.2014

  • Изучение геофизических и магнитных полей Земли, влияние их на атмосферу и биосферу. Теория гидромагнитного динамо. Причины изменения магнитного поля, исследование его с помощью археомагнитного метода. Передвижение и видоизменение магнитосферы планеты.

    реферат [19,4 K], добавлен 03.12.2013

  • Исследование сущности магнитного поля, которое создаётся движущимися электрическими зарядами. Особенности магнитных линий - очертаний, образовавшиеся под воздействием магнитных сил. Признаки магнитной индукции - величины характеризующей магнитное поле.

    презентация [786,7 K], добавлен 13.06.2010

  • Магнитное поле Земли и его характеристики. Понятие геомагнитных возмущений и их краткая характеристика. Механизм возмущения магнитного поля Земли. Влияние ядерных взрывов на магнитное поле. Механизм влияния различных факторов на геомагнитное поле Земли.

    контрольная работа [30,6 K], добавлен 07.12.2011

  • Магнитное поле — составляющая электромагнитного поля, появляющаяся при наличии изменяющегося во времени электрического поля. Магнитные свойства веществ. Условия создания и проявление магнитного поля. Закон Ампера и единицы измерения магнитного поля.

    презентация [293,1 K], добавлен 16.11.2011

  • Особенности газовой среды. Средняя длина свободного пробега частиц в газе. Энергия электронов в кристалле. Электрические свойства кристаллов. Движение электронов в вакууме в электрическом и магнитных полях. Электростатическая (автоэлектронная) эмиссия.

    курсовая работа [343,0 K], добавлен 08.12.2010

  • Биологическое влияние электрических и магнитных полей на организм людей и животных. Суть явления электронного парамагнитного резонанса. Исследования с помощью ЭПР металлсодержащих белков. Метод ядерного магнитного резонанса. Применение ЯМР в медицине.

    реферат [28,2 K], добавлен 29.04.2013

  • Характеристика постоянных магнитов – тел, сохраняющих длительное время намагниченность. Магнитное поле и полюса магнитов, искусственные и естественные магниты. Исследование магнитного поля Земли. Компас и его применение. Причины полярного сияния.

    презентация [2,0 M], добавлен 06.11.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.