Информационные технологии

Содержание информационной технологии: определение, этапы развития и проблемы их использования. Возможности использования новых информационных технологий в системах организационного управления. Современные методы разработки программного обеспечения.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 10.03.2013
Размер файла 168,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Существует множество типов моделей и способов их классификации, например, по цели использования, области возможных приложений, способу оценки переменных и т. п.

По цели использования модели подразделяются на оптимизационные, связанные с нахождением точек минимума или максимума некоторых показателей (например, управляющие часто хотят знать, какие их действия ведут к максимизации прибыли или минимизации затрат), и описательные, описывающие поведение некоторой системы и не предназначенные для целей управления (оптимизации).

По способу оценки модели классифицируются на детерминированные, использующие оценку переменных одним числом при конкретных значениях исходных данных, и стохастические, оценивающие переменные несколькими параметрами, так как исходные данные заданы вероятностными характеристиками.

Детерминированные модели более популярны, потому что они менее дорогие, их легче строить и использовать. К тому же часто с их помощью получается вполне достаточная информация для принятия решения.

По области возможных приложений модели разбиваются на специализированные, предназначенные для использования только одной системой, и универсальные - для использования несколькими системами.

Специализированные модели более дорогие, они обычно применяются для описания уникальных систем и обладают большей точностью.

В системах поддержки принятия решения база моделей состоит из стратегических, тактических и оперативных моделей, а также математических моделей в виде совокупности модельных блоков, модулей и процедур: используемых как элементы для их построения (см. рис.6).

Стратегические модели используются на высших уровнях управления для установления целей организации, объемов ресурсов, необходимых для их достижения, а также политики приобретения и использования этих ресурсов. Они могут быть также полезны при выборе вариантов размещения предприятий, прогнозировании политики конкурентов и т.п. Для стратегических моделей характерны значительная широта охвата, множество переменных, представление данных в сжатой агрегированной форме. Часто эти данные базируются на внешних источниках и могут иметь субъективный характер. Горизонт плани-рования в стратегических моделях, как правило, измеряется в годах. Эти модели обычно детерминированные, описательные, специализированные для использования на одной определенной фирме.

Тактические модели применяются управляющими (менеджерами) среднего уровня для распределения и контроля использования имеющихся ресурсов. Среди возможных сфер их использования следует указать: финансовое планирование, планирование требований к работникам, планирование увеличения продаж, построение схем компоновки предприятий. Эти модели применимы обычно лишь к отдельным частям фирмы (например, к системе производства и сбыта) и могут также включать в себя агрегированные показатели. Временной горизонт, охватываемый тактическими моделями, - от одного месяца до двух лет. Здесь также могут потребоваться данные из внешних источников, но основное внимание при реализации данных моделей должно быть уделено внутренним данным фирмы. Обычно тактические модели реализуются как детерминированные, оптимизационные и универсальные.

Оперативные модели используются на низших уровнях управления для поддержки принятия оперативных решений с горизонтом, измеряемым днями и неделями. Возможные применения этих моделей включают в себя ведение дебиторских счетов и кредитных расчетов, календарное производственное планирование, управление запасами и т.д. Оперативные модели обычно используют для расчетов внутрифирменные данные. Они, как правило, детерминированные, оптимизационные и универсальные (т.е. могут быть использованы в различных организациях).

Математические модели состоят из совокупности модельных блоков, модулей и процедур, реализующих математические методы. Сюда могут входить процедуры линейного программирования, статистического анализа временных рядов, регрессионного анализа и т.п. - от простейших процедур до сложных ППП.

Пример. Программный продукт Forecast Expert, также разработанный фирмой Про-Инвест-Консалтинг, представляет собой универсальную систему прикладного прогнозирования. Forecast Expert предназначен для построения прогноза временного ряда. В качестве прогнозируемых могут выступать параметры как сфер производства и обращения - цены мирового рынка, спрос на изделия, объемы закупок комплектующих и производственных запасов при увеличении объема производства, цены комплектующих, параметры технологических процессов, так и финансового рынка - цены покупки и продажи акций, деловая активность участников рынка, объем предложений свободных средств инвесторами и многое другое.

Применение Forecast Expert позволяет проанализировать имеющиеся данные и построить прогноз с указанием границ доверительного интервала (при заданной вероятности прогноза) на период времени. Модель определяет степень влияния сезонных факторов и учитывает их при построении прогноза.

6. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В СИСТЕМАХ ОРГАНИЗАЦИОННОГО УПРАВЛЕНИЯ

Применение компьютерных информационных технологий позволяет в ряде случаев при сравнительно небольших затратах получать ценные управленческие решения. Составление экономико-математических моделей и проведение расчетов с помощью компьютера позволяют быстро и относительно недорого проводить разработку и сравнение многочисленных вариантов планов и управленческих решений.

Многовариантность выбора - одно из ценнейших качеств рассматриваемых методов. Однако в настоящее время практическое применение экономико-математических методов в управление и планировании производственной деятельностью, несмотря на оснащение управленческих служб средствами вычислительной техники, далеко не соответствует имеющемуся в этой области научному запасу.

Трудности практического внедрения экономико-математических методов связаны со многими объективными и субъективными причинами, но прежде всего обусловлены сложностью экономических процессов и явлений, невозможностью расчленения больших систем на обозримые части с целью их автономного рассмотрения, а также необходимостью учитывать наряду с технологическими аспектами и поведение людей.

Поэтому практически приемлемым путем является включение компьютерных решений конкретных типовых задач в процесс принятия управленческих решений руководителем. При этом необходимо сочетать опыт и трудноформализуемые знания руководителя, хорошо знающего производственную и хозяйственную стороны управленческой деятельности, с производительностью и многовариантностью компьютерно-математических методов.

В настоящее время имеются отработанные методы решения ряда типовых задач по организации и планированию производства, для которых могут быть применены компьютерные технологии. Все эти задачи могут быть классифицированы следующим образом.

1) Задачи в области организации производства. К ним относятся, например, задачи организации проектирования, ремонта машин, транспорта и складского хозяйства, задачи управления качеством, расчета потребности в ресурсах (трудовых, материальных, технических) с распределением во времени на основе календарного плана производства и т.п.

2) Задачи планирования производства. К ним относятся, например, задачи планирования производства товарной продукции, технического развития и повышения эффективности производства, труда и заработной платы, механизации и материально-технического обеспечения производства, задачи анализа производственно-хозяйственной деятельности и т. п.

Такие отработанные решения определенных типовых задач базируются на методах имитационного моделирования, линейного программирования, вероятностного моделирования и других методах.

Возможность практического решения указанных задач в настоящее .время расширяется в связи с компьютеризацией всех звеньев управленческого аппарата, созданием локальных и объединенных вычислительных сетей, организацией локальных и централизованных информационных баз данных и обеспечением к ним оперативного доступа.

7. ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ НОВЫХ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ В СИСТЕМАХ ОРГАНИЗАЦИОННОГО УПРАВЛЕНИЯ

Современные информационные технологии определяются как непрерывные процессы обработки, хранения, передачи и отображения информации, направленные на эффективное использование информационных ресурсов, средств вычислительной техники и передачи данных при управлении системами различного класса и назначения.

ИТ существенно увеличивают степень автоматизации всех информационных процессов, что является предпосылкой для ускорения темпов научно-технического прогресса, повышения производительности и эффективности управленческого труда.

Основу современных информационных технологий составляют «четыре технических достижения:

- развитие носителей информации, позволяющих хранить практически неограниченные объемы информации;

- развитие средств связи, обеспечивающих доставку информации в любую точку земного шара без существенных ограничений во времени;

- возможность автоматизированной обработки информации в местах ее возникновения с помощью персональной ЭВМ;

- возможности удаленного доступа и обработки информации, хранящейся в распределенных базах и банках данных.

ИТ развивались в процессе целенаправленной интеграции средств хранения, обработки, передачи и представления информации в комплексные системы, обеспечивающие циркуляцию требуемых потоков данных в рамках определенных организационных систем.

На современном этапе автоматизированная обработка данных в организационных системах характеризуется переходом от централизованной обработки информации к распределенной (децентрализованной), на основе широкого применения персональных ЭВМ.

Объединение ЭВМ в сети (локальные и региональные) позволяет пользователям сочетать преимущества автономной распределенной обработки информации с возможностями индивидуального доступа к общим информационным ресурсам отдела, предприятия, района и т.д.

Ввод и обработка информации на рабочем месте сотрудника (руководителя и специалиста) с использованием ПК позволяет повысить качество, точность, своевременность и актуальность подготавливаемых документов и увеличить скорость их подготовки.

Объединение автоматизированных рабочих мест сотрудников в локальные вычислительные сети (ЛВС) позволяет снизить затраты на информационный обмен, решить задачу оптимального использования вычислительных мощностей и ресурсов. Включение в качестве элемента ЛВС высокопроизводительной ЭВМ с внешними запоминающими устройствами большого объема позволяет централизовать информацию, необходимую для совместной обработки всеми пользователями сети и исключить дублирование такой информации.

Технические средства «электронной почты» и вычислительных систем позволяют внедрять в организационных системах безбумажные технологии, при которых часть информационных потоков и массивов (файлов) переносятся на бумажный носитель лишь в строго регламентированных случаях, связанных в основном с подготовкой и представлением в официальных итоговых отчетов.

В современном учреждении выполняется несколько десятков видов работ, включающих:

- осуществление информационных коммуникаций внутри организации и между организациями;

- изучение, поиск, накопление и генерирование информации (чтение документов, подготовка отчетов, писем, ответов на письма, поиск необходимых данных, ведение архивов и т.п.);

- анализ данных и принятие решений;

- управление функционированием организации;

- информационное обслуживание руководителей и т. д.

Основными элементами современного «электронного» учреждения являются автоматизированные рабочие места (АРМы) пользователей, системы редактирования текстов, базы данных и средства управления ими (СУБД), информационно-вычислительные сети, электронная почта, средства печати и копирования документов и др.

Автоматизированное рабочее место (АРМ) - вычислительная система, предназначенная для автоматизации профессиональной деятельности.

Производительность труда при использовании АРМ на рутинных операциях, применяемых при подготовке и передаче документов увеличивается в несколько раз за счет применения специального программного обеспечения.

Примеры функций пользователей - сотрудников, реализуемые на АРМе соответствующего типа являются:

- подготовка документов, содержащих текстовые, табличные и графические фрагменты на основе анализа доступной информации;

- хранение и поиск информации;

- прием / передача документов (или их фрагментов) внутри учреждения и за его пределы;

- обеспечение режима использования и надежного хранения документов.

Функции АРМов руководителей организации и ее подразделений существенно отличаются от функций АРМ сотрудника (служащего, специалиста).

К основным функциям руководителя относятся: долгосрочное и оперативное планирование работ, общение со смежными подразделениями, проведение рабочих совещаний, выдача поручений и контроль за их выполнением, регистрация и исполнение поручений руководства, оценка деятельности сотрудников, подразделения и организации в целом и другие функции. Большинство этих функций может быть успешно реализовано при наличии соответствующего прикладного программного обеспечения АРМ руководителя.

Таким образом, внедрение информационных технологий в процесс управления организациями не ограничивается только автоматизацией сбора, хранения и представления данных, а распространяется также на анализ информации и поддержку принятия решений. В большинстве случаев решения принимаются на основе математического моделирования технико-экономической ситуации в конкретной предметной области. Рассматриваемое в таком аспекте АРМ руководителя становится усилителем его интеллекта, помогает находить достаточно эффективные (неубыточные) управленческие решения в сложных, динамически изменяющихся ситуациях.

Необходимость в обмене информацией в различных сферах управленческой деятельности, получении новых сведений в результате коллективного обсуждения проблем привели к таким формам общения, как конференции, семинары, совещания.

Практически ни одна серьезная сделка, ни один договор не могут быть заключены без обсуждения на различных уровнях промежуточных результатов, итогов, вариантов решения, заслушивания оппонентов и принятия соответствующих решений. Эта идея была реализована новом виде информационного обслуживания - телеконференции. Участники таких конференций, удаленные друг от друга на сотни и тысячи километров, благодаря современной электронике могут видеть друг друга, обмениваться данными и графической информацией дискутировать в условиях, максимально приближенных к реальной конференции.

Организация телеконференций требует привлечения весьма разнообразной аппаратуры: терминалов, факсимильной связи, телевизионных камер, видеомагнитофонов, компьютеров, модемов, акустической аппаратуры.

Новейшей технологией информационного обслуживания организаций являются создание использование автоматизированных информационных систем интеллектуального типа (экспертные системы, функционирующие в режиме реального времени, ситуационные комнаты, интеллектуальные системы поддержки принятия решения и т.д.).

8. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В ОБУЧЕНИИ

Создание и совершенствование компьютеров привело и продолжает приводить к созданию новых технологий в различных сферах научной и практической деятельности. Одной из таких сфер стало образование. Нетрадиционные информационные системы, связанные с обучением, называют информационно-обучающими.

Автоматизированная обучающая система (АОС) - комплекс программных, технических и учебно-методических средств, предназначенных для активного индивидуального обучения человека на основе программного управления этим обучением.

Благодаря своим конструктивным и функциональным особенностям современный персональный компьютер находит применение в обучении самым разнообразным дисциплинам и служит базой для создания большого числа новых информационных технологий обучения.

Компьютерная технология повышает интерес к обучению. В настоящее время существует огромное множество обучающих программ по самым разным предметам, ориентированных на самые различные категории учащихся, начиная с детских садов и заканчивая персоналом атомных электростанций.

Типы обучающих программ. Основанием для классификации служат обычно особенности учебной деятельности обучаемых при работе с программами. Обычно выделяют четыре типа обучающих программ:

- тренировочные и контролирующие;

- наставнические;

- имитационные и моделирующие;

- развивающие игры.

Тренировочные программы предназначены для закрепления умений и навыков. Предполагается, что теоретический материал уже изучен. Эти программы в случайной последовательности предлагают учащемуся вопросы и задачи и подсчитывают количество правильно и неправильно решенных задач (в случае правильного ответа может выдаваться поощряющая реплика, при неправильном ответе можно получить помощь в виде подсказки).

Наставнические программы предлагают ученикам теоретический материал для изучения. Задачи и вопросы служат в этих программах для организации человеко-машинного диалога, для управления ходом обучения. Так, если ответы, даваемые учеником, неверны, программа может «откатиться назад» для повторного изучения теоретического материала.

Программы наставнического типа являются прямыми наследниками средств программированного обучения 60-х годов в том смысле, что основным теоретическим источником современного компьютерного или автоматизированного обучения следует считать программированное обучение. В публикациях зарубежных специалистов и сегодня под термином «программированное обучение» понимают современные компьютерные технологии. Одним из основоположников концепции программированного обучения является американский психолог Б.Ф. Скиннер.

Главным элементом программированного обучения является программа, понимаемая как упорядоченная последовательность рекомендаций (задач), которые передаются с помощью программированного учебника и выполняются обучаемыми. Существует несколько разновидностей программированного обучения:

- линейное программированное обучение. Линейная программа характеризуется следующими особенностями:

- разветвленная программа. Разветвленная программа основана выборе одного правильного ответа из нескольких данных, она

Если основой линейной программы является стремление избежать ошибок, то разветвленная программа не направлена на ликвидацию ошибок в процессе обучения: ошибки трактуются, как возможность обнаружить недостатки в знаниях обучаемых, а также выяснить, какие проблемы обучаемые уяснили недостаточно. Постепенно (линейное и разветвленное программированное) уступили место смешанным формам.

Существует и продолжает разрабатываться большое количество инструментальных программ такого вида. Общим их недостатком является высокая трудоемкость разработки, затруднения организационного и методического характера при использовании в реальном процессе обучения.

Моделирующие программы основаны на графических иллюстративных возможностях компьютера, с одной стороны, и вычислительных, с другой, и позволяют осуществлять компьютерный эксперимент. Такие программы предоставляют возможность наблюдать на экране дисплея некоторый процесс, влияя на его ход подачей команды с клавиатуры, меняющей значения параметров.

Развивающие игры предоставляют в распоряжение ученика некоторую воображаемую среду, существующий только в компьютере мир, набор каких-то возможностей и средств их реализации. Использование предоставляемых программой средств для реализации возможностей, связанных с изучением мира игры и деятельностью в этом мире, приводит к развитию обучаемого, формированию у него познавательных навыков, самостоятельному открытию им закономерностей, отношений объектов действительности, имеющих значение.

Наибольшее распространение получили обучающие программы первых двух типов в связи с их относительно невысокой сложностью, возможностью унификации при разработке многих блоков программ. Если программы 3-го и 4-го типов требуют большой работы программистов, психологов, специалистов в области изучаемого предмета, педагогов-методистов, то технология создания программ 1-го и 2-го типов сегодня сильно упростилась с появлением инструментальных средств или наполняемых автоматизированных обучающих систем.

В процессе контроля знаний широкое распространение получило компьютерное тестирование. В ряде стран тестирование вытеснило традиционные формы контроля - устные и письменные экзамены и собеседования.

Типы компьютерных тестовых заданий определяются способами однозначного распознавания ответных действий тестируемого в соответствии с моделью знаний.

Учебная мультимедиа и гипермедиа-технология представляет собой развитие технологии программированного обучения, хотя упор делается не на адаптивность обучения и его методическое обоснование, а на внешнюю иллюстративно-наглядную сторону. Современные графические и звуковые возможности компьютера обусловили появление средств гипер- и мультимедиа.

Мультимедиа технология - представление информации в форме видеоизображения с применением мультипликации и звукового сопровождения.

Гипермедиа технология - компьютерное представление данных различного типа, в котором автоматически поддерживаются смысловые связи между выделенными понятиями, объектами или разделами.

Научные исследования в данной области связаны с разработкой технологий создания учебных курсов большего размера на основе возможностей мульти- и гипермедиа. Под управлением компьютера система мультисред может производить в едином представлении объединение текста, графики, звуков, видеообразов и мультипликации. Технология мультимедиа в последнее время широко применяется для создания электронных книг и учебников.

Развитием идей мультимедиа являются технологии компьютерной виртуальной реальности. В этом случае с помощью специальных экранов, датчиков, шлемов, перчаток и т.п. полностью моделируется управление, например, самолетом, так что у обучаемого возникает полная иллюзия того, что он находится в кабине самолета и им управляет.

9. СИСТЕМЫ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ

Близкими по своей структуре и функциям к системам автоматизации научных исследований оказываются системы автоматизированного проектирования (САПР).

САПР - комплекс программных и аппаратных средств, предназначенных для автоматизации процесса проектирования человеком технических изделий или продуктов интеллектуальной деятельности.

Проектирование новых изделий - основная задача изобретателей конструкторов, протекает в несколько этапов, таких как нормирование замысла, поиск физических принципов, обеспечивающих реализацию замыслов и требуемые значении конструкции, поиск конструктивных решений, их расчет и обоснование, создание опытного образца, разработка технологий промышленного изготовления. Если формирование замысла и поиск физических принципов пока остаются чисто творческими, не поддающимися автоматизации этапами, то при конструировании и расчетах с успехом могут быть применены САПР (рис. 4.2).

Рисунок 4.2 - Типовая схема САПР

База данных, блок имитационного моделирования, расчетный блок и экспертная система выполняют функции, аналогичные функциям соответствующих блоков АСНИ. Вместо блока связи с измерительной аппаратурой в САПР имеется блок формирования заданий. Проектировщик вводит в блок техническое задание на проектирование, в котором указаны цели, которые необходимо достичь при проектировании, и все ограничения, которые нельзя нарушить. Блок подготовки технической документации облегчает создание технической документации для последующего изготовления изделия.

Аппаратное обеспечение САПР составляет ЭВМ с набором устройств, необходимых для ввода и вывода графической информации (графопостроитель, световое перо, графический планшет и др.).

В настоящее время САПР является неотъемлемым атрибутом крупных конструкторских бюро и проектных организаций, работающих в различных предметных областях. Это важная сфера приложения идей и методов информатики. САПР широко применяется в архитектуре, электротехнике, электронике, машиностроении, авиакосмической технике и др.

10. ТЕХНОЛОГИИ РАСПРЕДЕЛЕННЫХ ВЫЧИСЛЕНИЙ (РВ). РАСПРЕД-Я ОБРАБОТКА ДАННЫХ

Современное производство требует высоких скоростей обработки информации, удобных форм ее хранения и передачи. Необходимо также иметь динамичные способы обращения к информации, способы поиска данных в заданные временные интервалы, чтобы реализовывать сложную математическую и логическую обработку данных.

Управление крупными предприятиями, управление экономикой на уровне страны требуют участия в этом процессе достаточно крупных коллективов. Такие коллективы могут располагаться в различных районах города, в различных регионах страны и даже в различных странах. Для решения задач управления, обеспечивающих реализацию экономической стратегии, становятся важными и актуальными скорость и удобство обмена информацией, а также возможность тесного взаимодействия всех участвующих в процессе выработки управленческих решений.

В эпоху централизованного использования ЭВМ с пакетной обработкой информации пользователи вычислительной техники предпочитали приобретать компьютеры, на которых можно было бы решать почти все классы их задач. Однако сложность решаемых задач обратно пропорциональна их количеству, и это приводило к неэффективному использованию вычислительной мощности ЭВМ при значительных материальных затратах. Нельзя не учитывать и тот факт, что доступ к ресурсам компьютеров был затруднен из-за существующей политики централизации вычислительных средств в одном месте.

Принцип централизованной обработки данных (рис. 5.1) не отвечал высоким требованиям к надежности процесса обработки, затруднял развитие систем и не мог обеспечить необходимые временные параметры при диалоговой обработке данных в многопользовательском режиме. Кратковременный выход из строя центральной ЭВМ приводил к роковым последствиям для системы в целом.

I

Рисунок 5.1 - Система централизованной обработки данных

Появление персональных компьютеров потребовало нового подхода к организации систем обработки данных, к созданию новых информационных технологий. Возникло логически обоснованное требование перехода от использования отдельных ЭВМ в системах централизованной обработки данных к распределенной обработке данных (рис. 5.2).

Рисунок 5.2 - Система распределенной обработки данных

Распределенная обработка данных - обработка данных, выполняемая на независимых, но связанных между собой компьютерах, представляющих распределенную систему.

В основе распределенных вычислений лежат две основные идеи:

- много организационно и физически распределенных пользователей, одновременно работающих с общими данными - общей базой данных (пользователи с разными именами, которые могут располагаться на различных вычислительных установках, с различными полномочиями и задачами);

- логически и физически распределенные данные, составляющие и образующие тем не менее, общую базу данных (отдельные таблицы, записи и даже поля могут располагаться на различных вычислительных установках или входить в различные локальные базы данных).

Дня реализации распределенной обработки данных были созданы многомашинные ассоциации, структура которых разрабатывается по одному из следующих направлений:

- многомашинные вычислительные комплексы (МВК);

- компьютерные (вычислительные) сети.

Многомашинный вычислительный комплекс - группа установленных рядом вычислительных машин, объединенных с помощью специальных средств сопряжения и выполняющих совместно единый информационно-вычислительный процесс. Под процессом понимается некоторая последовательность действий для решения задачи, определяемая программой.

Многомашинные вычислительные комплексы могут быть:

- локальными, при условии установки компьютеров в одном помещении, не требующих для взаимосвязи специального оборудования и каналов связи;

- дистанционными, если некоторые компьютеры комплекса установлены на значительном расстоянии от центральной ЭВМ и для передачи данных используются телефонные каналы связи.

Пример 1. Три ЭВМ объединены в комплекс для распределения заданий, поступающих на обработку. Одна из них выполняет диспетчерскую функцию и распределяет задания в зависимости от занятости одной из двух других обрабатывающих ЭВМ. Это локальный многомашинный комплекс.

Пример 2. ЭВМ, осуществляющая сбор данных по некоторому региону, выполняет их предварительную обработку и передает для дальнейшего использования на центральную ЭВМ по телефонному каналу связи. Это дистанционный многомашинный комплекс.

Компьютерная (вычислительная) сеть - вычислительная система, включающая в себя несколько компьютеров, терминалов и других аппаратных средств, соединенных между собой линиями связи, обеспечивающими передачу данных

Терминал - устройство, предназначенное для взаимодействия пользователя с вычислительной системой или сетью ЭВМ. Состоит из устройства ввода (чаще всего это клавиатура) и одного или нескольких устройств вывода (дисплей, принтер и т.д.).

11. ТЕХНОЛОГИИ ОБЪЕКТНОГО СВЯЗЫВАНИЯ ДАННЫХ

Унификация взаимодействия прикладных компонентов с ядром информационных систем в виде SQL-серверов, наработанная для клиент-серверных систем, позволила выработать аналогичные решения и для интеграции разрозненных локальных баз данных под управлением настольных СУБД в сложные децентрализованные гетерогенные распределенные системы. Такой подход получил название объектного связывания данных.

С узкой точки зрения, технология объектного связывания данных решает задачу обеспечения доступа из одной локальной базы, открытой одним пользователем, к данным в другой локальной базе (в другом файле), возможно находящейся на другой вычислительной установке, открытой и эксплуатируемой другим пользователем.

Решение этой задачи основывается на поддержке современными «настольными» СУБД (MS Access, MS FoxPro, dBase и др.) технологии «объектов доступа к данным» - DАО.

При этом следует отметить, что под объектом понимается интеграция данных и методов, их обработки в одно целое (объект), на чем основываются объектно-ориентированное программирование и современные объектно-ориентированные операционные среды. Другими словами, СУБД, поддерживающие DАО, получают возможность внедрять и оперировать в локальных базах объектами доступа к данным, физически находящимся в других файлах, возможно на других вычислительных установках и под управлением других СУБД.

Технически технология DАО основана на уже упоминавшемся протоколе ODBC, который принят за стандарт доступа не только к данным на SQL-серверах клиент-серверных систем, но и в качестве стандарта доступа к любым данным под управлением реляционных СУБД.

Непосредственно для доступа к данным на основе протокола ODBC используются специальные программные компоненты, называемые драйверами ODBC (инициализируемые на тех установках, где находятся данные).

Схематично принцип и особенности доступа к внешним базам данных на основе объектного связывания иллюстрируются на рис. 5 7.

Рисунок 5.7 - Принцип доступа к внешним данным па основе ODBC

информационный технология организационный управление

Прежде всего, современные настольные СУБД обеспечивают возможность прямого доступа к объектам (таблицам, запросам, формам) внешних баз данных «своих» форматов. Иначе говоря, в открытую в текущем сеансе работы базу данных пользователь имеет возможность вставить специальные ссылки-объекты и оперировать с данными из другой (внешней, т. е. не открываемой специально в данном сеансе) базы данных.

Объекты из внешней базы данных, вставленные в текущую базу данных, называются связанными и, как правило, имеют специальные обозначения для отличия от внутренних объектов. При этом следует подчеркнуть, что сами данные физически в файл (файлы) текущей базы данных не помещаются, а остаются в файлах своих баз данных. В системный каталог текущей базы данных помещаются все необходимые для доступа сведения о связанных объектах - внутреннее имя и внешнее, т. е. истинное имя объекта во внешней базе данных, полный путь к файлу внешней базы и г. п.

Связанные объекты для пользователя ничем не отличаются от внутренних объектов. Пользователь может также открывать связанные во внешних базах таблицы данных, осуществлять поиск, изменение, удаление и добавление данных, строить запросы по таким таблицам и т. д. Связанные объекты можно интегрировать в схему внутренней базы данных, т е. устанавливать связи между внутренними и связанными таблицами.

Технически оперирование связанными объектами из внешних баз данных «своего» формата мало отличается от оперирования с данными из текущей базы данных.

Ядро СУБД при обращении к данным связанного объекта по системному каталогу текущей базы данных находит сведения о месте нахождения и других параметрах соответствующего файла (файлов) внешней базы данных и прозрачно (т. е. невидимо для пользователя) открывает этот файл (файлы). Далее обычным порядком организует в оперативной памяти буферизацию страниц внешнего файла данных для непосредственно доступа и манипулирования данными.

Следует также заметить, что на основе возможностей многопользовательского режима работы с файлами данных современных операционных систем, с файлом внешней базы данных, если он находится на другой вычислительной установке, может в тот же момент времени работать и другой пользователь, что и обеспечивает коллективную обработку общих распределенных данных.

Подобный принцип построения распределенных систем при больших объемах данных в связанных таблицах приведет к существенному увеличению трафика сети, так как по сети постоянно передаются даже не наборы данных, а страницы файлов баз данных, что может приводить к пиковым перегрузкам сети. Поэтому представленные схемы локальных баз данных с взаимными связанными объектами нуждаются в дальнейшей тщательной проработке.

Не менее существенной проблемой является отсутствие надежных механизмов безопасности данных и обеспечения ограничений целостности. Совместная работа нескольких пользователей с одними и теми же данными обеспечивается только функциями операционной системы по одновременному доступу к файлу нескольких приложений.

Аналогичным образом обеспечивается доступ к данным, находящимся в базах данных наиболее распространенных форматов других СУБД, таких, например, как базы данных СУБД FoxPro, dBASE.

При этом доступ может обеспечиваться как непосредственно ядром СУБД, так и специальными дополнительными драйверами ISAM (Indexed Sequential Access Method), входящими, как правило, в состав комплекта СУБД.

Объектное связывание ограничивается только непосредственно таблицами данных, исключая другие объекты базы данных (запросы, формы, отчеты), реализация и поддержка которых зависят от специфики конкретной СУБД.

Определенной проблемой технологий объектного связывания является появление «брешей» в системах защиты данных и разграничения доступа. Вызовы драйверов ODBC для осуществления процедур доступа к данным помимо пути, имени файлов и требуемых объектов (таблиц), если соответствующие базы защищены, содержат в открытом виде пароли доступа, в результате чего может быть проанализирована и раскрыта система разграничения доступа и защиты данных.

12. ОБЩАЯ ХАРАКТЕРИСТИКА ТЕХНОЛОГИИ СОЗДАНИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

К программно-инструментальным средствам в первую очередь относятся алгоритмические языки и соответствующие им трансляторы, затем системы управления базами данных (СУБД) с языковыми средствами программирования в их среде, электронные таблицы с соответствующими средствами их настройки и т.п.

Рассмотрим этапы разработки программ.

Рисунок 7.1 - Этапы разработки программного обеспечения.

Первый этап представляет собой постановку задачи. На этом этапе раскрывается сущность задачи, т.е. формулируется цель ее решения; определяется взаимосвязь с другими задачами; указывается периодичность решения; устанавливаются состав и формы представления входной, промежуточной и результатной информации.

Особое внимание в процессе постановки задачи уделяется детальному описанию входной, выходной (результатной) и межуточной информации.

Особенность реализации этого этапа технологического процесса заключается в том, что конечный пользователь разрабатываемой программы, хорошо знающий ее проблемную сторону, обычно хуже представляет специфику и возможности использования ЭВМ для решения задачи. В свою очередь, предметная область пользователя (особенно ее отдельные нюансы, способные оказать влияние на решение задачи) зачастую незнакома разработчику программы, хотя он знает возможности и ограничения на применение ЭВМ. Именно эти противоречия являются основной причиной возникновения ошибок при реализации данного этапа технологического процесса разработки программ, которые затем неизбежно отражаются и на последующих этапах. Отсюда вся важность и ответственность этого этапа, требующего осуществления корректной и полной постановки задачи, а также необходимости однозначного ее понимания, как разработчиком программы, так и ее пользователем.

Второй этап в технологии разработки программ - математическое описание задачи и выбор метода ее решения. Наличие этого этапа обусловливается рядом причин, одна из которых вытекает из свойства неоднозначности естественного языка, на котором описывается постановка задачи. В связи с этим на нем выполняется формализованное описание задачи, т.е. устанавливаются и формулируются средствами языка математики логико-математические зависимости между исходными и результатными данными. Математическое описание задачи обеспечивает ее однозначное понимание пользователем и разработчиком программы.

Сложность и ответственность этапа математического описания задачи и выбора (разработки) соответствующего метода ее решения часто требуют привлечения квалифицированных специалистов области прикладной математики, обладающих знанием таких дисциплин, как исследование операций, математическая статистика, вычислительная математика и т.п.

Третий этап технологического процесса подготовки решения задач ЭВМ представляет собой алгоритмизацию ее решения, т.е. разработку оригинального или адаптацию (уточнение и корректировку) уже известного алгоритма.

Алгоритмизация - это сложный творческий процесс. В основу процесса алгоритмизации положено фундаментальное понятие математики и программирования - алгоритм. Алгоритм - это конечный набор правил, однозначно раскрывающих содержание и последовательность выполнения операций для систематического решения определенного класса задач за конечное число шагов.

Любой алгоритм обладает следующими важными свойствами: Детерминированностью, массовостью, результатностью и дискретностью.

Детерминированность алгоритма (определенность, однозначность) - свойство, определяющее однозначность результата работы алгоритма при одних и тех же исходных данных. Это означает, что набор указаний алгоритма должен быть однозначно и точно понят любым исполнителем.

Массовость алгоритма - свойство, определяющее пригодность использования алгоритма для решения множества задач данного класса. Оно предполагает возможность варьирования исходными данными в определенных пределах. Свойство массовости алгоритма является определяющим фактором, обеспечивающим экономическую эффективность решения задач на ЭВМ, так как для задач, решение которых осуществляется один раз, целесообразность использования ЭВМ, как правило, диктуется внеэкономическими категориями.

Результатность алгоритма - свойство, означающее, что для любых допустимых исходных данных он должен через конечное число шагов (или итераций) завершить работу.

Дискретность алгоритма - свойство, означающее возможность разбиения определенного алгоритмического процесса на отдельные элементарные действия.

Таким образом, алгоритм дает возможность чисто механически решать любую задачу из некоторого класса однотипных задач.

Составление (адаптация) программ (кодирование) является завершающим этапом технологического процесса разработки программных средств. Он предшествует началу непосредственно машинной реализации алгоритма решения задачи. Процесс кодирования заключается в переводе описания алгоритма на один из доступных для ЭВМ языков программирования. В процессе составления программы для ЭВМ конкретизируются тип и структура используемых данных, а последовательность действий, реализующих алгоритм, отражается посредством конкретного языка программирования.

Этап тестирования и отладки. Оба эти процесса функционально связаны между собой, хотя их цели несколько отличаются друг от друга.

Тестирование представляет собой совокупность действий, назначенных для демонстрации правильности работы программы в заданных диапазонах изменения внешних условий и режимов эксплуатации программы. Цель тестирования заключается в демонстрации отсутствия (или выявлении) ошибок в разработанных программах на заранее подготовленном наборе контрольных примеров.

Процессу тестирования сопутствует понятие «отладка», которое подразумевает совокупность действий, направленных на устранение ошибок в программах, начиная с момента обнаружения фактов ошибочной работы программы и завершая устранением причин их возникновения.

По своему характеру (причине возникновения) ошибки в программах делятся на синтаксические и логические.

Синтаксические ошибки в программе представляют собой некорректную запись отдельных языковых конструкций с точки зрения правил их представления для выбранного языка программирования. (ошибки выявляются автоматически)

Далее проверяется логика работы программы на исходных данных. При этом возможны следующие основные формы проявления логических ошибок:

- в какой-то момент программа не может продолжать работу (возникает программное прерывание, обычно сопровождающееся указанием места в программе, где оно произошло);

- программа работает, но не выдает всех запланированных результатов и не выходит на останов (происходит ее «зацикливание»);

- программа выдает результаты и завершает свою работу, но они полностью или частично не совпадают с контрольными.

После выявления логических ошибок и устранения причин их возникновения в программу вносятся соответствующие исправления и отладка продолжается.

Программа считается отлаженной, если она безошибочно выполняется на достаточно представительном наборе тестовых данных, обеспечивающих проверку всех ее участков (ветвей).

Процесс тестирования и отладки программ имеет итерационный характер и считается одним из наиболее трудоемких этапов процесса разработки программ. По оценкам специалистов, он может составлять от 30 до 50% в общей структуре затрат времени на разработку проектов и зависит от объема и логической сложности разрабатываемы программных комплексов.

Для сокращения затрат на проведение тестирования и отладки в настоящее время широко применяются специальные программные средства тестирования (например, генераторы тестовых данных) и приемы отладки (например, метод трассировки программ, позволяющий выявлять, все ли ветви программы были задействованы при решении задачи с заданными наборами исходных данных).

После завершения процесса тестирования и отладки программные средства вместе с сопроводительной документацией передаются пользователю для эксплуатации.

Основное назначение сопроводительной документации - обеспечить пользователя необходимыми инструктивными материалами по работе с программными средствами. Состав сопроводительной документации обычно оговаривается заказчиком (пользователем) и разработчиком на этапе подготовки технического задания на программное средство. Как правило, это документы, регламентирующие работу пользователя в процессе эксплуатации программы, а также содержащие информацию о программе, необходимую в случае возникновения потребности внесения изменений и дополнений в нее. При передаче пользователю разработанных прикладных программных средств создается специальная комиссия, включающая в свой состав представителей разработчиков и заказчиков (пользователей). Комиссия в соответствии с заранее составленным и утвержденным обеими сторонами планом проводит работы по приемке-передаче программных средств и сопроводительной документации. По завершении работы комиссии оформляется акт приемки-передачи.

В процессе внедрения и эксплуатации прикладных программных средств могут выявляться различного рода ошибки, не обнаруженные разработчиком при тестировании и отладке программных средств. Поэтому при реализации достаточно сложных и ответственных программных комплексов по согласованию пользователя (заказчика) с разработчиком этап эксплуатации программных средств может быть разбит на два подэтапа: экспериментальная (опытная) и промышленная эксплуатация.

Смысл экспериментальной эксплуатации заключается во внедрении разработанных программных средств на объекте заказчика с целью проверки их работоспособности и удобства работы пользователей при решении реальных задач в течение достаточно длительного периода времени (обычно не менее года) Только после завершения периода экспериментальной эксплуатации и устранения выявленных при этом ошибок и учета замечаний программное средство передается в промышленную эксплуатацию.

Для повышения качества работ, оперативности исправления ошибок, выявляемых в процессе эксплуатации программных средств, также выполнения различного рода модификаций, в которых может возникнуть необходимость в ходе эксплуатации, разработчик может по договоренности с пользователем осуществлять их сопровождение. Описанная схема технологического процесса разработки прикладных программных средств отражает их «жизненный цикл», т.е. временной интервал с момента зарождения программы до момента полного отказа от ее эксплуатации.

13. СОВРЕМЕННЫЕ МЕТОДЫ РАЗРАБОТКИ ПО

Метод нисходящего проектирования (метод пошаговой детализации, метод иерархического проектирования, top-down-подход)

Суть метода заключается в определении спецификаций компонентов системы путем последовательного выделения в ее составе отдельных составляющих и их постепенной детализации до уровня, обеспечивающего однозначное понимание того, что и как необходимо разрабатывать и реализовывать.

Этот метод является незаменимым при разработке сложных по характеру и больших по объему программ, когда к их разработке необходимо привлекать большое число программистов, работающих параллельно. Он позволяет концентрировать внимание разработчиков на наиболее ответственных частях программы, а также облегчает возможность постоянного контроля за ее работоспособностью по мере разработки, отладки и объединения отдельных составляющих программ за счет организации непрерывности этого процесса в течение всей разработки.

Для ускорения разработки программного комплекса часто вместо некоторых программ нижнего уровня, находящихся в процессе разработки, могут применяться специальные «программы-заглушки» Программы-заглушки требуются только на ранних стадиях разработки для того, чтобы не сдерживать общий ход создания программного комплекса. Суть программы-заглушки заключается в том, что при обращении к ней в соответствии с заданным набором исходных тестовых данных она не формирует, а выбирает результат «решения» из заранее подготовленного набора. Благодаря этому обеспечивается возможность имитировать работу на ЭВМ реально создаваемой программы, а следовательно, осуществлять проверку работоспособности программ верхнего уровня еще до того, как будут разработаны и отлажены все составляющие программы нижнего уровня.

Модульное проектирование

Реализация метода нисходящего проектирования тесно связана с другим понятием программирования - модульным проектированием, так как на практике при декомпозиции сложной программы возникает вопрос о разумном пределе ее дробления на составные части. Вместе с тем понятие модульности нельзя сводить только к представлению сложных программных комплексов в виде набора отдельных функциональных блоков.

Модуль - это последовательность логически взаимосвязанных фрагментов задачи, оформленных как отдельная часть программы. При этом программные модули должны обладать следующими свойствами:

- на модуль можно ссылаться (т.е. обращаться к нему) по имени, в том числе и из других модулей;

- по завершении работы модуль должен возвращать управление тому модулю, который его вызывал;

- модуль должен иметь один вход и выход;

- модуль должен иметь небольшой размер, обеспечивающий его обозримость.

При разработке сложных программ в них выделяют головной управляющий модуль, подчиненные ему модули, обеспечивающие реализацию отдельных функций управления, функциональную обработку (т.е. непосредственную реализацию основного назначения программного комплекса), а также вспомогательные модули, обеспечивающие сервисное обслуживание пакета (например, сбор и анализ статистики работы программы, обработка различного рода ошибочных ситуаций, обучение и выдача подсказок и т.п.).

Модульный принцип разработки программ обладает следующими преимуществами:

- большую программу могут разрабатывать одновременно несколько исполнителей, и это позволяет сократить сроки ее разработки;

- появляется возможность создавать и многократно использовать в дальнейшем библиотеки наиболее употребимых программ;

- упрощается процедура загрузки больших программ в оперативную память, когда требуется ее сегментация;

- возникает много естественных контрольных точек для наблюдения за осуществлением хода разработки программ, а в последующем для контроля за ходом исполнения программ;

- обеспечивается более эффективное тестирование программ, проще осуществляются проектирование и последующая отладка.

Преимущества модульного принципа построения программ особенно наглядно проявляются на этапе сопровождения и модификации программных продуктов, позволяя значительно сократить затраты сил и средств на реализацию этого этапа.

Структурное программирование

...

Подобные документы

  • Роль структуры управления в информационной системе. Примеры информационных систем. Структура и классификация информационных систем. Информационные технологии. Этапы развития информационных технологий. Виды информационных технологий.

    курсовая работа [578,4 K], добавлен 17.06.2003

  • Формирование и развитие системы непрерывного образования. Понятие информационной технологии. Роль средств новых информационных технологий в образовании. Направления внедрения средств новых информационных технологий в образование.

    реферат [28,9 K], добавлен 21.11.2005

  • Понятие информационных технологий, этапы их развития, составляющие и основные виды. Особенности информационных технологий обработки данных и экспертных систем. Методология использования информационной технологии. Преимущества компьютерных технологий.

    курсовая работа [46,4 K], добавлен 16.09.2011

  • Информационные технологии и системы. Связь организаций и информационных систем. Интегрированная система управления промышленными предприятиями. Возможности информационных технологий в бизнесе, их влияние на организацию и роль менеджеров в этом процессе.

    курсовая работа [147,7 K], добавлен 07.05.2012

  • Классификация информационных систем и технологий в организационном управлении. Методы и организация создания ИС и ИТ. Состав, структура, внутримашинного информационного обеспечения. Информационные технологии и процедуры обработки экономической информации.

    контрольная работа [28,9 K], добавлен 25.07.2012

  • Этапы и современное состояние развития информационных технологий управления, оценка их роли и значения в деятельности руководителя. Знания, умения руководителя, необходимые для использования информационных технологий в управлении. Требования к менеджеру.

    контрольная работа [27,5 K], добавлен 10.02.2011

  • Понятие информационных технологий, история их становления. Цели развития и функционирования информационных технологий, характеристика применяемых средств и методов. Место информационного и программного продукта в системе информационного кругооборота.

    реферат [318,9 K], добавлен 20.05.2014

  • Этапы развития информационной системы и происходящие в ней процессы. Виды, инструментарий, составляющие информационных технологий. Производство информации для ее анализа человеком и принятия на его основе решения как цель информационной технологии.

    контрольная работа [2,7 M], добавлен 18.12.2009

  • Применение информационных технологий при анализе финансовых потоков организации. Сущность электронного документооборота и его возможности. Принципы работы со служебной корреспонденцией. Информационные технологии управления отношениями с контрагентами.

    методичка [1,1 M], добавлен 17.03.2015

  • Информационные связи в корпоративных системах. Банк данных, его состав, модели баз данных. Системы классификации и кодирования. Интегрированные информационные технологии. Задачи управления и их реализация на базе информационной технологии фирмы.

    практическая работа [31,0 K], добавлен 25.07.2012

  • Основные характеристики и принцип новой информационной технологии. Соотношение информационных технологий и информационных систем. Назначение и характеристика процесса накопления данных, состав моделей. Виды базовых информационных технологий, их структура.

    курс лекций [410,5 K], добавлен 28.05.2010

  • Общая характеристика отрасли авиастроения, обоснование необходимости внедрения новых информационных технологий в данной сфере. Изучение концепции и механизма использования CALS-технологий в российском авиастроении: основные проблемы и пути их решения.

    курсовая работа [1,2 M], добавлен 10.02.2014

  • Функциональная направленность использования информационных технологий. Электронные сетевые технологии ведения бизнеса. Электронный бизнес как результат новых качественных изменений, связанных с внедрением информационных технологий, электронная торговля.

    контрольная работа [96,8 K], добавлен 03.10.2010

  • Современные информационные технологии, используемые в психологии, их функциональные возможности, направления использования. Программы для обработки математических данных. Программное обеспечение офис-менеджмента и психодиагностического исследования.

    презентация [57,1 K], добавлен 02.06.2015

  • Понятие информационной технологии, принципы и этапы ее формирования, предъявляемые требования, современные проблемы использования. Виды информационных технологий, специфика и направления их практического применения. Решение прикладной задачи в Excel.

    курсовая работа [680,9 K], добавлен 09.06.2013

  • История развития информационных технологий. Классификация, виды программного обеспечения. Методологии и технологии проектирования информационных систем. Требования к методологии и технологии. Структурный подход к проектированию информационных систем.

    дипломная работа [1,3 M], добавлен 07.02.2009

  • Понятие и классификация информационных систем, их типы и функциональные особенности: связи, хранения и обработки информации, поисковые. Процесс устаревания данных систем, их значение и задачи в мире, сферы использования и возможности, управление.

    презентация [555,0 K], добавлен 10.03.2015

  • Этапы развития и составляющие информационных технологий. Особенности, связанные с обработкой данных. Объяснения, выдаваемые по запросам. Устаревание информационной технологии. Характеристика методологии централизованной и децентрализованной технологии.

    курсовая работа [33,0 K], добавлен 09.09.2014

  • Сущность и этапы развития информационных технологий, их функции и составляющие. Характеристика информационных технологий управления и экспертных систем. Использование компьютерных и мультимедийных технологий, телекоммуникаций в обучении специалистов.

    курсовая работа [48,6 K], добавлен 03.03.2013

  • Рассмотрение основ использования информационных технологий в гостиничном бизнесе. Выбор системы управления базами данных. Описание информационной технологии. Выполнение программной реализации в среде объектно-ориентированного программирования Delphi 7.

    курсовая работа [2,1 M], добавлен 24.09.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.