Спутниковые сети связи

Архитектура спутниковых систем связи: космический и земной сегменты, диапазоны частот, топологии. Технологии спутниковой связи: VSAT (Very Small Aperture Terminal), SCPC (Single Channel per Carrier), TES, PES. Сочетание сигнала и цифрового потока.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 29.05.2014
Размер файла 46,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Курсовая работа на тему: «Спутниковые сети связи»

Содержание

Введение

1. Архитектура ССС

1.1 Космический сегмент

1.2 Земной сегмент

1.3 Диапазоны частот

1.4 Топологии

2. Технологии спутниковой связи

2.1 VSAT (Very Small Aperture Terminal)

2.2 SCPC (Single Channel per Carrier)

2.3 TES

2.4 PES

Заключение

Список использованных источников

Глоссарий

Введение

Сети связи представляют собой комплексы технических средств, которые обеспечивают обмен информацией по каналам связи между территориально распределенными объектами. В настоящее время в мире создаются сети связи, со сложной структурой зависящей как от технических возможностей и средств, используемых при их создании, так и от требуемых характеристик этих сетей. В общем случае сеть связи включает в себя следующие узлы: абонентские, концентрации, коммутации, маршрутизации и ретрансляции. В сетях, построенных по принципу коммутации каналов, посылаемое сообщение передается от одного узла сети к другому по направлению к получателю. Узлы такой сети состоят из буферных накопителей выполняющих роли по согласованию поступающих информационных потоков и скорости их передачи.

Идея спутниковой связи достаточно проста, и заключается в том что, промежуточный ретранслятор радио сети связи устанавливается на борту Искусственного спутника земли (ИСЗ), которые движется по орбите земли, почти без затрат энергии на это движение. Ввиду того что зона видимости спутника почти половина Земного шара, то необходимость в цепочке ретрансляторов отпадает. В начальные годы эры спутниковой связи использовались пассивные спутниковые ретрансляторы (примеры -- спутники «Эхо» и «Эхо-2»), которые представляли собой простой отражатель радиосигнала и не несли на борту ни какого приёмопередающего оборудования. Современные спутники связи являются активными приемо-передающими устройствами. Они оборудованы электронной аппаратурой для приема, обработки, усиления и ретрансляции сигнала. С середины 70-х годов началось распространение региональных и национальных Систем Спутниковой Связи (ССС). Эти сети строились на базе либо собственных геостационарных ретрансляторов, либо арендуемых у Intelsat спутниковых каналов связи. Основные функции этих сетей сводились к распределению телевизионных сигналов и телефонии. От наземных станций ССС требовалась небольшая пропускная способность, поэтому они становились меньше, проще и дешевле.

Орбиты, на которых размещаются спутниковые ретрансляторы, подразделяют на три класса:

* Экваториальные;

* Наклонные;

* Полярные.

Важной разновидностью экваториальной орбиты является геостационарная орбита, на которой спутник вращается с угловой скоростью, равной угловой скорости Земли, в направлении, совпадающем с направлением вращения Земли. Очевидным преимуществом геостационарной орбиты является то, что приемник в зоне обслуживания «видит» спутник постоянно.

Однако геостационарная орбита одна, и все спутники вывести на неё невозможно. Другим её недостатком является большая высота, а значит, и большая цена вывода спутника на орбиту. Кроме того, спутник на геостационарной орбите неспособен обслуживать земные станции в приполярной области.

Наклонная орбита позволяет решить эти проблемы, однако, из-за перемещения спутника относительно наземного наблюдателя необходимо запускать не меньше трех спутников на одну орбиту, чтобы обеспечить круглосуточный доступ к связи.

Полярная орбита -- предельный случай наклонной (с наклонением 90є).

При использовании наклонных орбит земные станции оборудуются системами слежения, осуществляющими наведение антенны на спутник. Станции, работающие со спутниками, находящимися на геостационарной орбите, как правило, также оборудуются такими системами, чтобы компенсировать отклонение от идеальной геостационарной орбиты. Исключение составляют небольшие антенны, используемые для приема спутникового телевидения: их диаграмма направленности достаточно широкая, поэтому они не чувствуют колебаний спутника возле идеальной точки.

Поскольку радиочастоты являются ограниченным ресурсом, необходимо обеспечить возможность использования одних и тех же частот разными земными станциями. Сделать это можно двумя способами:

Пространственное разделение -- каждая антенна спутника принимает сигнал только с определенного района, при этом разные районы могут использовать одни и те же частоты;

Поляризационное разделение -- различные антенны принимают и передают сигнал во взаимно перпендикулярных плоскостях поляризации, при этом одни и те же частоты могут применяться два раза (для каждой из плоскостей).

Типичная карта покрытия для спутника, находящегося на геостационарной орбите, включает следующие компоненты:

Глобальный луч -- осуществляет связь с земными станциями по всей зоне покрытия, ему выделены частоты, не пересекающиеся с другими лучами этого спутника;

Лучи западной и восточной полусфер -- эти лучи поляризованы в плоскости A, причем в западной и восточной полусферах используется один и тот же диапазон частот.

Зонные лучи -- поляризованы в плоскости B (перпендикулярной A) и используют те же частоты, что и лучи полусфер. Таким образом, земная станция, расположенная в одной из зон, может использовать также лучи полусфер и глобальный луч.

1. Архитектура ССС

1.1 Космический сегмент

Когда говорят о космическом сегменте, обычно подразумевают спутники-ретрансляторы и средства выведения их на орбиту, а так же наземные комплексы управления. Спутники-ретрансляторы представляют собой основную часть космического сегмента. Они состоят из двух основных узлов: космической платформы и бортового ретранслятора. Бортовой ретранслятор принимает сигналы с земных станций, усиливает и передает на землю. С помощью бортовых антенн, излучаемый спутником сигнал фокусируется в один или несколько лучей, этим обеспечивая формирование необходимой зоны покрытия. Основными характеристиками спутников связи являются: количество радиочастотных каналов (ретрансляторов) или стволов, мощность передатчиков в каждом стволе (обычно представляемая как эквивалентная изотропно излучаемая мощность или ЭИИМ), количество и размеры зон обслуживания.

Для уменьшения взаимных помех передача сигнала со спутника (Downlink) ведется на частоте, отличной от частоты передачи сигнала с земли на спутник (Uplink). Поэтому ретрансляторы спутника имеют в своем составе преобразователи частоты. Обычно частота Downlink ниже, чем линии Uplink. Для систем спутниковой связи выделены определенные диапазоны частот, каждый из которых имеет свои особенности. Количество, размеры и формы зон обслуживания определяются конструкцией антенн. Космическая платформа предназначена для поддержания работы спутника связи. Основными функциями космической платформы являются обеспечение бортового ретранслятора электропитанием и удержание спутника на заданной орбите. Электропитание бортовой аппаратуры осуществляется обычно от солнечных батарей и резервных аккумуляторов.

Под влиянием гравитационных сил спутник отклоняется от заданной орбиты, из-за чего необходимо периодически проводить ее коррекцию, используя специальные реактивные двигатели, установленные на спутнике. Поэтому значительную долю веса геостационарных спутников составляет вес двигательной установки и горючего для корректирующих двигателей. Запас горючего для коррекции орбиты, наряду с надежностью и долговечностью бортовой аппаратуры, определяет срок активного существования спутников связи. Оперативное управление бортовыми системами и их контроль осуществляется бортовой вычислительной машиной. Кроме того, вся телеметрическая информация о состоянии систем спутника передается на землю. Наземный комплекс управления (НКУ) по результатам телеметрического контроля и измерения параметров орбиты спутника передает на него команды по коррекции орбиты и управлению бортовой аппаратурой.

1.2 Земной сегмент

Земной сегмент представляет собой сеть абонентских станций спутниковой связи, устанавливаемых у пользователей, а также центр управления сетью (при необходимости его использования). Абонентские станции могут быть как стационарными, так и подвижными. До 90 % стоимости большинства систем спутниковой связи обычно приходится на земной сегмент.

Типовая земная станция (ЗС) системы фиксированной спутниковой связи (ФСС) состоит из следующих основных узлов:

* станция космической связи (СКС);

* каналообразующая аппаратура (КОА);

* оконечное оборудование;

* аппаратура соединительных линий.

Станция космической связи обеспечивает прием и передачу информации по спутниковому каналу. Она включает в себя антенную систему, приемо-передающее оборудование и преобразователи частоты. Размеры антенны и мощность передатчика определяются ЭИИМ спутника и качеством его приемных антенн, а также частотной полосой передаваемого сигнала.

Каналообразующая аппаратура формирует и обрабатывает модулирующий сигнал, обеспечивает процедуру много станционного доступа (мультиплексирование / демультиплексирование сигналов), кодирование и декодирование сигналов, их модуляцию-демодуляцию.

Связь каналообразующей аппаратуры с СКС осуществляется на промежуточной частоте, обычно 70 МГц, иногда - 140 МГц.

Состав оконечного оборудования зависит от назначения земной станции и вида передаваемой информации. Для сетей передачи данных это могут быть сборщики/разборщики пакетов, пакетные коммутаторы и т.д. В системах телефонной связи сюда входят модемы, кодеры и декодеры, коммутаторы и АТС.

Аппаратура соединительных линий предназначена для сопряжения земных станций с наземными линиями связи и аппаратурой пользователей.

1.3 Диапазоны частот

В 1977 году состоялась Всемирная административная радиоконференция (WARC-77) по планированию вещательной спутниковой службы, на которой был принят ныне действующий Регламент радиосвязи. В соответствии с ним вся территория Земли разделена на три района, для вещания в каждом из которых выделены свои полосы частот.

Район 1 - включает Африку, Европу, Россию, Монголию и страны СНГ.

Район 2 - охватывает территорию Северной и Южной Америки.

Район 3 - это территории Южной и Юго-Восточной Азии, Австралия и островные государства Тихоокеанского региона.

В соответствии с этим регламентом для систем спутниковой связи выделено несколько диапазонов частот, каждый из которых получил условное обозначение буквой латинского алфавита:

-L-диапазон 1,452-1,550 и 1,610-1,710;

-S- диапазон 1,93 - 2,70;

-C- диапазон 3,40 -5,25 и 5,725 - 7,075;

-X- диапазон 7,25 - 8,40;

-Ku- диапазон 10,70 - 12,75 и 12,75 - 14,80;

-Ka- диапазон 15,40 - 26,50 и 27,00 -30,20.

Большинство действующих систем спутниковой связи на базе геостационарных спутников работают в диапазонах С (6/4 ГГц) и Ku (14/11 ГГц). Ка - диапазон в нашей стране пока широко не применяется, но идет его бурное освоение в Америке и Европе. Эффективность приемных зеркальных антенн ("тарелок") пропорциональна числу длин волн, укладывающихся в ее поперечнике. А длина волны с увеличением частоты уменьшается. Следовательно, при одинаковой эффективности размеры антенн уменьшаются с увеличением частоты. Если для приема в диапазоне С требуется антенна 2,4 - 4,5 м, то для диапазона Ku размер уменьшится до 0,6 - 1,5 м, для диапазона Ка он может быть уже 30 - 90 см, а для К - диапазона - всего 10 - 15 см.

При одинаковых размерах антенна в диапазоне Ku имеет коэффициент усиления примерно на 9,5 дб больше, чем в диапазоне C. Обычно, ЭИИМ спутников в диапазоне C не превышает 40-42 дБ, тогда как в диапазоне Ku нередки уровни ЭИИМ 50-54 дБ для систем фиксированной спутниковой связи, и даже 60-62 дБ для спутников систем НТВ. По тем же причинам, коэффициент усиления приемных антенн на спутниках-ретрансляторах в диапазоне Ku выше, чем в диапазоне C. В результате, размеры антенн и мощность передающих устройств земных станций в диапазоне Ku в большинстве случаев меньше, чем в диапазоне C.

Например, для работы со спутником "Горизонт" в диапазоне C требуются земные станции с антеннами не менее 3,5 м и передатчиком около 20 Вт. В то же время, земные станции с такой же пропускной способностью для работы со спутником "Интелсат" (Intelsat) в диапазоне Ku могут оснащаться антеннами диаметром 1,2 м и передатчиком 1 Вт. Стоимость первой станции примерно в два раза выше, чем второй при одинаковых пользовательских характеристиках. В пользу диапазона Ku говорит также факт, что полоса частот, выделенных МСЭ для систем спутниковой связи в этом диапазоне, более чем два раза превышает полосу в диапазоне C. К недостаткам диапазона Ku следует отнести повышенные, по сравнению с диапазоном C, потери во время дождя, что требует создания запаса по усилению антенны для их компенсации. Это ограничивает применение диапазона Ku в регионах с тропическим и субтропическим климатом. Для большинства же районов России необходимый запас не превышает 3-4 дб, для создания которого достаточно увеличить диаметр антенны на 20-30 % в сравнении с регионами с сухим климатом.

В связи с вышеизложенным, большинство сетей спутниковой связи на базе VSAT строятся в диапазоне Ku. Для работы систем спутниковой связи выделяются определенные полосы частот, в рамках которых возможно размещение большого числа каналов. При используемых в настоящее время методах модуляции полоса частот одного симплексного (однонаправленного) канала, выраженная в килогерцах (Кгц), примерно равна скорости передачи, выраженной в килобитах в секунду (Кбит/с). Таким образом, для передачи данных в одном направлении со скоростью 64 Кбит/с требуется полоса около 65 Кгц, а для канала Е1 (2048 Кбит/с) необходима полоса частот около 2 МГц.

Для двухсторонней (дуплексной) связи требуемую полосу необходимо удвоить. Следовательно, для организации дуплексного канала со скоростью передачи 2 Мбит/с потребуется полоса частот около 4 МГц. Это соотношение выполняется и для большинства других радиоканалов, а не только спутниковых. Для стандартного спутникового ствола с полосой 36 МГц максимальная скорость передачи составляет около 36 Мбит/с. Но большинству пользователей такие высокие скорости не нужны и они используют лишь часть этой полосы.

1.4 Топологии

В зависимости от распределения трафика между абонентами архитектура сетей спутниковой связи различается по следующим признакам: по конфигурации трафика и структуре управления.

По конфигурации трафика различают:

Сеть "точка - точка". Позволяет обеспечивать прямую дуплексную связь между двумя удаленными абонентскими станциями по выделенным каналам. Такая схема связи наиболее эффективна при большой загрузке каналов (не менее 30 - 40 %). Преимуществом такой архитектуры является простота организации каналов связи и их полная прозрачность для различных протоколов обмена. Кроме того, такая сеть не требует системы управления.

Сеть типа "звезда". Является наиболее распространенной архитектурой построения ССС с абонентскими станциями класса VSAT. Такая сеть обеспечивает много направленный радиальный трафик между центральной земной станцией (ЦЗС или HUB в английской литературе) и удаленными периферийными станциями (терминалами) по энергетически выгодной схеме: малая ЗС - большая ЦЗС, оснащенная антенной большого диаметра и мощным передатчиком. Недостатком архитектуры "звезда" является наличие двойного скачка при связи между терминалами сети, что приводит к заметным задержкам сигнала.

Сети VSAT подобной архитектуры широко используются для организации информационного обмена между большим числом удаленных терминалов, не имеющих существенного взаимного трафика, и центральным офисом фирмы, различными транспортными, производственными и финансовыми учреждениями. Аналогично строятся сети телефонной связи для обслуживания удаленных абонентов, которым обеспечивается выход на телефонную коммутируемую сеть общего пользования через центральную станцию, подключенную к наземному центру коммутации или Автоматической телефонной станции (АТС). Функции контроля и управления в сети типа "звезда" обычно централизованы и сосредоточены в центральной управляющей станции (ЦУС) сети. ЦУС выполняет служебные функции установления соединений между абонентами сети (как наземными, так и спутниковыми терминалами) и поддержания рабочего состояния всех периферийных устройств.

В сети "каждый с каждым". Обеспечиваются прямые соединения между любыми абонентскими станциями (так называемый "односкачковой" режим связи). Количество требуемых дуплексных радиоканалов равно N x (N - 1), где N - число абонентских станций в сети. При этом каждая абонентская станция должна иметь N - 1 каналов приемопередачи. Такая архитектура оптимальна для телефонных сетей, создаваемых в труднодоступных или удаленных районах, а также для сетей передачи данных с относительно небольшим числом удаленных терминалов.

В связи с тем, что для работы между двумя малыми терминалами от VSAT требуются большие энергетические ресурсы в сравнении с сетью "звезда", в сетях типа "каждый с каждым" на абонентских станциях приходится использовать более мощные передатчики и антенны большего диаметра, что заметно отражается на их цене.

Каждая из этих топологий имеет свои преимущества и недостатки. В реальных ситуациях часто требуется предоставление широкого спектра услуг, каждая из которых лучше реализуется в разных топологиях. Поэтому многие сети строятся по смешанным топологиям.

По типам управления различают:

Централизованный тип управления, в этом случае центр управления сетью (ЦУС) выполняет служебные функции контроля и управления, необходимые для установления соединения между абонентами сети, но не участвует в передаче трафика. Обычно ЦУС устанавливается на одной из абонентских станций сети, на которую приходится наибольший трафик.

Децентрализованный тип управления, здесь управление сетью ЦУС отсутствует, а элементы системы управления входят в состав каждой VSAT станции. Подобные сети с распределенной системой управления отличаются повышенной "живучестью" и гибкостью за счет усложнения оборудования, расширения его функциональных возможностей и удорожания VSAT терминалов. Эта схема управления целесообразна лишь при создании небольших сетей (до 30 терминалов) с высоким трафиком между абонентами.

2. Технологии спутниковой связи

2.1 VSAT (Very Small Aperture Terminal)

VSAT-станция - станция спутниковой связи с антенной малого диаметра, порядка 1.8 ... 2.4 м. VSAT-станция используются для обмена информацией между наземными пунктами, а также в системах сбора и распределения данных. ССС с сетью земных станций типа VSAT обеспечивают телефонную связь с цифровой передачей речи, а также передачу цифровой информации. При передаче телефонного трафика спутниковые системы образуют групповые тракты (совокупность технических средств, обеспечивающих прохождение группового сигнала, т.е. несколько телефонных подканалов объединяются в один спутниковый) и каналы передачи (совокупность средств, обеспечивающих передачу сигналов от одной точки в другую).

Каналы и групповые тракты ССС широко используются на участках магистральной и внутризоновой телефонных сетей. В ряде случаев на местных линиях связи ССС позволяют: организовать прямые закрепленные каналы и тракты между любыми пунктами связи в зоне обслуживания ИСЗ. А также работать в режиме незакрепленных каналов, при котором спутниковые каналы и тракты могут оперативно переключаться с одних направлений на другие при изменении потребностей трафика на сети, а также использоваться наиболее эффективно - полнодоступными пучками.

К настоящему времени создано несколько ССС с использованием VSAT. Одной из типичных систем такого рода является система, организованная на базе геостационарных спутников. VSAT, работающие в составе данной системы, установлены в ряде стран, в том числе и в России.

Привлекательной особенностью станций VSAT является возможность их размещения в непосредственной близости от пользователей, которые благодаря этому могут обходиться без наземных линий связи.

Кроме систем с закрепленным каналом, эффективных при постоянной передаче информации на высоких скоростях (10 кбит/с и более), существуют системы, использующие временное, частотное, кодовое или комбинированное разделение канала между многими абонентскими ЗС.

Еще одним параметром, позволяющим классифицировать ССС, является использование протокола. Первые спутниковые системы были беспротокольными и предлагали пользователю прозрачный канал. Недостатком таких систем являлась, например, передача информации пользователя без, как правило, подтверждения ее доставки принимающей стороной. Иначе говоря, в подобных системах не оговорены правила диалога между участниками обмена информацией. В этом случае качество ССС определяется качеством спутникового канала. При типичных значениях вероятности ошибки на символ в пределах 10-6..10-7 передача больших файлов через спутниковые системы, даже с использованием различных помехоустойчивых кодов затруднена, если не сказать, что невозможна.

Спутниковая станция типа VSAT по конструктивному признаку состоит из высокочастотного (ODU) и низкочастотного (IDU) модуля. ODU, состоящий из антенны и приемопередатчика, размещается вне здания, в котором устанавливается IDU, состоящий из модема и мультиплексора (каналообразующей аппаратуры).

Стандартный вариант комплектации включает параболическую антенну небольшого диаметра и приёмопередатчик. В зависимости от месторасположения спутниковой станции по отношению к центру зоны освещения спутника и скорости передачи в канале используются более мощные передатчики или антенны большего диаметра. В помещении устанавливается модем и мультиплексор. ODU и IDU соединены между собой радиочастотными (RF) кабелями. По ним идет сигнал промежуточной частоты (IF). IF бывает 70 или 140 МГц.

Внешний блок. Внешний, или как его иногда называют высокочастотный блок, состоит из антенны и приемопередающего блока, который устанавливается на этой антенне. Приемопередающий блок обеспечивает преобразование низкочастотного сигнала, его усиление и передачу “вверх”. Также прием высокочастотного сигнала со спутника его преобразование в низкочастотный и передачу к внутреннему блоку. Антенна. Однозеркальная антенна обычно выполняется по схеме офсет (со смещенным центром). Схема офсет позволяет снизить уровень боковых лепестков идущих параллельно земли и дающих максимальные помехи. Также данная схема позволяет избежать накопления атмосферных осадков на поверхности рефлектора. связь спутниковый цифровой сигнал

Антенна состоит из:

* рефлектора (зеркала);

* системы облучения;

* опорно-поворотного основания (ОПО).

Основной терминал состоит из:

* СВЧ блока преобразования частот;

* усилителя мощности (SSPA или TWT);

* малошумящего конвертора (LNC);

* блока электропитания (PS);

* соединительных кабелей.

Функция приемопередатчика заключается в преобразовании, после модулятора, сигнала IF, на конверторе вверх, в RF сигнал для передачи через антенну и в преобразовании полученного RF сигнала в сигнал IF, на конверторе вниз, для блока, используемого как демодулятор.

Внутренний блок. Внутренний блок представляет собой 19” стойку с установленными в ней спутниковым модемом и мультиплексором. Иногда в стойке устанавливается и дополнительное оборудование сумматоры, вентиляторы, UPS и т.п. UPS может устанавливаться и вне стойки, отдельно.

Спутниковый модем. Спутниковый модем, в части модулятора предназначен для кодирования передаваемого цифрового потока, пришедшего из мультиплексора, модулирования сигнала по IF, необходимого усиления и передачи сигнала на внешний блок. И приема сигнала IF из внешнего блока, усиления его, демодулирование в цифровой сигнал, декодирование и передачу в мультиплексор, в части демодулятора.

Мультиплексор. Мультиплексор предназначен для мультиплексирования голосовой, факсимильной информации и передаваемых данных. Мультиплексор позволяет скомбинировать ежедневные телефонные и факсимильные сообщения с синхронной и асинхронной передачей данных в один канал, предаваемый по локальным сетям, наземным или спутниковым линиям. Это позволяет снизить телекоммуникационные затраты путем увеличения возможностей передачи важной информации и одновременного уменьшения пропускной способности канала.

Спутниковый Шлюз. Для выхода на сети наземных телекоммуникаций используются спутниковые шлюзы (большие станции к которым подключены через спутник VSAT-станции).

Шлюз может обеспечивать обеспечивает:

* выход на телефонные сети;

* услуги междугородной связи с выходом на сеть общего пользования;

* услуги международной телефонной связи;

* выход на специальные телефонные сети, например "Искра-2";

* выход на сети передачи данных (РОСНЕТ, INTERNET, RELCOM и др.);

* возможность аренды наземного канала до любой точки.

Высокоскоростной выход на INTERNET и другие сети передачи данных.

Шлюз позволяет обеспечить высокоскоростной выход на INTERNET, до 2 Мбит/сек. В данном варианте, возможно, получить доступ ко всем услугам INTERNET (WWW, TelNet, E-mail, FTP и др.). Все описанное выше, также относится и к другим глобальным сетям передачи данных. VSAT - это небольшая станция спутниковой связи с антенной диаметром 0,9 - 3,7 м, предназначенная, главным образом, для надежного обмена данными по спутниковым каналам. Она не требует обслуживания и подключается напрямую к терминальному оборудованию пользователя, выполняя роль беспроводного модема.

Как работает сеть VSAT. Сеть спутниковой связи на базе VSAT включает в себя три основных элемента: центральная земная станция (при необходимости), спутник-ретранслятор и абонентские VSAT терминалы.

Центральная земная станция (ЦЗС). Центральная земная станция в сети спутниковой связи на базе выполняет функции центрального узла и обеспечивает управление работой всей сети, перераспределение ее ресурсов, выявление неисправностей, тарификацию услуг сети и сопряжение с наземными линиями связи. Обычно ЦЗС устанавливается в узле сети, на который приходится наибольший трафик (рис.16).

Каналообразующая аппаратура обеспечивает формирование спутниковых радиоканалов и стыковку их с наземными линиями связи. Каждый из поставщиков систем спутниковой связи применяет свои оригинальные решения этой части ЦЗС, что часто исключает возможность использования для построения сети аппаратуру и абонентские станции других фирм. Обычно эта подсистема строится по модульному принципу, что позволяет по мере роста трафика и количества абонентских станций в сети легко добавлять новые блоки для увеличения ее пропускной способности. Центр управления сетью обеспечивает контроль за работой сети, выявление неисправностей, перераспределение ее ресурсов между абонентами, тарификацию предоставляемых услуг и т.п.

Абонентская станция VSAT. Абонентский VSAT терминал обычно включает в себя антенно-фидерное устройство, наружный внешний радиочастотный блок и внутренний блок (модем). Внешний блок представляет собой небольшой приемо-передатчик или приемник. Внутренний блок обеспечивает сопряжение спутникового канала с терминальным оборудованием пользователя (компьютер, сервер ЛВС, телефон, факс УАТС и т.д.).

Спутник ретранслятор. Сети VSAT строятся на базе геостационарных спутников-ретрансляторов. Это позволяет максимально упрощать конструкцию абонентских терминалов и снабжать их простыми фиксированными антеннами без системы слежения за спутником. Спутник принимает сигнал от земной станции, усиливает его и направляет назад на Землю. Важнейшими характеристиками спутника являются мощность бортовых передатчиков и количество радиочастотных каналов (стволов или транспондеров) на нем. Стандартный ствол имеет полосу пропускания 36 МГц, что соответствует максимальной пропускной способности около 40 Мбит/с. Мощность передатчиков колеблется от 20 до 100 и более ватт. Для обеспечения работы через малогабаритные абонентские станции типа VSAT требуются передатчики с выходной мощностью около 40 Вт. Действующие российские спутники имеют передатчики меньшей мощности, поэтому большое количество российских сетей строятся на базе зарубежных спутников.

2.2 SCPC (Single Channel per Carrier)

SCPC (Single Channel per Carrier, один канал на несущую) - классическая технология спутниковой связи. Сущность ее очень проста: для связи двух земных станций А и В на спутнике выделяются две полосы частот: одна для передачи в направлении А-В, другая - для передачи в направлении В-А.

Эти полосы частот «монопольно» используются только станциями А и В и не могут быть использованы кем-то еще. Таким образом, SCPC - выделенный физический канал связи.

В России и в Европе существуют сети VSAT-станций, работающих на принципе SCPC. Стандартный вариант связи SCPC где используется связь по принципу “point-to-point” (“точка-точка”) - это две VSAT-станции, соединенные спутниковым каналом и расположенные у пользователей.

При наличии такого канала пользователи могут устанавливать связь друг с другом в любой момент. Чаще приходится иметь дело с конфигурацией сети типа “звезда” (принцип “центр с каждым”), когда имеется одна станция в головном офисе (отделении, представительстве и т.п.) и несколько станций в удаленных отделениях, филиалах. При использовании данной схемы возможна организация потоков цифровой информации со скоростью от 32 кбит/сек до 8 Мбит/с и обеспечение телефонной, телефаксной связи между центром и периферией. Данная система открывает возможность выхода через спутниковые станции на международный телепорт в Берлине и далее в любую страну мира. Кроме этого возможно получение прямого московского номера и через телепорт в Москве возможно ведение телефонных переговоров по странам бывшего СССР. В целом следует отметить, что SCPC-система является очень мощной альтернативой арендованных некоммутируемых каналов, ведомственных линий и т.п. Весьма привлекательна она как средство передачи больших объемов информации с высокой скоростью. Вследствие использования спутниковых цифровых каналов, она является некритичной к дальности и помехозащищенной.

Подключение удаленной базовой станции сотовой связи. Это единственный способ подключения удаленной базовой станции сотовой связи через спутник, который гарантирует качественную связь и функционирование всех сервисов сотового оператора в полном объеме. Используется пара модемов с последовательными синхронными интерфейсами G.703, через которые передается цифровой поток Е1 (2048 кбит/с), полный или дробный.

Канальный доступ в Интернет. Спутниковый канал SCPC можно использовать в качестве внешнего канала доступа в Интернет для провайдерского узла в регионе. Как правило, в этом случае спутниковый канал связи «приземляется» на узел крупного оператора связи в Москве. Обычно у такого оператора есть центральная земная станция с антенной больших размеров и мощным передатчиком. За счет этого его клиент в регионе может использовать земную станцию с антенной несколько меньших размеров.

Спутниковая сеть радиовещания. PC Audio- классическая технология доставки сигналов сетевой FM-радиостанции ее партнерам-ретрансляторам в других городах. Особенно актуально использование SCPC для региональных радиостанций, у которых студии находятся не в Москве. Аренда спутникового канала SCPC обходится дешевле, чем аренда такого же по скорости канала любой другой технологии. Правда, на приемных станциях приходится использовать довольно дорогое специфическое оборудование. Однако, станций-ретрансляторов, как правило, немного, и стоимость единожды купленного оборудования быстро окупается экономией на платежах за связь. Земная станция спутниковой связи, установленная в студии, работает только на передачу. На ней устанавливается обычный спутниковый модем с последовательным интерфейсом RS-449 и кодер ComStream DAC700, который преобразует звук в последовательный цифровой поток со скоростью 128…392 кбит/с. Используется цифровое сжатие звука MPEG-1 Layer3. На станциях-ретрансляторах устанавливаются обычные приемные спутниковые антенны - такие же, как для спутникового телевидения. К антенне подключается специфический приемник ComStream ABR202, который сочетает в себе однонаправленный спутниковый модем и декодер MPEG. Между модемом земной станции и сетевым оборудованием провайдера устанавливается маршрутизатор.

2.3 TES

TES-система предназначена для обмена телефонной и цифровой информацией в сетях, что построены по принципу “mesh” (“каждый с каждым”) или, другими словами, в сетях с полным доступом. Это означает, что возможна телефонная связь между любыми двумя абонентами сети, кроме этого абонентам обеспечивается выход в международную сеть общего пользования через телепорт (Gateway) в Берлине. В простейшей конфигурации обеспечивается связь по одному телефонному или факсимильному каналу. Абоненту предоставляется дополнительная возможность организации передачи цифровой информации между двумя станциями, входящими в сеть. Сеть работает по принципу DAMA - когда абонент не имеет жестко закрепленного за ним спутникового канала, а этот канал предоставляется ему по первому требованию, причем с высокой (более 99 %) вероятностью. Этот способ позволяет уменьшить число арендуемых спутниковых каналов и обеспечить приемлемые цены для абонентов. В целом, использование именно TES-системы является самым оперативным и действенным способом доступа в международную телефонную сеть, а также хорошим средством связи с теми областями, которые обладают либо неразвитой инфраструктурой связи, либо вообще не имеют таковой.

2.4 PES

Система персональных земных станций (Personal Earth Station) PES™- спутниковая диалоговая пакетно-коммутируемая сеть, предназначенная для обмена телефонной и цифровой информацией в рамках ССС с топологией типа "звезда", с возможностью полного дуплекса. Система располагает крупной и дорогой центральной станцией (HUB station) и многими небольшими и недорогими периферийными станциями PES или remote. Большая эффективная излучаемая мощность высокое качество приема центральной станции делает возможным применение на PES малых антенн диаметром 0,5-1,8 м и маломощных передатчиков мощностью 0,5-2 Вт.

Это значительно снижает стоимость абонентской ЗС. В отличие от других вышеназванных систем, в этой передача информации всегда идет через HUB. С точки зрения энергетики системы и ее стоимости (соответственно и стоимости предлагаемых услуг) оптимально расположение центральной ЗС в центре зоны освещения спутника. Например, в сети, работающей через спутник INTELSAT-904, центральная ЗС расположена в Москве.

Достоинства СКС:

Спутниковые системы связи могут различаться также и типом передаваемого сигнала, который может быть цифровым или аналоговым. Передача информации в цифровой форме обладает рядом преимуществ по сравнению с другими методами передачи. К ним относятся:

* простота и эффективность объединения многих независимых сигналов и преобразования цифровых сообщений в “пакеты” для удобства коммутации;

* меньшие энергозатраты по сравнению с передачей аналогового сигнала;

* относительная нечувствительность цифровых каналов к эффекту накопления искажений при ретрансляциях, обычно представляющему серьезную проблему в аналоговых системах связи;

* потенциальная возможность получения очень малых вероятностей ошибок передачи и достижения высокой верности воспроизведения переданных данных путем обнаружения и исправления ошибок;

* конфиденциальность связи;

* гибкость реализации цифровой аппаратуры, допускающая использование микропроцессоров, цифровую коммутацию и применение микросхем с большей степенью интеграции компонентов.

Недостатки СКС:

Слабая помехозащищённость. Огромные расстояния между земными станциями и спутником являются причиной того, что отношение сигнал/шум на приемнике очень невелико (гораздо меньше, чем для большинства радиорелейных линий связи). Для того чтобы в этих условиях обеспечить приемлемую вероятность ошибки, приходится использовать большие антенны, малошумящие элементы и сложные помехоустойчивые коды. Особенно остро эта проблема стоит в системах подвижной связи, так как в них есть ограничение на размер антенны и, как правило, на мощность передатчика.

Влияние атмосферы. На качество спутниковой связи оказывают сильное влияние эффекты в тропосфере и ионосфере. Поглощение в тропосфере. Поглощение сигнала атмосферой находится в зависимости от его частоты. Максимумы поглощения приходятся на 22,3 ГГц (резонанс водяных паров) и 60 ГГц (резонанс кислорода). В целом, поглощение существенно сказывается на распространении сигналов с частотой выше 10 ГГц (то есть, начиная с Ku-диапазона). Кроме поглощения, при распространении радиоволн в атмосфере присутствует эффект замирания, причиной которому является разница в коэффициентах преломления различных слоев атмосферы.

Ионосферные эффекты. Эффекты в ионосфере обусловлены флуктуациями распределения свободных электронов. К ионосферным эффектам, влияющим на распространение радиоволн, относят: мерцание, поглощение, задержку распространения, дисперсию, изменение частоты, вращение плоскости поляризации. Все эти эффекты ослабляются с увеличением частоты. Для сигналов с частотами, большими 10 ГГц, их влияние невелико.

Задержка распространения сигнала. Проблема задержки распространения сигнала, так или иначе, затрагивает все спутниковые системы связи. Наибольшей задержкой обладают системы, использующие спутниковый ретранслятор на геостационарной орбите. В этом случае задержка, обусловленная конечностью скорости распространения радиоволн, составляет примерно 250 мс, а с учетом мультиплексирования, коммутации и задержек обработки сигнала общая задержка может составлять до 400 мс. Задержка распространения наиболее нежелательна в приложениях реального времени, например, в телефонной связи. При этом если время распространения сигнала по спутниковому каналу связи составляет 250 мс, разница во времени между репликами абонентов не может быть меньше 500 мс.

В некоторых системах (например, в системах VSAT, использующих топологию «звезда») сигнал дважды передается через спутниковый канал связи (от терминала к центральному узлу, и от центрального узла к другому терминалу). В этом случае общая задержка удваивается.

3 Обобщенная характеристика состояния и тенденций развития ССС

Для организации каналов связи преимущественно используются космические аппараты (КА), расположенные на геостационарной орбите (ГСО). Возможности создания телекоммуникационных сетей на основе спутников на негеостационарных орбитах ограничены незначительной зоной обслуживания, невозможностью предоставления услуг на постоянной основе и рядом других факторов. Большинство этих факторов может быть устранено при использовании группировки спутников, но появляется необходимость слежения за ними. Преимущественно такие группировки используются для организации подвижной связи и радиовещания. Наибольшие из них Iridium (88 КА), Globalstar (48 КА), Orbcomm (31 КА). Для предоставления телекоммуникационных услуг, в особенности вещания, используются геостационарные спутниковые системы связи.

Ежегодно на ГСО выводится от 15 до 30 КА и завершают свою работу 10-15 спутников. За последние 10 лет ежегодный усредненный прирост количества КА составил около 3 %. Однако, при рассмотрении вопроса о росте потребностей в спутниковых каналах, чем обуславливаются запуски КА, следует учитывать не абсолютный прирост, а возможности выводимых на ГСО спутников. Наблюдается тенденция к запуску более эффективных в отношении прибыль/цена «тяжелых» КА, имеющих телекоммуникационную полезную нагрузку около 50 стволов и более. Из 83 работающих «тяжелых» КА 69 было выведено на орбиту после 2000 года (33 % от общего количества запусков).

По состоянию на начало марта 2011 года на геостационарной орбите (ГСО) в различных службах функционирует 319 спутников-ретрансляторов гражданского назначения. Услуги телекоммуникаций предоставляют 67 международных и национальных операторов, которым принадлежат 89 спутниковых систем связи. ССС зарегистрированы в 35 странах, перечень которых приведен в Приложении А.

В список стран, приведенный в Приложении А, следует включить Казахстан, Нигерию, Аргентину, потерявшие к настоящему времени свои спутники, но восстанавливающих функционирование ССС. В этом году Казахстан в рамках национальной системы спутниковой связи Kazsat выведет на ГСО два КА, Нигерия в рамках Nigcomsat - три КА. Аргентина строит новую систему спутниковой связи Arsat в составе трех КА. Спутники, находящиеся на ГСО, имеют около одиннадцати тысяч транспондеров разных служб, мощности и емкости, из которых задействовано около 8000 столов. Поскольку транспондеры значительно отличаются полосой частот, то более приемлемым критерием для оценки распределения является суммарная полоса частот стволов.

По состоянию на конец февраля 2011 г. общий частотный ресурс транспондеров выведенных на ГСО спутников достигла примерно 450 ГГц полосы частот, из которого более половины в диапазоне Ku (51,4 %), 35,1 % в диапазоне С и 12,0 % в диапазоне Ka.

При ежегодном увеличении количества действующих КА на 3 % ежегодный прирост частотного ресурса заметно больше, примерно 13 %, что связано с запуском «тяжелых» КА. За десять лет общая полоса спутниковых каналов выросла примерно в два раза. В диапазонах Ku и C наблюдается почти линейный рост суммарной емкости, более интенсивными темпами внедряется диапазон Ka.

Тенденции к монополизации на рынке спутниковых телекоммуникаций начали проявляться с 2001 года после слияния SES Astra с GE Americom и образования корпорации SES Global. В 2006 г. корпорация приобрела ССС NSS, в 2009 г. - часть расформированной ССС Protostar, а в марте 2010 г. полностью выкупила ССС Sirius. Кроме того SES Global владеет 70 % акций ССС Ciel и 49 % акций оператора Quetzsat, планирующего запуск первого КА в 2011 г.

Международная организация INTELSAT после приобретения в 2003 г. части ССС Telstar (4 КА) и слияния с PanAmSat (2005 г.) стала наибольшим спутниковым оператором. Дополнительно в 2009 г. организация выкупила три КА Amos 1, Protostar 2 и JCSat 4R.

Третий по величине оператор EUTELSAT проявил заинтересованность в приобретении ССС Satmex, под его контролем находится около трети активов оператора Hispasat.

Канадский оператор Telesat в 2007 г. приобрел остатки ССС Telstar (4 КА) и стал четвертым в мире международным оператором.

В 2008 г. японские операторы JSAT и SCC (ССС Superbird) образовали корпорацию JSAT Perfec Pro, в которую входит также ССС NSat и частично ССС Horizons.

В 2006 г. оператор Cablevision перешел под управление оператора Echostar, который большей своей частью входит в корпорацию Dish Network, находящуюся под контролем группы DIRECTV, владеющей ССС DTV и контролирующей ССС Spaceway. Можно говорить о практическом объединении трех систем DTV, Echostar и Spaceway.

В 2010 г. три китайских оператора систем Chinasat, Sinosat, Chinastar объединились и создали новую организацию Chinasat.

В 2010 году было объявлено образование новой организации Sirius XM Radio после слияния XM Satellite Radio и Sirius FM Radio. Космический флот данного оператора кроме шести геостационарных спутников включает четыре низкоорбитальных КА.

Имеющаяся тенденция к монополизации не является сдерживающим фактором развития малых по количеству КА ССС. Планируется не только запуск спутников на замену отработавшим свой срок, но и создание новых систем, включая национальные ССС.

В течение последующих трех лет ожидается пополнение списка стран создающих национальные системы спутниковой связи:

- 2011 г., Иран: ССС Zohreh (2 КА);

- 2011 г., ОАЭ: ССС Yachsat (2 КА);

- 2011 г., ОАЭ совместно с Иорданией: ССС SmartSat (1 КА);

- 2012 г., Украина: ССС Lybid (1 КА);

- 2012 г., Азербайджан: ССС AzerSpace, (2 КА), один КА совместно с Малайзией;

- 2013 г., Катар: ССС Eshail (1 КА), совместно с Eutelsat;

- 2013 г., Боливия: ССС Tupac Katani (1 КА);

- 2013 u/? Kfjc^ CCC Laosat (1 RF)

Страны, имеющие спутниковые группировки, в соответствии с потребностями рынка создают новые системы:

- 2011 г., Россия: ССС Luch (3 КА) для услуг передачи данных;

- 2011 г., США: Viasat (2 КА) для предоставления услуг высокоскоростного доступа;

- 2011 г., Мексика: ССС QuetzSat (1 КА) для предоставления услуг вещания и фиксированной связи;

- 2012 г., США: ССС Jupiter (1 КА) и ССС OHO (3 КА) для предоставления услуг высокоскоростного доступа и телевидения высокой четкости;

- 2012 г., Мексика: ССС Mexsat (3 КА), которые будут работать в подвижной, фиксированной и вещательной службах;

- 2012 г., Австралия: ССС Jabiru (1 КА) для предоставления услуг вещания и фиксированной связи;

- 2013 г., ОАЭ: S2M (1 КА) для предоставления услуг вещания мобильным пользователям;

- 2013 г., Канада: ССС Canuk (1 КА) для системы высокоскоростного доступа.

В рамках системы подвижной связи Inmarsat новая серия КА пятого поколения и два КА Alfasat и Europesat ориентируются на новый для данного оператора вид услуг - вещание на подвижные объекты.

Приоритетным видом услуг остается спутниковое вещание. Кроме стандартного набора услуг непосредственного вещания, раздачи программ на сети наземного эфирного и кабельного вещания через спутники ETS 8 и MBSat уже ведется экспериментальное телевизионное вещание на подвижные объекты. Для оказания такого вида услуг планировался запуск трех КА (Eutelsat 2A, Echostar 13 или CMBstar и S2M 1), из которых Eutelsat 2A был запущен, однако неполадки с развертыванием антенны не позволили начать реализацию услуг в европейском регионе. Спутниковые каналы интенсивно используются для предоставления услуг высококачественного и интерактивного вещания, началось внедрение 3D-телевидения.

Вторым по приоритетности стало предоставление услуг высокоскоростного доступа. К функционирующим специализированным спутникам WildBlue 1, Spaceway 3, IPStar 1, недавно выведеных на ГСО КА Eutelsat KaSat и Hylas добавятся ориентированные на эти услуги спутники Viasat (2 КА), OHO (3 КА), Canuk, 3 КА Inmarsat пятого поколения, Jupiter и другие.

Дальнейшее направление развития спутниковых телекоммуникационных систем связывается с конвергенцией услуг и функций систем, далеких по принципам действия и назначениям, путем взаимопроникновения и использования общих технико-технологических решений. Конвергенция будет всё больше стирать различия между отдельными видами услуг, все сети будут предоставлять любой их вид в значительно расширенной номенклатуре и в большем объеме на основе единой технологической платформы, обеспечивающей развитие интерактивного и непосредственного вещания, высококачественного вещания, систем высокоскоростного доступа, дистанционного обучения, телемедицины, телебанкинга и прочих мультисервисных приложений. Корпоративный характер данных услуг из единого центра на пользовательскую сеть делает спутниковые системы связи наиболее пригодными для их предоставления. Новые услуги займут до 80 % спутникового ресурса.

Общий прирост объемов услуг спутниковых каналов за пятилетие составляет 76 %, а увеличение доходов по службам телекоммуникации соответственно составляет: ССВ - 82 %, ФСС - 97 %, ПСС - 29 %. Отметим, что приведенные в таблице 2 данные по услугам доступа относятся к предоставляемым по каналам вещания. Данный вид услуг в значительной мере также обеспечивается и каналами фиксированной связи, что в таблице отдельной графой из-за отсутствия информации не отмечено. Основную долю доходов ССС в 2009 г. (81 %) обеспечивает спутниковая служба вещания (ССВ), что подчеркивает степень ее приоритетности. Распределение уровня доходности между службами по опубликованным за последние пять лет данным Satellite Industry Association приведено в Приложении Б. Следует подчеркнуть, что телекоммуникационные услуги по спутниковым каналам определяют основные доходы от деятельности в космической отрасли индустрии. Из общего объема доходов равного 160,9 млрд. долл., доля от доходов телекоммуникаций составляет 58,2 %.

Возросла энерговооруженность КА. Мощности стволов в наиболее используемых диапазонах в среднем составляет: Ku 120 - 150 Вт, C - 50 - 60 Вт. Удельная мощность, приходящаяся на единицу полосы, достигла 1,2 Вт/МГц, что дает возможность использования в канале более эффективных многопозиционных сигналов и высокоскоростных каскадных кодов.

Заключение

Выше мы в общих чертах разобрали архитектуру спутниковых систем связи, а также тенденции развития этой отрасли в последнее время. Так как количество каналов спутникового вещания ежегодно растет в среднем на 15 %, это требует соответствующего увеличения частотных ресурсов, как стволов спутника, так и земных станций, предназначенных для принятия и передачи программ вещания и мультимедийной информации.

Количество спутников на ГСО ежегодно возрастает примерно на 3 %, при общем росте частотного ресурса ССС на 13 % в год.

Частотный ресурс геостационарной орбиты ограничен, коэффициент использования стволов КА, особенно обслуживающих европейский регион, почти весь задействован, кроме того стоимость полосы частот спутниковых каналов высока.

Внедрение новых видов услуг, высококачественного и интерактивного вещания, трехмерного вещания, широкополосного доступа и т. д. требуют работы наземных сетей с информационными потоками большой скорости, то есть широкополосных каналов.

Использование широкополосных спутниковых каналов приводит к значительным финансовым расходам на аренду ресурсов спутниковых каналов.

Ограниченность частотного ресурса, значительные расходы на их аренду или использование требуют внедрения частотно-эффективных технологий формирования и передачи сигналов.

Из всех технологий, которые используются в мире, и более того в Европе, наиболее эффективным и применимым является сочетание стандарта формирования сигнала DVB-S2 и стандарта формирования цифрового потока MPEG-4.

На конец февраля 2011 г. в стандарте DVB-S2 уже формируется более 11,5 % каналов вещания. Уровень использования стандарта MPEG-4 уже достиг значения 26 % общего объема каналов вещания.

Темпы внедрения стандарта DVB-S2 почти в два раза превышают темпы увеличения количества каналов вещания.

Основой для построения сетей спутникового вещания должны быть стандарты передачи DVB-S2 и стандарты формирования потоков MPEG-4, при этом необходимо предусматривать возможность работы с предыдущими форматами сигналов и потоков.

Список использованных источников

1. «Спутниковая связь и вещание: справочник» - Бартенев В.А.

2. «Компьютерная картография и зоны спутниковой связи» - Машбиц Л.М.

3. «Электромагнитная совместимость систем спутниковой связи» - Дьячкова М.Н., Ермилов В.Т., Желтоногов И.В., Кантор Л.Я., Мысев М.В.

...

Подобные документы

  • Передача цифровых данных по спутниковому каналу связи. Принципы построения спутниковых систем связи. Применение спутниковой ретрансляции для телевизионного вещания. Обзор системы множественного доступа. Схема цифрового тракта преобразования ТВ сигнала.

    реферат [2,7 M], добавлен 23.10.2013

  • История развития спутниковой связи. Абонентские VSAT терминалы. Орбиты спутниковых ретрансляторов. Расчет затрат по запуску спутника и установке необходимого оборудования. Центральная управляющая станция. Глобальная спутниковая система связи Globalstar.

    курсовая работа [189,0 K], добавлен 23.03.2015

  • Обмен радиовещательных и телевизионных программ. Размещение наземных ретрансляторов. Идея размещения ретранслятора на космическом аппарате. Особенности системы спутниковой связи (ССС), ее преимущества и ограничения. Космический и наземный сегменты.

    реферат [29,1 K], добавлен 29.12.2010

  • Общие сведения о системах персональной спутниковой связи. Ознакомление с развитием российской государственной спутниковой группировки и программой запусков космических аппаратов. Характеристики космических и земных станций передачи и приема сигналов.

    презентация [2,2 M], добавлен 16.03.2014

  • Вопросы построения межгосударственной корпоративной системы спутниковой связи и ее показатели. Разработка сети связи от Алматы до прямых международных каналов связи через Лондон. Параметры спутниковой линии, радиорелейной линии, зоны обслуживания IRT.

    дипломная работа [2,7 M], добавлен 22.02.2008

  • Принципы построения территориальной системы связи. Анализ способов организации спутниковой связи. Основные требования к абонентскому терминалу спутниковой связи. Определение технических характеристик модулятора. Основные виды манипулированных сигналов.

    дипломная работа [3,1 M], добавлен 28.09.2012

  • Расчет напряженности поля земной радиоволны вертикальной поляризации для заданной дальности радиосвязи на двух типах однородной земной поверхности. Расчет напряженности поля на линии связи ионосферной волной. Уровень сигнала на спутниковой радиолинии.

    курсовая работа [1,8 M], добавлен 15.04.2014

  • Диапазоны частот, передаваемых основными типами направляющих систем. Параметры каналов линий связи. Обозначения в линиях связи. Переключатель каналов с мультиплексированием по времени. Характеристики каналов на коаксиальном кабеле, оптических кабелей.

    презентация [590,2 K], добавлен 19.10.2014

  • Принципы функционирования спутниковых навигационных систем. Требования, предъявляемые к СНС: глобальность, доступность, целостность, непрерывность обслуживания. Космический, управленческий, потребительский сегменты. Орбитальная структура NAVSTAR, ГЛОНАСС.

    доклад [36,6 K], добавлен 18.04.2013

  • Состояние внедрения ATN в практику воздушного движения. Спутниковые информационные технологии в системах CNS/ATM. Спутниковые радионавигационные системы. Координаты, время, движение навигационных спутников. Формирование информационного сигнала в GPS.

    учебное пособие [7,4 M], добавлен 23.09.2013

  • Разработка локальной сети передачи данных с выходом в Интернет для небольшого района города. Определение топологии сети связи. Проверка возможности реализации линий связи на медном проводнике трех категорий. Расчет поляризационной модовой дисперсии.

    курсовая работа [733,1 K], добавлен 19.10.2014

  • Дискретные системы связи. Дифференциальная импульсно-кодовая модуляция. Квантование по уровню и кодирование сигнала. Помехоустойчивость систем связи с импульсно-кодовой модуляцией. Скорость цифрового потока. Импульсный сигнал на входе интегратора.

    реферат [128,1 K], добавлен 12.03.2011

  • Изучение функционирования систем связи, которые можно разделить на: радиорелейные, тропосферные, спутниковые, волоконно-оптические. Изучение истории возникновения, сфер применения систем связи. Спутниковые ретрансляторы, магистральная спутниковая связь.

    реферат [54,6 K], добавлен 09.06.2010

  • Формирование современной инфраструктуры связи и телекоммуникаций в Российской Федерации. Направления развития цифрового, кабельного и мобильного телевидения. Наземные и спутниковые сети цифрового телерадиовещания. СЦТВ с микроволновым распределением.

    контрольная работа [230,9 K], добавлен 09.05.2014

  • Понятие беспроводной связи, организация доступа к сети связи, к интернету. Классификация беспроводных сетей: спутниковые сотовые модемы, инфракрасные каналы, радиорелейная связь, Bluetooth. WI-FI - технология передачи данных по радиоканалу, преимущества.

    реферат [350,6 K], добавлен 06.06.2012

  • Волоконно-оптические линии связи с использованием аналоговой модуляции, их применение в сетях кабельного телевидения. Выбор топологии сети кабельного телевидения и оптического кабеля. Суммарное затухание на линии связи. Расчет энергетического бюджета.

    курсовая работа [724,2 K], добавлен 01.02.2012

  • Перспективы мобильности беспроводных сетей связи. Диапазон частот радиосвязи. Возможности и ограничения телевизионных каналов. Расчет принимаемого антенной сигнала. Многоканальные системы радиосвязи. Структурные схемы радиопередатчика и приемника.

    презентация [2,9 M], добавлен 20.10.2014

  • Разработка системы усиления сотовой связи. Выбор усилителя сигнала мобильной связи. Основные технические характеристики усилителя связи GSM. Выбор качественных внешней и внутренней антенн, кабеля и разъемов для системы, делителей мощности сотовой сети.

    реферат [442,0 K], добавлен 30.05.2016

  • Сведения о характеристиках и параметрах сигналов и каналов связи, методы их расчета. Структура цифрового канала связи. Анализ технологии пакетной передачи данных по радиоканалу GPRS в качестве примера цифровой системы связи. Определение разрядности кода.

    курсовая работа [2,2 M], добавлен 07.02.2013

  • Изучение методов сигналов в спутниковой системе связи. Определение зоны обслуживания КС с построением на карте местности, расчет параметров передающей антенны, максимально возможного количества несущих, передаваемых в одном стволе ретранслятора ССС.

    курсовая работа [6,1 M], добавлен 31.05.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.