OLAP–серверы

Скорость и качество принятия решений как один из самых важных факторов успеха в бизнесе и управлении. Использование серверов для хранения баз информационных данных. OLAP-системы - серверы многомерных баз данных, их основные принципиальные отличия.

Рубрика Программирование, компьютеры и кибернетика
Вид статья
Язык русский
Дата добавления 07.01.2016
Размер файла 19,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Тольяттинский государственный университет

OLAP-серверы

Лесных Екатерина Юрьевна,

Студентка кафедры "Прикладная математика и информатика"

Лесных Юрий Иванович, доктор физико-математических наук, профессор кафедры физики, СамГТУ

Аннотация

Всем известно, что скорость и качество принятия решений является одним из самых важных факторов успеха в бизнесе и управлении. Основа этих решений - информация, которой владеет управленец. В наше время, во время глобальной компьютеризации, информация хранится в разных электронных форматах, для эффективного хранения используются базы данных, а точнее системы управления базами данных.

Ключевые слова:

хранилище данных; СУБД; базы данных; OLAP - серверы

Введение

В наше время большинство крупных фирм и предприятий имеют большой объем информации, накопившийся за много лет, который следует комплексно исследовать, анализировать, следить за динамикой, тенденцией и т.д. Чаще всего эта информация доступна только тем подразделениям, в которых она накапливается, поэтому аналитики и руководители не могут ее использовать. Поэтому появляется потребность в система, которые помогут решить данную проблему. В современных бизнес-приложения имеется достаточно много возможностей для анализа информации, однако, большая ее часть скрыта в данных, которые были созданы до использования современных информационных систем.

Аспекты хранения данных

Структуры хранения данных

Серверы хранения данных, например, OLAP - серверы или серверы многомерных баз данных хранят информацию по-разному. В любом хранилище данных информация хранится не только детальная, которую извлекают из операционных систем, но и сводные показатели, например, число произведенных деталей в месяц, категории деталей и т.п. Обобщенные данные пользуются большим спросом у аналитиков, чем детальные, поэтому агрегаты хранятся в явном виде, что ускоряет время выполнения запросов. К тому же, если бы каждый раз для составления сводного отчета пришлось бы использовать отчеты по месяцам (неделям), время исполнения данного задания было бы слишком велико. Хотя при всем этом время выполнения запроса напрямую зависит от количества данных.

Детальные данные и агрегаты хранятся в реляционных или многомерных структурах. Быстрые операции с агрегатами и различные многомерные изменения обеспечиваются многомерным хранением данных, что позволяет обращаться с ними как с многомерным массивом.

Однако, хранения данных в многомерном виде сопровождается "разбуханием" из-за хранения пустых значений. Данных хранятся в многомерном массиве, где зарезервированы места для всевозможных комбинаций меток измерений, поэтому большая часть куба может пустовать из-за отсутствия данных, (например, ряд деталей изготавливается только в определенный сезон года) хотя место в памяти будет занято.

Поставщики

Стоит отметить принципиальные отличия OLAP-систем. Это программное обеспечение, которое позволяет пользователю получать ответы на аналитические запросы в режиме реального времени. OLAP-системы включают в себя только те программы, которые имеют многомерную изменяемую таблицу в качестве внешнего интерфейса. Такая таблица может вычислять промежуточные и окончательные итоги в группах данных при всем это она так же позволяет пользователю менять местами строки и столбцы, задавать условия фильтрации.

Обязательная часть OLAP-анализа - графическое отображение данных. Программная реализация OLAP-решений нуждается в существовании машины вычислений (OLAP-сервера) и много мерной базы данных (М-OLAP), к которой обращаются с запросами клиентские программы для выполнение вычислений и получения данных. OLAP-компонента содержится в каждом конечном решении и является интерфейсом пользователя. Такие компоненты схожи между собой, их визуальная часть содержит элементы отображения и управления данных.

Из поставщиков такого класса программного обеспечения известны поставщики серверов баз данных такие как Informix (MetaCube), IBM, Microsoft (OLAP Server), Oracle (OLAP-продукт Express), Microsoft (OLAP Services).

До недавнего времени OLAP-продукты продавались по очень высоким ценам, например, Oracle Express обходился в $95000, поэтому большинство управленцев использовали Excel из офисного пакета Microsoft для решения аналитических задач. Не смотря на то, что Excel создан для одного пользователя, при нужном использовании интеграции и правильной организации работы с внешним приложением, достигаются требуемые результаты в получении аналитики. Появление OLAP-функциональности ознаменовало появление нового класса продуктов - настольных OLAP (DOLAP - Desktop OLAP).

Такие программы можно разделить на локальные и корпоративные по способу получения данных:

сервер база хранение

· локальные манипулируют данными настольных систем управления баз данных (например, Paradox, Access) или таблиц MS Excel;

· корпоративные DOLAP имеют доступ к многомерным базам данных и SQL-серверам, которые в свою очередь тоже делятся на две категории.

Разработчики многомерных и реляционных баз данных сами поставляют DOLAP-системы, например, Oracle Discovery, SAS Corporate Reporter, такие комплексы программ как Pivot Table, MS Pivot Services и другие. Российские компании тоже имеют свои разработки, например, разработка компании ПиБи - OLAP 7.7 - инструмент анализа данных для семейства программ 1С: Предприятие 7.7, а так же Контур Стандарт от Intersoft Lab. Таким образом, применение OLAP 7.7 помогает выявить лучших и худших поставщиков и покупателей, определить тенденцию объемов продаж по периодам или регионам.

Продукты Контур представлены:

· Платформой хранилищ данных (Contour Data Warehouse Platform), которая предназначена для поддержания корпоративного управления или создание единого информационного пространства.

· Аналитической платформой (Contour Analysis Platform), которая предназначена для анализа данных и бизнес-аналитики.

Также упомянем о пакете Deductor, обеспечивающий прогнозирование, моделирование, поиск закономерностей, добыча данных (Data Mining) и другие технологии обнаружения знаний (Knowledge Discovery in Databases). В состав входят:

· Cube Analyzer - настольный OLAP-модуль, который реализует технологию многомерного анализа в удобной и простой форме;

· Raw Data Analyzer - система, которая ориентирована на анализ данных после их предварительной обработки. В Raw Data Analyzer реализованы технологии, позволяющие произвести весь комплекс действий: очистка от шумов, сглаживание, заполнение пропусков, редактирование аномальных значений, понижение размерности, устранение незначащих факторов;

· Tree Analyzer - программа, которая позволяет анализировать данные на основе дерева решений;

· SOMap Analyzer - программа, которая позволяет производить анализ данных на основе самоорганизующихся карт Кохонена;

· Neural Analyzer - программа, которая реализует RBF-сети и многослойные нейронные сети. С их помощью решаются задачи моделирования, управления и прогнозирования динамических систем.

Советы для повышения производительности OLAP-кубов

1) Для максимальной производительности нужно верно выбрать режим хранения - HOLAP, MOLAP, ROLAP. HOLAP, MOLAP имею примерно одинаковую производительность, а ROLAP всегда понижает ее. MOLAP нуждается в больших объемах дискового пространства, чем ROLAP или HOLAP, тем не менее HOLAP нуждается в меньшем количестве оперативной памяти.

2) Рекомендуемый уровень агрегирования кубов - от 25% до 60%, если уровни агрегирования превышают 60%, он не приводит к увеличению скорости обработки запросов, но, как правило, требует огромного объема дискового пространства.

3) Чтобы достигнуть высокой производительности SQL-сервер с хранилищем или витрина данных и OLAP-сервер должны находиться на разных компьютерах.

4) OLAP-серверы следует размещать на разных серверах, если они большие по размеру или часто используется, это разделит нагрузку. Так же можно создать копии часто используемого куба на разных серверах.

5) Обновлять информацию в кубах нужно тогда, когда нагрузка на сервер минимальна.

6) Объем памяти для OLAP-сервера - половина оперативной памяти сервера, это значение устанавливается автоматически. При использовании сервером одного из нескольких кубов, значение доступной памяти должно быть не менее 90% памяти сервера.

7) Важно помнить, что максимальное количество процессов, которые обрабатывает OLAP Service, равно 1000. Нагрузку процессов можно определить с помощью монитора производительности.

8) Чтобы не включать в разработку OLAP-кубов меры или измерения, которые не будут использоваться, следует производить качественные анализы и проектирования систем.

9) Для повышения производительности следует использовать мастера оптимизации при создании OLAP-куба, а так же мастера анализа для того, чтобы проанализировать обрабатываемые запросы.

10) Для того чтобы уменьшить количество ненужных связей и снизить время обработки куба, следует отключить опцию оптимизации схемы.

11) OLAP-кубы делятся на партии в случае, если SQL-сервер используется в корпоративной версии, это повышает производительность. Уровень агрегирования и режим хранения данных свой для каждой партии. Наличие партий обеспечивает размещение их на разных дисках и повышение интенсивности их использования.

Заключение

В ходе выполнения работы мы ознакомились с терминологией вечного хранения данных и понятием этого термина, с хранилищами и базами данных, со структурой хранения данных и простейшими аспектами их хранения.

Библиографический список

1. Байдун В. В "Программирование на языке SQL" [Текст] /. Байдун В.В., Кружилов С.И., Сергиевский А. Е, Чернов П.Л. - М.: Моск. энеpг. ин-т, 2005. - 40 С.

2. Хювёнен Э "Хранилища данных". [Текст] / Хювёнен Э., Сеппянен Й. В 2-х т. / Пер. с финск. - М.: Мир, 2000. - 534с.

Размещено на Allbest.ru

...

Подобные документы

  • Основа концепции OLAP (On-Line Analytical Processing) – оперативной аналитической обработки данных, особенности ее использования на клиенте и на сервере. Общие характеристика основных требования к OLAP-системам, а также способов хранения данных в них.

    реферат [24,3 K], добавлен 12.10.2010

  • Сущность OnLine Analytical Processing (OLAP). Классификация OLAP-продуктов по способу хранения данных и месту нахождения OLAP-машины. Создание приложения с помощью клиентского инструментального средства. Принципы построения ядра системы анализа данных.

    курсовая работа [275,8 K], добавлен 19.07.2012

  • Построение систем анализа данных. Построение алгоритмов проектирования OLAP-куба и создание запросов к построенной сводной таблице. OLAP-технология многомерного анализа данных. Обеспечение пользователей информацией для принятия управленческих решений.

    курсовая работа [1,3 M], добавлен 19.09.2008

  • OLAP: общая характеристика, предназначение, цели, задачи. Классификация OLAP-продуктов. Принципы построения OLAP системы, библиотека компонентов CubeBase. Зависимость производительности клиентских и серверных OLAP-средств от увеличения объема данных.

    курсовая работа [113,6 K], добавлен 25.12.2013

  • Основные сведения об OLAP. Оперативная аналитическая обработка данных. Классификация продуктов OLAP. Требования к средствам оперативной аналитической обработки. Использование многомерных БД в системах оперативной аналитической обработки, их достоинства.

    курсовая работа [67,5 K], добавлен 10.06.2011

Работа, которую точно примут
Сколько стоит?

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.