Неуничтожимость материи и критика концепции "тепловой смерти Вселенной"

Последствия превращения механического движения вследствие трения. Методологическая роль принципа неуничтожимости и несотворимости материи. Энтропия при необратимых и обратимых термодинамических процессах. Критика концепции "тепловой смерти Вселенной".

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 24.12.2019
Размер файла 45,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Неуничтожимость материи и критика концепции «тепловой смерти Вселеннной»

Неуничтожимость материи

Одним из атрибутов материи является ее неуничтожимость, которая проявляется в совокупности конкретных законов сохранения устойчивости материи в процессе ее изменения. В непрерывном процессе взаимных превращений материя сохраняется как субстанция, т. е. как основа всех изменений. Превращение механического движения вследствие трения приводит к накоплению внутренней энергии тела, к усилению теплового движения его молекул. Тепловое движение в свою очередь может превратиться в излучение. Закон сохранения и превращения энергии гласит какие бы процессы превращения ни происходили в мире, общее количество массы и энергии остается неизменным. Любой материальный объект существует лишь в связи с другими и через них он связан со всем миром. Ни один элемент материи не уничтожается в ничто, а оставляет определенное следствие и не возникает из ничего, а всегда имеет определенную причину. Гибель конкретной вещи означает лишь ее превращение в другую. Мир сохраняется лишь благодаря постоянному разрушению самого себя. Изменение материи осуществляется только в связи с ее сохранением. Сохранение материи в свою очередь выявляется лишь в процессе изменения ее форм.

Принцип неуничтожимости и несотворимости материи имеет большое методологическое значение. Неуничтожимость материи нельзя понимать только в количественном отношении. Законы сохранения предполагают и качественную неуничтожимость материи. Игнорирование этой стороны законов сохранения неизбежно ведет к ошибкам, примером чему является теория тепловой смерти Вселенной, согласно которой все формы движения будто бы превратятся в теплоту, а она в конечном счете рассеется в мировом пространстве; температура между всеми телами уравновесится и всякое движение прекратится; не будет ни света, ни тепла; наступит смерть всему; придет конец света.

«тепловая смерть Вселенной»

вселенная неуничтожимость материя энтропия

После введения Рудольфом Клаузиусом понятия энтропии в 1865 году возникло множество споров, домыслов и теорий, связанных с этим понятием. Одна из них - гипотеза о тепловой смерти Вселенной, сформулированная самим Клаузиусом на основе второго начала термодинамики. (энтропия - мера хаотичности некоторой системы, это функция состояния термодинамической системы, которая определяет меру необратимого рассеивания энергии. Что это значит? Это значит, что какая-то часть внутренней энергии системы не может перейти в совершаемую системой механическую работу. Например, процесс преобразования теплоты в механическую работу всегда сопровождается потерями, в результате которых теплота трансформируется в другие виды энергии.

Энтропия при необратимых термодинамических процессах увеличивается, а при обратимых - остается постоянной. Математическая запись энтропии (S):

Здесь дельта Q - количество теплоты, подведенное или отведенное от системы, T - температура системы, dS - изменение энтропии.

После введения Рудольфом Клаузиусом понятия энтропии в 1865 году возникло множество споров, домыслов и теорий, связанных с этим понятием. Одна из них - гипотеза о тепловой смерти Вселенной, сформулированная самим Клаузиусом на основе второго начала термодинамики. Данная теория, сформулированная Клаузиусом, гласит, что Вселенная, как любая замкнутая система, стремится к состоянию термодинамического равновесия, характеризующемуся максимальной энтропией и полным отсутствием макроскопических процессов, что в свою очередь обессмысливает привычное нам понятие времени. По Клаузиусу: «Энергия мира остается постоянной. Энтропия мира стремиться к максимуму». Это означает, что когда Вселенная придет в состояние термодинамического равновесия, все процессы прекратятся и мир погрузиться в состояние «тепловой смерти». Температура в любой точке Вселенной будет одной и той же, более не будет каких-либо причин, способных вызвать возникновение каких бы то ни было процессов.

Концепция тепловой смерти вселенной еще в недалеком прошлом была довольно широко распространена и являлась предметом активных дискуссий. Так, в книге Джинса «Universe around us» (1932г.) можно найти следующие строки касательно тепловой смерти Вселенной: «Вселенная не может существовать вечно; рано или поздно должно наступить время, когда ее последний эрг энергии достигнет наивысшей степени на лестнице падающей полезности, и в этот момент активная жизнь Вселенной должна будет прекратиться».

При выводе своей теории Клаузиус прибегал в своих рассуждениях к следующим экстраполяциям (приближениям):

1. Вселенная рассматривается как замкнутая система.

2. Эволюция мира может быть описана как смена его состояний.

Интересный факт: рассуждения о тепловой смерти позволили церкви заявить, что с научной точки зрения (в том числе и благодаря теории Клаузиуса) можно найти предпосылки, указывающие на существование бога. Так, в 1952 году на заседании «папской академии наук» папа Пий 12-й в своей речи сказал: «Закон энтропии, открытый Рудольфом Клаузиусом, дал нам уверенность, что спонтанные природные процессы всегда связаны с некоторой потерей свободной, могущей быть использованной энергии, откуда следует, что в замкнутой материальной системе в конце концов эти процессы в макроскопическом масштабе когда-то прекратятся. Эта печальная необходимость...красноречиво свидетельствует о существовании Необходимого Существа».

Критика этой концепции

Как уже отмечалось выше Клаузиусом, при выводе его теории применялись определенные экстраполяции. Сегодня несмотря на некоторые сложности можно с уверенностью сказать, что подобные выводы являются антинаучными. Дело в том, что существуют определенные границы применимости второго начала термодинамики: нижняя и верхняя. Так, второе начало термодинамики не может быть применено для описания микросистем, размеры которых сравнимы с размерами молекул, и для макросистем, состоящих из бесконечного числа частиц, т.е. для Вселенной в целом.

Собственно первым ученым, установившим статистическую природу второго начала термодинамики и противопоставившим теории тепловой смерти Вселенной так называемую флуктуационную гипотезу, был выдающийся физик-материалист Больцман. Имеет место формула Больцмана, позволяющая дать статистическое истолкование второму началу термодинамики

Здесь S - энтропия системы, k - постоянная Больцмана, P - термодинамическая вероятность состояния, определяющая число микросостояний системы, соответствующих данному макросостоянию. Согласно формуле Больцмана,

То есть термодинамическая вероятность состояния изолированной системы при всех происходящих в ней процессах не может убывать. Однако т.к. для систем, состоящих из бесконечного числа частиц, все состояния будут равновероятными, вышеописанное соотношение неприменимо ко Вселенной. В подобных системах имеют место значительные флуктуации (флуктуация - отклонение истинного значения некоторой величины от ее среднего значения), представляющие собой отклонения от второго начала термодинамики. Согласно Больцману, состояние термодинамического равновесия представляет собой лишь наиболее часто встречающееся и наиболее вероятное; наряду с этим в равновесной системе могут самопроизвольно возникнуть сколь угодно большие флуктуации. То есть во Вселенной, находящейся в состоянии термодинамического равновесия, постоянно возникают флуктуации, причем одной такой флуктуацией является та область пространства, в которой находимся мы.

Современный подход безусловно отвергает теорию тепловой смерти Вселенной. Учитывая огромный возраст Вселенной и тот факт, что она не находится в состояние тепловой смерти, можно сделать вывод о том, что во Вселенной протекают процессы, препятствующие росту энтропии, т.е. процессы с отрицательной энтропией. Однако выводам Больцмана о том, что во Вселенной преобладает состояние термодинамического равновесия, все более противоречит растущий экспериментальный материал астрономии. Материя обладает никогда не утрачиваемой способностью к концентрации энергии и превращения одних форм движения в другие. Так, например, процесс образования из рассеянной материи звезд подчиняется определенным закономерностям и не может быть сведен исключительно к случайным флуктуациям распределения энергии во Вселенной.

Размещено на Allbest.ru

...

Подобные документы

  • Коэффициент полезного действия тепловой машины. Цикл Карно идеального газа. Цикл Отто, Дизеля и Тринкеля. Второе начало термодинамики. Энтропия обратимых и необратимых процессов. Термодинамическая вероятность состояния. Тепловая смерть Вселенной.

    презентация [111,6 K], добавлен 29.09.2013

  • История появления статистических методов в познании, а также развитие теории вероятностей. Детерминизм процессов природы в современной науке. Последствия открытия закона сохранения и превращения энергии. Сущность проблемы "тепловой смерти Вселенной".

    контрольная работа [27,7 K], добавлен 21.11.2009

  • Изучение поведения энтропии в процессах изменения агрегатного состояния. Анализ её изменения в обратимых и необратимых процессах. Свободная и связанная энергии. Исследование статистического смысла энтропии. Энергетическая потеря в изолированной системе.

    презентация [1,6 M], добавлен 13.02.2016

  • Физическая теория материи, многомерные модели Вселенной. Физические следствия, вытекающие из теории многомерных пространств. Геометрия Вселенной, свойства пространства и времени, теория большого взрыва. Многомерные пространства микромира и Вселенной.

    курсовая работа [169,4 K], добавлен 27.09.2009

  • Сценарий развития Вселенной после Большого Взрыва. Современные представления об элементарных частицах как первооснове строения материи Вселенной. Классификация элементарных частиц. Корпускулярно-волновой дуализм в современной физике. Теория атома Н. Бора.

    реферат [49,0 K], добавлен 17.05.2011

  • Трения в макро- и наномире. Принципиальное отличие сил трения от сил адгезии. Движение твердого тела в жидкой среде. Основные типы галактик: эллиптические, спиральные и неправильные. Пространственная структура Вселенной. Принцип относительности Галилея.

    презентация [2,1 M], добавлен 29.09.2013

  • Современное учение об открытых системах и необратимых физических процессах. Нелинейная и неравновесная термодинамика необратимых процессов как основа современной концепции самоорганизации. Особенности синергетики как науки, теория автоволновых процессов.

    реферат [29,2 K], добавлен 05.06.2015

  • Основные представители физики. Основные физические законы и концепции. Концепции классического естествознания. Атомистическая концепция строения материи. Формирование механической картины мира. Влияние физики на медицину.

    реферат [18,6 K], добавлен 27.05.2003

  • Регуляризация квантового поля Паули–Вилларса. Закон тяготения в искривленном пространстве-времени. Уравнение состояния космического вакуума. Эволюция Вселенной в эпоху после рекомбинации. Космологические термины; уравнения Эйнштейна для Вселенной.

    контрольная работа [113,0 K], добавлен 20.08.2015

  • Свидетельства существования темной материи, кандидаты на роль ее частиц. Нейтрино, слабовзаимодействующие массивные частицы (вимпы). Магнитные монополи, зеркальные частицы. Прямая регистрация вимпов. Регистрация сильновзаимодействующей темной материи.

    курсовая работа [3,3 M], добавлен 27.08.2012

  • Использование энергии топлива в работе различных машин, аппаратов, энергетических и технологических установок. Определения термодинамики: второй закон, энтропия, расчет ее изменения. Абсолютная энтропия, постулат Планка; необратимость тепловых процессов.

    курсовая работа [520,7 K], добавлен 08.01.2012

  • Основные направления фундаментальной Теории многомерного пространства. Современные представления о теории атома. Пространства Вселенной: мертвой материи, видимое с Земли, желтое, серое и синее. Схема орбитально-динамического взаимодействия объектов.

    реферат [308,5 K], добавлен 18.10.2009

  • Роль электроэнергии в производственных процессах на современном этапе, метод ее производства. Общая схема электроэнергетики. Особенности главных типов электростанций: атомной, тепловой, гидро- и ветрогенераторы. Преимущества электрической энергии.

    презентация [316,3 K], добавлен 22.12.2011

  • Описание принципиальной тепловой схемы энергоустановки. Тепловой баланс парогенератора, порядок и принципы его составления. Параметры пара в узловых точках тепловой схемы. Расчет теплоты и работы цикла ПТУ, показателей тепловой экономичности энергоблока.

    курсовая работа [493,1 K], добавлен 22.09.2011

  • Характеристика тепловой нагрузки. Определение расчётной температуры воздуха, расходов теплоты. Гидравлический расчёт тепловой сети. Расчет тепловой изоляции. Расчет и выбор оборудования теплового пункта для одного из зданий. Экономия тепловой энергии.

    курсовая работа [134,1 K], добавлен 01.02.2016

  • История развития термодинамики. Свойства термодинамических систем, виды процессов. Первый закон термодинамики, коэффициент полезного действия. Содержание второго закона термодинамики. Сущность понятия "энтропия". Особенности принципа возрастания энтропии.

    реферат [21,5 K], добавлен 26.02.2012

  • Определение максимальной тепловой мощности котельной. Среднечасовой расход теплоты на ГВС. Тепловой баланс охладителей и деаэратора. Гидравлический расчет тепловой сети. Распределение расходов воды по участкам. Редукционно-охладительные установки.

    курсовая работа [237,8 K], добавлен 28.01.2011

  • Нахождение работы в обратимых термодинамических процессах. Теоретический цикл поршневого двигателя внутреннего сгорания с комбинированным подводом теплоты. Работа расширения и сжатия. Уравнение состояния газа. Теплоотдача при свободной конвекции.

    контрольная работа [1,8 M], добавлен 22.10.2011

  • Характеристика котла ТП-23, его конструкция, тепловой баланс. Расчет энтальпий воздуха и продуктов сгорания топлива. Тепловой баланс котельного агрегата и его коэффициент полезного действия. Расчет теплообмена в топке, поверочный тепловой расчёт фестона.

    курсовая работа [278,2 K], добавлен 15.04.2011

  • Составление расчетной тепловой схемы ТУ АЭС. Определение параметров рабочего тела, расходов пара в отборах турбоагрегата, внутренней мощности и показателей тепловой экономичности и блока в целом. Мощность насосов конденсатно-питательного тракта.

    курсовая работа [6,8 M], добавлен 14.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.