Методи та засоби розрахунку характеристик каналів передачі даних

Аналіз організації сучасних каналів передачі даних, вивчення їх основних характеристик. Розгляд процесу побудови моделі конкретної комп’ютерної мережі за допомогою програмного забезпечення проектування гетерогенних мереж NetCracker Professional.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык украинский
Дата добавления 20.06.2014
Размер файла 4,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Реферат

"Методи та засоби розрахунку характеристик каналів передачі даних" / Осередько О.В. - Київ, МНТУ, Кафедра комп'ютерних наук і інформаційних систем, 2014. - 103 с., 5 таблиць, 44 рис., 28 літературних джерел.

Метою роботи є дослідження методів та засобів розрахунку інформаційних характеристик каналів передачі даних для перевірки працездатності гетерогенної комп'ютерної мережі.

В роботі отримані наступні результати:

· проведено аналіз організації каналів передачі даних в гетерогенних комп'ютерних мережах;

· досліджено фізичну сутність та порядок використання каналів передачі даних в гетерогенних комп'ютерних мережах;

· досліджено математичну сутність найбільш важливих інформаційних характеристик передачі даних в комп'ютерних мережах;

· розроблено модель гетерогенної комп'ютерної мережі з різнорідними каналами передачі даних за допомогою спеціального програмного забезпечення проектування і моделювання гетерогенних комп'ютерних мереж NetCracker Professional;

· проведено розрахунки інформаційних характеристик передачі даних для розробленої моделі комп'ютерної мережі за допомогою системи MathCAD.

Результати роботи можуть бути застосовані при виконанні задач моніторингу та мережеметрії комп'ютерних мереж, а також їх аналізу та оптимізації.

Ключові слова: комп'ютерна система, канал передачі даних, модель мережі, програмне забезпечення, вхідні та вихідні дані.

Зміст

  • Перелік умовних позначень та скорочень
    • Вступ

Розділ 1. Аналіз організації каналів передачі даних в комп'ютерних мережах

1.1 Архітектура каналів комп'ютерних мереж

1.2 Передача даних по каналах локальних мереж

1.3 Передача даних по каналах глобальних та корпоративних мереж

1.3.1 Аналогові виділені лінії

1.3.2 Цифрові виділені лінії

1.3.3 Технологія плезіохронної цифрової ієрархії PDH

1.4 Фізична сутність та порядок використання каналів передачі даних в гетерогенних комп'ютерних мережах

1.4.1 Структурована кабельна система гетерогенної комп'ютерної мережі

1.4.2 Кабель - кручена пара

1.4.3 Коаксіальний кабель (coaxial cable)

1.4.4 Оптоволоконний кабель

Висновки до розділу 1

Розділ 2. Математична сутність характеристик передачі даних

2.1 Імовірнісні характеристики передачі даних

2.2 Часові характеристики передачі даних

2.3 Методи підвищення достовірності передачі даних

Висновки до розділу 2

Розділ 3. Моделювання гетерогенної комп'ютерної мережі з різнорідними каналами передачі даних

3.1 Програмний пакет проектування і моделювання гетерогенних комп'ютерних мереж NetCracker Professional

3.2 Моделювання процесів обміну даними в гетерогенної комп'ютерної мережі

Висновки до розділу 3

Розділ 4. Дослідження характеристик каналів передачі даних на основі їх розрахунків

4.1 Спеціалізоване програмне забезпечення MathCAD

4.2 Параметри розрахунку характеристик передачі даних

4.3 Розрахунок імовірнісних характеристик передачі даних

4.3.1 Імовірність прийому пакета при фіксованій кількості біт

4.3.2 Імовірність прийому пакета при фіксованому значені Р0

4.3.3 Імовірність прийому пакета з виправленням помилок

4.3.4 Імовірність доставки пакета з виправленням помилок

4.4 Розрахунок часових характеристик передачі даних

4.4.1 Залежність часу доставки пакета від довжини каналу зв'язку

4.4.2 Залежність часу доставки пакета при фіксованій довжини каналу зв'язку

4.4.3 Залежність часу доставки пакета від пропускної здатності

4.4.4 Залежність математичного очікування від довжини каналу

4.4.5 Залежність математичного очікування при фіксованій довжини каналу

4.4.6 Залежність математичного очікування від імовірності помилок

Висновки до розділу 4

Висновки

Список використаних джерел

Перелік умовних позначень та скорочень

АПД - апаратура передачі даних;

АТС - автоматична телефонна станція;

ГКМ - гетерогенна комп'ютерна мережа;

ДСК - дискретний симетричний канал;

ІТ - інформаційні технології;

ІТС - інформаційно-телекомунікаційна система;

КМ - комп'ютерна мережа;

КС - комп'ютерна система;

ЛОМ - локальна обчислювальна мережа;

ОС - операційна система;

ПЗ - програмне забезпечення;

ПП - прикладні програми;

САПР - системи автоматичного проектування;

СКС - структурована кабельна система;

СУБД - система управління базами даних.

Вступ

Актуальність дослідження. Комп'ютерна мережа (КМ) - це складний комплекс взаємозв'язаних і погоджено функціонуючих програмних і апаратних компонентів: комп'ютерів, комунікаційного устаткування, операційних систем, мережевих застосувань.

У основі будь-якої мережі лежить апаратний шар стандартизованого мережевого устаткування який використовується для функціонування каналів передачі даних [1-3].

У загальному випадку канал передачі даних складається з фізичного середовища, по якому передаються інформаційні сигнали, апаратури передачі даних і проміжної апаратури.

Фізичне середовище передачі даних (medium) може бути: кабель, тобто набір проводів, ізоляційних і захисних оболонок і сполучних роз'ємів; земна атмосфера або космічний простір, через яких розповсюджуються інформаційні сигнали.

Для ефективного використання каналів передачі даних з метою побудови різнорідних (гетерогенних) комп'ютерних мереж слід знати та вміти розрахувати інформаційні характеристики каналів передачі даних.

До основних характеристик каналів передачі даних відносяться:

· пропускна спроможність;

· достовірність передачі даних;

· амплітудно-частотна характеристика;

· смуга пропускання;

· величина загасання;

· перешкодостійкість;

· перехресні наведення на ближньому кінці лінії;

· питома вартість.

Насамперед розробника комп'ютерної мережі цікавлять пропускна спроможність і достовірність передачі даних, оскільки ці характеристики прямо впливають на продуктивність і надійність створюваної мережі. Пропускна спроможність і достовірність - це характеристики як каналів зв'язку, так і способу передачі даних. Тому, якщо спосіб передачі (протокол) вже визначений, то відомі і ці характеристики. Проте не можна говорити про пропускну спроможність лінії зв'язку, до того як для неї визначений протокол фізичного рівня. Саме у таких випадках дуже важливими є решта характеристик лінії, такі як смуга пропускання, перехресні наведення, перешкодостійкість і інші характеристики.

Канал передачі даних спотворює передаванні сигнали через те, що його фізичні параметри відрізняються від ідеальних. Окрім спотворень сигналів, що вносяться внутрішніми фізичними параметрами каналів передачі даних, існують і зовнішні перешкоди, які вносять свій внесок до спотворення форми сигналів на виході лінії. Ці перешкоди створюють різні електричні двигуни, електронні пристрої, атмосферні явища і інші.

Ступінь спотворення синусоїдальних сигналів каналів передачі даних оцінюється за допомогою таких характеристик, як амплітудно-частотна характеристика, смуга пропускання і загасання на певній частоті.

Амплітудно-частотна характеристика показує, як затухає амплітуда синусоїди на виході каналу передачі даних в порівнянні з амплітудою на її вході для всіх можливих частот сигналу, який передається. Замість амплітуди в цій характеристиці часто використовують також такий параметр сигналу, як його потужність.

Смуга пропускання (bandwidth) - це безперервний діапазон частот, для якого відношення амплітуди вихідного сигналу до вхідного перевищує деяку заздалегідь задану межу, зазвичай 0,5. Тобто смуга пропускання визначає діапазон частот сигналу, при яких цей сигнал передається по каналу передачі даних без значних спотворень.

Загасання (attenuation) визначається як відносне зменшення амплітуди або потужності сигналу при передачі по каналу певної частоти. Часто при експлуатації каналу заздалегідь відома основна частота сигналу, що передається. Тому достатньо знати загасання на цій частоті, щоб приблизно оцінити спотворення передаваних по лінії сигналів. Оскільки потужність вихідного сигналу кабелю без проміжних підсилювачів завжди менша, ніж потужність вхідного сигналу, загасання кабелю завжди є негативним величиною.

Пропускна спроможність (throughput) каналу передачі даних характеризує максимально можливу швидкість передачі даних по лінії зв'язку. Пропускна спроможність вимірюється в бітах в секунду - бит/с, а також в похідних одиницях, таких як кілобіт в секунду (Кбіт/с), мегабіт в секунду (Мбіт/с), гигабит в секунду (Гбіт/с) і так далі.

Пропускна спроможність каналів передачі даних не тільки від її характеристик, таких як амплітудно-частотна характеристика, але і від спектру передаваних сигналів. Якщо значущі гармоніки сигналу потрапляють в смугу пропускання лінії, то такий сигнал добре передаватиметься даною лінією зв'язки і приймач зможе правильно розпізнати інформацію, відправлену по лінії передавачем. Якщо ж значущі гармоніки виходять за межі смуги пропускання лінії зв'язку, то сигнал значно спотворюватиметься, приймач помилятиметься при розпізнаванні інформації, а значить, інформація не зможе передаватися із заданою пропускною спроможністю.

Вибір способу представлення дискретної інформації у вигляді сигналів, що подаються на канал зв'язку, називається фізичним або лінійним кодуванням. Від вибраного способу кодування залежить спектр сигналів і, відповідно, пропускна спроможність каналу. Таким чином, для одного способу кодування лінія може володіти однією пропускною спроможністю, а для іншого - інший.

Пропускна спроможність лінії в бітах в секунду в загальному випадку не збігається з числом бод. Вона може бути як вище, так і нижче за число бод, і це співвідношення залежить від способу кодування. Якщо сигнал має більше двох помітних станів, то пропускна спроможність в бітах в секунду буде вища, ніж число бод.

Перешкодостійкість каналу передачі даних визначає його здатність зменшувати рівень перешкод, що створюються в зовнішньому середовищі, на внутрішніх провідниках. Перешкодостійкість каналу залежить від типу використовуваного фізичного середовища, а також від екрануючих і пригнічуючих перешкоди засобів самого каналу. Найменш перешкодостійкими є радіолінії, хорошою стійкістю володіють кабельні лінії і відмінною - волоконно-оптичні лінії.

Достовірність передачі даних характеризує вірогідність спотворення для кожного передаваного біта даних. Іноді цей же показник називають інтенсивністю бітових помилок (Bit Error Rate, BER). Величина BER для каналів зв'язку без додаткових засобів захисту від помилок складає, як правило,10-4-10-6, в оптоволоконних лініях зв'язку - 10-9. Значення достовірності передачі даних, наприклад, в 10-4 говорить про те, що в середньому з 10000 біт спотворюється значення одного біта.

Спотворення біт відбуваються як із-за наявності перешкод на лінії, так і унаслідок спотворень форми сигналу обмеженою смугою пропускання лінії. Тому для підвищення достовірності передаваних даних потрібно підвищувати ступінь перешкодозахисної лінії, знижувати рівень перехресних наведень в кабелі, а також використовувати більш широкосмугові лінії зв'язку.

Таким чином, питання дослідження та розрахунок інформаційних характеристик каналів передачі даних для розробників комп'ютерних мереж вельми актуальне.

Метою роботи є дослідження методів розрахунку інформаційних характеристик каналів передачі даних для перевірки працездатності проектів гетерогенних комп'ютерних мереж.

Для досягнення мети дослідження необхідно розв'язати такі наукові та практичні задачі:

· аналіз організації каналів передачі даних в комп'ютерних мережах;

· дослідження фізичної сутності та порядку використання каналів передачі даних в гетерогенних комп'ютерних мережах;

· дослідження математичної сутності найбільш необхідних інформаційних характеристик передачі даних в комп'ютерних мережах;

· розробка моделі гетерогенної комп'ютерної мережі з різнорідними каналами передачі даних;

· розрахунок інформаційних характеристик передачі даних для розробленої моделі комп'ютерної мережі за допомогою програмного забезпечення MathCAD.

Теоретична значимість проведених досліджень полягає у визначенні умов та можливостей розрахунку основних характеристик комп'ютерних мереж.

Практична значимість розроблених моделі і методики визначається можливістю практичного проведення розрахунків основних характеристик каналів передачі даних в гетерогенних комп'ютерних мережах.

Методи дослідження. Під час проведення досліджень використовувалися наступні наукові методи:

· аналіз спеціальної літератури, нормативно-правової бази, загальноприйнятих стандартів в галузі обчислень;

· системний аналіз;

· метод аналогій;

· моделювання;

· порівняльний аналіз;

· узагальнення та ін.;

· елементів теорії ймовірностей та математичної статистики.

Об'єкт дослідження. Об'єктом дослідження є гетерогенні комп'ютерні мережі.

Предмет дослідження. Предметом дослідження є методи та засоби розрахунку характеристик каналів передачі даних в комп'ютерних мережах.

Структура роботи. Робота складається зі вступу, чотирьох розділів, списку літератури. Перший розділ присв'ячено аналізу організації сучасних каналів передачі даних. В другому розділі вивчається математична сутність каналів передачі даних, а саме моделі та основні характеристики каналів передачі даних. В третьому розділі розглянуто процес побудови моделі конкретної гетерогенної комп'ютерної мережі за допомогою спеціального програмного забезпечення проектування і моделювання гетерогенних комп'ютерних мереж NetCracker Professional версії 4.0. В четвертому розділі представлені результати розрахунку основних характеристик каналів передачі даних за допомогою системи MathCAD.

Розділ 1. Аналіз організації каналів передачі даних в комп'ютерних мережах

1.1 Архітектура каналів комп'ютерних мереж

Комп'ютерна мережа - це складна розподілена система, що включає широку номенклатуру технологічних засобів (робочі станції, мережні адаптери, концентратори, модеми, комунікаційне й інше устаткування) [1-3].

Специфічним для КМ є поняття структури, що розкриває схему зв'язків і взаємодії між елементами. Тут це поняття виявляється недостатнім для того, щоб однозначно виділити складові частини мереж, оскільки структура їх є динамічною, що змінюється з часом.

Крім того, велика КМ представляє множину різних структур.

У зв'язку з цим в теорії мереж вводиться спеціальне поняття "архітектура мережі", що, з одного боку, доповнює опис, обумовлений структурами, а з іншого є досить самостійним у тому розумінні, що для тих самих структурних варіантів можуть бути запропоновані найрізноманітніші рішення з інших питань побудови мереж.

Архітектура каналів КМ - це принцип побудови мережі, що виражає єдність і взаємозв'язок фізичної та логічної структур.

Фізична структура КМ - це схема зв'язків компонентів мережі, таких, як середовище передачі даних, апаратура передачі даних, вузли мережі з комплексом апаратури, обчислювальні комплекси, термінальні пристрої, робочі станції.

Логічна структура КМ - це принципи встановлення зв'язків, алгоритми організації процесів і управління ними, що визначають логіку функціонування програмних і апаратних засобів.

Фізична структура КМ. Фізичну структуру можна представити у вигляді схеми, представленої на рис. 1.1.

Вузли А, B, ..., М, зв'язані між собою каналами передачі даних, утворюють одну з важливих складових частин КМ - мережу передачі даних (МПД). Кожен з вузлів через апаратуру передачі даних (АПД) з'єднаний з одним із кінцевих абонентських пунктів.

За призначенням і складом технічних засобів кінцеві пункти дуже відрізняються один від одного, ними можуть бути як локальні мережі, так і робочі станції, термінальні пристрої і т.д.

У принципі, можлива і більш докладна конкретизація фізичної структури, що застосовується, наприклад, при технічному проектуванні КМ.

У фізичну структуру мережі входять:

· фізичне середовище передачі (кабельні системи, канали зв'язку); комутаційне устаткування (концентратори, комутатори, маршрутизатори);

· робочі станції (персональні обчислювальні машини з мережними адаптерами);

· спеціалізовані комп'ютери (сервери, шлюзи і т.д.).

Рис. 1.1. Приклад фізичної структури КМ

Фізична структура дозволяє визначити кількість комутаційного устаткування (наприклад, 1 комутатор, 3 концентратори) кількість користувачів, що підключаються, управляючі станції, і т.д.

Логічна структура КМ. Спрощено в загальному вигляді вона визначає з'єднання і взаємодію двох принципово різних за призначенням і функціями складових частин архітектури КМ: множини автономних інформаційних підсистем {Nt} (визначених вище як множина інформаційних вузлів) і множини {Li} засобів їх зв'язку та взаємодії (фізичні засоби з'єднань) (рис. 1.2.).

Рис. 1.2. Приклад логічної структури КМ

Ця особливість враховується при проектуванні мереж дотриманням спеціальних рекомендацій і угод між різними країнами. Можливість функціонування різнотипних комп'ютерів у складі КМ може бути забезпечена тільки в тому випадку, якщо при існуючій відмінності в архітектурі, програмному й апаратному забезпеченні всі ці ЕОМ відповідають деяким єдиним системним стандартам, або існує стик, що забезпечує єдність інтерфейсів і правил взаємного з'єднання. При розробці проектів мереж враховуються також вимоги міжнародних організацій і комітетів, що мають відношення до інформаційних систем. Інтенсивні роботи в даному напрямку вже декілька десятиліть ведуться рядом міжнародних організацій, таких як Міжнародна організація стандартів (МОС - ISO), Міжнародна спілка з телекомунікації (МСТ - ITU), раніше відома як Міжнародний консультативний комітет з телефонії і телеграфії (МККТТ - CCITT), Європейська асоціація виробників комп'ютерів (ЄАВК - ЕСМА) та ін.

Найвідомішою концепцією організації КМ є базова еталонна модель взаємодії відкритих систем, яку розроблено Міжнародною організацією стандартів (стандарт ISO 7498).

Великі фірми-виробники комп'ютерних мереж запропонували свої моделі мережної архітектури для глобальних мереж: SNA - системна мережна архітектура фірми ІВМ, DNA - мережна архітектура фірми DEC. Серед стандартів на локальні комп'ютерні мережі - найбільш поширений ІЕЕЕ 802, розроблений Інститутом інженерів з електротехніки і електроніки (США), який одержав статус міжнародного стандарту ISO 8802 для локальних мереж, що використовуються при автоматизації промислового виробництва [4-6].

У межах тієї або іншої архітектури КМ повинна забезпечуватись погоджена взаємодія різних її структур. Так, при деякій логічній структурі, яка відповідає прийнятій архітектурі КМ, може бути побудована множина фізичних структур, що впливають на властивості та можливості мережі. У свою чергу, наприклад, логічна структура КМ у достатній мірі визначає властивості архітектури КМ у цілому. Логічна структура визначає порядок дій, правил і умов, у яких повинні виконуватися дії, обумовлені мережними протоколами. Вони являють собою узагальнений алгоритм інформаційного процесу, що протікає в КМ. У мережі можуть мати місце практично всі складові КМ і такі відповідні ним процедури, як формування повідомлень, що надходять від різних джерел інформації, введення їх по відповідних каналах, попереднє опрацювання, організація і виконання при необхідності комутаційних процедур, безпосередньо передача, прийом і т.д.

1.2 Передача даних по каналах локальних мереж

При передачі дискретних даних по каналах зв'язку застосовуються два основні типи фізичного кодування - на основі синусоїдального несучого сигналу і на основі послідовності прямокутних імпульсів. Перший спосіб часто називається також модуляцією або аналоговою модуляцією, підкреслюючи той факт, що кодування здійснюється за рахунок зміни параметрів аналогового сигналу. Другий спосіб звичайно називають цифровим кодуванням. Ці способи відрізняються шириною спектру результуючого сигналу і складністю апаратури, необхідної для їх реалізації.

При використовуванні прямокутних імпульсів спектр результуючого сигналу виходить вельми широким. Це не дивно, якщо пригадати, що спектр ідеального імпульсу має нескінченну ширину. Застосування синусоїди приводить до спектру набагато меншої ширини при тій же швидкості передачі інформації. Проте для реалізації синусоїдальної модуляції потрібна складніша і дорожча апаратура, ніж для реалізації прямокутних імпульсів.

В даний час все частіше дані, що спочатку мають аналогову форму - мову, телевізійне зображення, - передаються по каналах зв'язку в дискретному вигляді, тобто у вигляді послідовності одиниць і нулів. Процес представлення аналогової інформації в дискретній формі називається дискретною модуляцією. Терміни "модуляція" і "кодування" часто використовують як синоніми.

При цифровому кодуванні дискретної інформації застосовують потенційні і імпульсні коди.

У потенційних кодах для представлення логічних одиниць і нулів використовується тільки значення потенціалу сигналу, а його перепади, що формують закінчені імпульси, до уваги не беруться. Імпульсні коди дозволяють представити двійкові дані або імпульсами певної полярності, або частиною імпульсу - перепадом потенціалу певного напряму.

При використовуванні прямокутних імпульсів для передачі дискретної інформації необхідно вибрати такий спосіб кодування, який одночасно досягав би декількох цілей:

· мав при одній і тій же бітовій швидкості якнайменшу ширину спектру результуючого сигналу;

· забезпечував синхронізацію між передавачем і приймачем;

· володів здатністю розпізнавати помилки;

· володів низькою вартістю реалізації.

Вужчий спектр сигналів дозволяє на одній і тій же лінії (з однією і тією ж смугою пропускання) добиватися вищої швидкості передачі даних. Крім того, часто до спектру сигналу пред'являється вимога відсутності постійної складової, тобто наявність постійного струму між передавачем і приймачем. Зокрема, застосування різних трансформаторних схем гальванічної розв'язки перешкоджає проходженню постійного струму.

Синхронізація передавача і приймача потрібна для того, щоб приймач точно знав, в який момент часу необхідно прочитувати нову інформацію з лінії зв'язку. Ця проблема в мережах розв'язується складніше, ніж при обміні даними між близько розташованими пристроями, наприклад між блоками усередині комп'ютера або ж між комп'ютером і принтером.

На невеликих відстанях добре працює схема, заснована на окремій тактуючій лінії зв'язку (рис. 1.3), так що інформація знімається з лінії даних тільки у момент приходу тактового імпульсу. У мережах використовування цієї схеми викликає труднощі через неоднорідність характеристик провідників в кабелях. На великих відстанях нерівномірність швидкості розповсюдження сигналу може привести до того, що тактовий імпульс прийде настільки пізніше або раніше відповідного сигналу даних, що біт даних буде пропущений або лічений повторно.

Іншою причиною, по якій в мережах відмовляються від використовування тактуючих імпульсів, є економія провідників в дорогих кабелях.

Тому в мережах застосовуються так звані коди, що само синхронізуються, сигнали яких несуть для передавача вказівки про те, в який момент часу потрібно здійснювати розпізнавання чергового біта (або декількох біт, якщо код орієнтований більш ніж на два стани сигналу). Будь-який різкий перепад сигналу - так званий фронт - може служити хорошою вказівкою для синхронізації приймача з передавачем.

Рис. 1.3. Синхронізація приймача і передавача на невеликих відстанях

При використовуванні синусоїд, як несучий сигнал, результуючий код володіє властивістю самосинхронізації, оскільки зміна амплітуди несучої частоти дає можливість приймачу визначити момент появи вхідного коду.

Розпізнавання і корекцію спотворених даних складно здійснити засобами фізичного рівня, тому найчастіше цю роботу беруть на себе протоколи, що лежать вище: канальний, мережний, транспортний або прикладний. З другого боку, розпізнавання помилок на фізичному рівні економить час, оскільки приймач не чекає повного приміщення кадру в буфер, а відбраковує його відразу при розпізнаванні помилкових біт усередині кадру.

Вимоги, що пред'являються до методів кодування, є взаємно суперечливими, тому кожний з даних нижче популярних методів цифрового кодування володіє своїми перевагами і своїми недоліками в порівнянні з іншими.

На рис. 1.4, а показаний вже згаданий раніше метод потенційного кодування, званий також кодуванням без повернення до нуля (Non Return to Zero, NRZ). Остання назва відображає ту обставину, що при передачі послідовності одиниць сигнал не повертається до нуля протягом такту (як ми побачимо нижче, в інших методах кодування повернення до нуля в цьому випадку відбувається). Метод NRZ простий в реалізації, володіє хорошою розпізнаваною помилок (через два різко відмінні потенціали), але не володіє властивістю самосинхронізації. При передачі довгої послідовності одиниць або нулів сигнал на лінії не змінюється, тому приймач позбавлений можливості визначати по вхідному сигналу моменти часу, коли потрібно в черговий раз прочитувати дані. Навіть за наявності високоточного тактового генератора приймач може помилитися з моментом знімання даних, оскільки частоти двох генераторів ніколи не бувають повністю ідентичними. Тому при високих швидкостях обміну даними і довгих послідовностях одиниць або нулів невелике розузгодження тактових частот може привести до помилки в цілий такт і, відповідно, читанню некоректного значення біта.

Рис. 1.4. Способи дискретного кодування даних

Іншим серйозним недоліком методу NRZ є наявність низькочастотної складової, яка наближається до нуля при передачі довгих послідовностей одиниць або нулів. Через це багато каналів зв'язку, не забезпечуючи прямого гальванічного з'єднання між приймачем і джерелом, цей вид кодування не підтримують. В результаті в чистому вигляді код NRZ в мережах не використовується. Проте використовуються його різні модифікації, в яких усувають як погану самосинхронізацію коду NRZ, так і наявність постійної складової. Привабливість коду NRZ, через яку має сенс зайнятися його поліпшенням, полягає в достатньо низькій частоті основної гармоніки f0, яка дорівнює N/2 Гц (де N - бітова швидкість передачі даних), як це було показано в попередньому розділі. У інших методів кодування, наприклад манчестерського, основна гармоніка має вищу частоту.

Однією з модифікацій методу NRZ є метод біполярного кодування з альтернативною інверсією (Bipolar Alternate Mark Inversion, AMI). У цьому методі (рис. 1.4, б) використовуються три рівні потенціалу - негативні, нульові і позитивні. Для кодування логічного нуля використовується нульовий потенціал, а логічна одиниця кодується або позитивним потенціалом, або негативним, при цьому потенціал кожної нової одиниці протилежний потенціалу попередньою.

Код AMI частково ліквідовує проблеми постійної складової і відсутності самосинхронізації, властиві коду NRZ. Це відбувається при передачі довгих послідовностей одиниць. У цих випадках сигнал на лінії є послідовністю різнополярних імпульсів з тим же спектром, що і у коду NRZ, що передає нулі, що чергуються, і одиниці, тобто без постійної складової і з основною гармонікою N/2 Гц. Довгі ж послідовності нулів також небезпечні для коду AMI, як і для коду NRZ - сигнал вироджується в постійний потенціал нульової амплітуди. Тому код AMI вимагає подальшого поліпшення, хоча задача спрощується - залишилося справитися тільки з послідовностями нулів.

В цілому, для різних комбінацій біт на лінії використовування коду AMI приводить до вужчого спектру сигналу, ніж для коду NRZ, а значить, і до вищої пропускної спроможності лінії. Наприклад, при передачі одиниць, що чергуються, і нулів основна гармоніка f0 має частоту N/4 Гц. Код AMI надає також деякі можливості по розпізнаванню помилкових сигналів. Так, порушення строгого чергування полярності сигналів говорить про помилковий імпульс або зникнення з лінії коректного імпульсу. Сигнал з некоректною полярністю називається забороненим сигналом (signal violation).

У коді AMI використовуються не два, а три рівні сигналу на лінії. Додатковий рівень вимагає збільшення потужності передавача приблизно на 3 дБ для забезпечення тієї ж достовірності прийому біт на лінії, що є загальним недоліком кодів з декількома станами сигналу в порівнянні з кодами, які розрізняють тільки два стани.

Існує код, схожий на AMI, але тільки з двома рівнями сигналу. При передачі нуля він передає потенціал, який був встановлений в попередньому такті (тобто не міняє його), а при передачі одиниці потенціал інвертується на протилежний. Цей код називається потенційним кодом з інверсією при одиниці (Non Return to Zero with ones Inverted, NRZI). Цей код зручний в тих випадках, коли використовування третього рівня сигналу вельми небажане, наприклад в оптичних кабелях, де стійко розпізнаються два стани сигналу - світло і темнота.

Для поліпшення потенційних кодів, подібних AMI і NRZI, використовуються два методи. Перший метод заснований на додаванні в початковий код надмірних біт, що містять логічні одиниці. Очевидно, що в цьому випадку довгі послідовності нулів уриваються і код стає тим, що само синхронізується для будь-яких передаваних даних. Зникає також постійна складова, а значить, ще більш звужується спектр сигналу. Але цей метод знижує корисну пропускну спроможність лінії, оскільки надмірні одиниці призначеної для користувача інформації не несуть. Інший метод заснований на попередньому "перемішуванні" початкової інформації так, щоб вірогідність появи одиниць і нулів на лінії ставала близькою. Пристрої, або блоки, що виконують таку операцію, називаються скремблерами (scramble - звалище, безладна збірка). При скремблюванні використовується відомий алгоритм, тому приймач, одержавши двійкові дані, передає їх на дескремблер, який відновлює початкову послідовність біт. Надмірні біти при цьому по лінії не передаються. Обидва методи відносяться до логічного, а не фізичного кодування, оскільки форму сигналів на лінії вони не визначають.

Окрім потенційних кодів в мережах використовуються і імпульсні коди, коли дані представлені повним імпульсом або ж його частиною - фронтом. Найпростішим випадком такого підходу є біполярний імпульсний код, в якому одиниця представлена імпульсом однієї полярності, а нуль - інший (рис. 1.4, в). Кожен імпульс триває половину такту. Такий код володіє відмінними само синхронізуючими властивостями, але постійна складова, може бути присутнім, наприклад, при передачі довгої послідовності одиниць або нулів. Крім того, спектр у нього ширший, ніж у потенційних кодів. Так, при передачі всіх нулів або одиниць частота основної гармоніки коду буде рівна N Гц, що в два рази вище за основну гармоніку коду NRZ і в чотири рази вище за основну гармоніку коду AMI при передачі одиниць, що чергуються, і нулів. Через дуже широкий спектр біполярний імпульсний код використовується рідко.

У локальних мережах до недавнього часу найпоширенішим методом кодування був так званий манчестерський код (рис. 1.4, г). Він застосовується в технологіях Ethernet і Token Ring.

У манчестерському коді для кодування одиниць і нулів використовується перепад потенціалу, тобто фронт імпульсу. При манчестерському кодуванні кожен такт ділиться на дві частини. Інформація кодується перепадами потенціалу, що відбуваються у середині кожного такту. Одиниця кодується перепадом від низького рівня сигналу до високого, а нуль - зворотним перепадом. На початку кожного такту може відбуватися службовий перепад сигналу, якщо потрібно представити декілька одиниць або нулів підряд. Оскільки сигнал змінюється принаймні один раз за такт передачі одного біта даних, то манчестерський код володіє хорошими само синхронізуючими властивостями. Смуга пропускання манчестерського коду вужча, ніж у біполярного імпульсного. У нього також немає постійної складової, а основна гармоніка у гіршому разі (при передачі послідовності одиниць або нулів) має частоту N Гц, а в кращому (при передачі одиниць, що чергуються, і нулів) вона рівна N/2 Гц, як і у кодів AMI або NRZ. В середньому ширина смуги манчестерського коду в півтора рази вужче, ніж у біполярного імпульсного коду, а основна гармоніка коливається поблизу значення 3N/4. Манчестерський код має ще одну перевагу перед біполярним імпульсним кодом. У останньому для передачі даних використовуються три рівні сигналу, а в манчестерському - два.

На рис. 1.4, д показано потенційний код з чотирма рівнями сигналу для кодування даних. Це код 2B1Q, назва якого відображає його суть - кожні два біти (2В) передаються за один такт сигналом, що має чотири стани (1Q), Парі біт 00 відповідає потенціал -2,5 В, парі біт 01 відповідає потенціал -0,833 В, парі 11 - потенціал +0,833 B, а парі 10 - потенціал +2,5 В. При цьому способі кодування потрібні додаткові заходи по боротьбі з довгими послідовностями однакових пар біт, оскільки при цьому сигнал перетворюється на постійну складову. При випадковому чергуванні битий спектр сигналу в два рази вужче, ніж у коду NRZ, оскільки при тій же бітовій швидкості тривалість такту збільшується в два рази. Таким чином, за допомогою коду 2B1Q можна по одній і тій же лінії передавати дані в два рази швидше, ніж за допомогою коду AMI або NRZI. Проте для його реалізації потужність передавача повинна бути вищою, щоб чотири рівні чітко розрізнялися приймачем на фоні перешкод.

Поліпшені потенційні коди володіють достатньо вузькою смугою пропускання для будь-яких послідовностей одиниць і нулів, які зустрічаються в передаваних даних. Потенційний код NRZ володіє хорошим спектром з одним недоліком - у нього є постійна складова. Коди, одержані з потенційного шляхом логічного кодування, володіють вужчим спектром, ніж манчестерський, навіть при підвищеній тактовій частоті (на малюнку спектр коду 4В/5В повинен був би приблизно співпадати з кодом B8ZS, але він зсунутий в область вищих частот, оскільки його тактова частота підвищена на 1/4 в порівнянні з іншими кодами). Цим пояснюється застосування потенційних надмірних і скрембльованих кодів в сучасних технологіях, подібних FDDI, Fast Ethernet, Gigabit Ethernet, ISDN і т.п. замість манчестерського і біполярного імпульсного кодування.

1.3 Передача даних по каналах глобальних та корпоративних мереж

Виділений канал - це канал з фіксованою смугою пропускання або фіксованою пропускною спроможністю, що постійно з'єднує два абоненти. Абонентами можуть бути як окремі пристрої (комп'ютери або термінали), так і цілі мережі [4-6].

Виділені канали звичайно орендуються у компаній - операторів територіальних мереж, хоча крупні корпорації можуть прокладати свої власні виділені канали.

Виділені канали діляться на аналогові і цифрові залежно від того, якого типу комутаційна апаратура застосована для постійної комутації абонентів - з частотним розділенням каналів (Frequency Division Multiplexing - FDM) або часовим розділенням каналів (Time Division Multiplexing - TDM). На аналогових виділених лініях для апаратури передачі даних фізичний і канальний протоколи жорстко не визначені. Відсутність фізичного протоколу призводить до того, що пропускна спроможність аналогових каналів залежить від пропускної спроможності модемів, які використовує користувач каналу. Модем власне і встановлює потрібний йому протокол фізичного рівня для каналу.

На цифрових виділених лініях протокол фізичного рівня зафіксований - він заданий стандартом G.703.

На канальному рівні аналогових і цифрових виділених каналів звичайно використовується один з протоколів сімейства HDLC або ж пізніший протокол РРР, побудований на основі HDLC для зв'язку багато протокольних мереж.

1.3.1 Аналогові виділені лінії

Виділені аналогові канали надаються користувачу з 4-дротяним або 2-дротяним закінченням. На каналах з 4-дротяним закінченням організація повно дуплексного зв'язку, природно, виконується простішими способами [7].

Виділені лінії можуть бути розділені на дві групи по іншій ознаці - наявності проміжної апаратури комутації і посилення або її відсутності.

Першу групу складають так звані навантажені лінії, що проходять через устаткування частотного ущільнення (FDM-комутатори і мультиплексори), розташоване, наприклад, на АТС. Телефонні компанії звичайно надають в оренду два типи виділених каналів: канал тональної частоти із смугою пропускання 3,1 кГц (0,3-3,4 кГц) і широкосмуговий канал із смугою 48 кГц (60-108 кГц), який є базовою групою з 12 каналів тональної частоти. Оскільки широкосмуговий канал використовується для зв'язку АТС між собою, те отримання його в оренду більш проблематичне, ніж каналу тональної частоти.

Виділені навантажені канали також класифікуються на категорії залежно від їх якості. Від категорії якості залежить і орендна місячна платня за канал.

Друга група виділених ліній - це ненавантажені фізичні дротяні лінії. Вони можуть красуватися, але при цьому не проходять через апаратуру частотного ущільнення. Часто такі лінії використовуються для зв'язку між будівлями, що близько стоять. При невеликій довжині ненавантаженої виділеної лінії вона володіє достатньо широкою смугою пропускання, іноді до 1 Мгц, що дозволяє передавати імпульсні немодульовані сигнали.

На перший погляд може показатися, що ненавантажені лінії не мають відношення до глобальних мереж, оскільки їх можна використовувати при протяжності максимум в декілька кілометрів, інакше загасання стає дуже великим для передачі даних. Проте останнім часом саме цей вид виділених каналів привертає пильну увагу розробників засобів видаленого доступу. Річ у тому, що телефонні абонентні закінчення - відрізок витої пари від АТС до житлової або виробничої будівлі - є саме таким видом каналів. Широка (хоча і наперед точно невідома) смуга пропускання цих каналів дозволяє розвинути на короткому відрізку лінії високу швидкість - до декількох Мбіт в секунду. У зв'язку з цим, до найближчої АТС дані від видаленого комп'ютера або мережі можна передавати набагато швидше, ніж по каналах тональної частоти, які починаються в даній АТС.

Для передачі даних по виділених навантажених аналогових лініях використовуються модеми. Протоколи і стандарти модемів визначені в рекомендаціях CCITT серії V. Ці стандарти діляться на три групи:

· стандарти, що визначають швидкість передачі даних і метод кодування;

· стандарти виправлення помилок;

· стандарти стиснення даних.

Ці стандарти визначають роботу модемів як для виділених, так і комутованих ліній. Модеми можна також класифікувати залежно від того, який режими роботи вони підтримують (асинхронний, синхронний або обидва ці режими), а також до якого закінчення (4-дротяному або 2-дротяному) вони підключені.

Відносно режиму роботи модеми діляться на три групи:

· модеми, що підтримують тільки асинхронний режим роботи;

· модеми підтримуючі асинхронний і синхронний режими роботи;

· модеми, що підтримують тільки синхронний режим роботи.

Модеми, що працюють тільки в асинхронному режимі, звичайно підтримують низьку швидкість передачі даних - до 1200 біт/с. Так, модеми, що працюють за стандартом V.23, можуть забезпечувати швидкість 1200 біт/с на 4-дротяній виділеній лінії в дуплексному асинхронному режимі, а за стандартом V.21 - на швидкості 300 біт/с по 2-дротяній виділеній лінії також в дуплексному асинхронному режимі. Дуплексний режим на 2-дротяному закінченні забезпечується частотним розділенням каналу. Асинхронні модеми представляють найдешевший вид модемів, оскільки їм не потрібні високоточні схеми синхронізації сигналів на кварцових генераторах. Крім того, асинхронний режим роботи невибагливий до якості лінії.

Модеми, що працюють тільки в синхронному режимі, можуть підключатися тільки до 4-дротяного закінчення. Синхронні модеми використовують для виділення сигналу високоточні схеми синхронізації і тому звично значно дорожче за асинхронні модеми. Крім того, синхронний режим роботи пред'являє високі вимоги до якості лінії.

Для виділеного каналу тональної частоти з 4-дротяним закінченням розроблено достатньо багато стандартів серії V. Всі вони підтримують дуплексний режим:

V.26 - швидкість передачі 2400 біт/с;

V.27 - швидкість передачі 4800 біт/с;

V.29 - швидкість передачі 9600 біт/с;

V.32 ter - швидкість передачі 19 200 біт/с.

Для виділеного широкосмугового каналу 60-108 кГц існують три стандарти:

V.35 - швидкість передачі 48 Кбіт/с;

V.36 - швидкість передачі 48-72 Кбіт/с;

V.37 - швидкіть передачі 96-168 Кбіт/с.

Корекція помилок в синхронному режимі роботи звичайно реалізується по протоколу HDLC, але допустимі і застарілі протоколи SDLC і BSC компанії IBM. Модеми стандартів V.35, V.36 і V.37 використовують для зв'язку з DTE інтерфейс V.35.

Модеми, що працюють в асинхронному і синхронному режимах, є найбільш універсальними пристроями. Найчастіше вони можуть працювати як по виділених, так і по комутованих каналах, забезпечуючи дуплексний режим роботи. На виділених каналах вони підтримують в основному 2-дротяне закінчення і набагато рідше - 4-дротяне.

Для асінхронно-сінхронних модемів розроблений ряд стандартів серії V:

V.22 - швидкість передачі до 1200 біт/с;

V.22 bis - швидкість передачі до 2400 біт/с;

V.26 ter - швидкість передачі до 2400 біт/с;

V.32 - швидкість передачі до 9600 біт/с;

V.32 bis - швидкість передачі 14 400 біт/с;

V.34 - швидкість передачі до 28,8 Кбіт/с;

V.34+ - швидкість передачі до 33,6 Кбіт/с.

Типова структура з'єднання двох комп'ютерів або локальних мереж через маршрутизатор за допомогою виділеної аналогової лінії приведена на рис. 1.5. У разі 2-дротяного закінчення для забезпечення дуплексного режиму модем використовує трансформаторну розв'язку. Телефонна мережа завдяки своїй схемі розв'язки забезпечує роз'єднання потоків даних, циркулюючих у різних напрямах. За наявності 4-дротяного закінчення (див. рис. 1.5, б) схема модему спрощується.

Рис. 1.5. З'єднання локальних мереж або комп'ютерів по виділеному каналу

1.3.2 Цифрові виділені лінії

Цифрові виділені лінії утворюються шляхом постійної комутації в первинних мережах, побудованих на базі комутаційної апаратури, що працює на принципах розділення каналу в часі - TDM. Існують два покоління технологій цифрових первинних мереж - технологія плезіохронної ("плезіо" означає "майже", тобто майже синхронної) цифрової ієрархії (Plesiochronic Digital Hierarchy, PDH) і пізніша технологія - синхронна цифрова ієрархія (Synchronous Digital Hierarchy, SDH). У Америці технології SDH відповідає стандарт SONET.

1.3.3 Технологія плезіохронної цифрової ієрархії PDH

Цифрова апаратура мультиплексування і комутації була розроблена в кінці 60-х років компанією AT&T для вирішення проблеми зв'язку крупних комутаторів телефонних мереж між собою. Канали з частотним ущільненням, вживані до цього на ділянках АТС-АТС, вичерпали свої можливості по організації високошвидкісного багатоканального зв'язку по одному кабелю. У технології FDM для одночасної передачі даних 12 або 60 абонентних каналів використовувалася вита пара, а для підвищення швидкості зв'язку доводилося прокладати кабелі з великою кількістю пар дротів або дорожчі коаксіальні кабелі. Крім того, метод частотного ущільнення високо чутливий до різного роду перешкодам, які завжди присутні в територіальних кабелях, та і високочастотна несуча мови сама створює перешкоди в приймальній апаратурі, будучи погано відфільтрована.

Для вирішення цієї задачі була розроблена апаратура Т1, яка дозволяла в цифровому виді мультиплексувати, передавати і комутувати (на постійній основі) дані 24 абонентів. Оскільки абоненти як і раніше користувалися звичними телефонними апаратами, тобто передача голосу йшла в аналоговій формі, то мультиплексори Т1 самі здійснювали оцифровування голосу з частотою 8000 Гц і кодували голос за допомогою імпульсно-кодової модуляції (Pulse Code Modulation, PCM). В результаті кожен абонентний канал утворював цифровий потік даних 64 Кбіт/с. Для з'єднання магістральних АТС канали Т1 були дуже слабкими засобами мультиплексування, тому в технології була реалізована ідея утворення каналів з ієрархією швидкостей. Чотири канали типа Т1 об'єднуються в канал наступного рівня цифрової ієрархії - Т2, передаючий дані із швидкістю 6,312 Мбіт/с, а сім каналів Т2 дають при об'єднанні канал ТЗ, що передає дані із швидкістю 44,736 Мбіт/с. Апаратура T1, T2 і ТЗ може взаємодіяти між собою, утворюючи ієрархічну мережу з магістральними і периферійними каналами трьох рівнів швидкостей.

Технологія цифрової ієрархії була пізніше стандартизована CCITT. При цьому в неї були внесені деякі зміни, що привело до несумісності американської і міжнародної версій цифрових мереж. Американська версія поширена сьогодні окрім США також в Канаді і Японії (з деякими відмінностями), а в Європі застосовується міжнародний стандарт. Аналогом каналів Т в міжнародному стандарті є канали типа El, E2 і E3 з іншими швидкостями - відповідно 2,048 Мбіт/с, 8,488 Мбіт/с і 34,368 Мбіт/с. Американський варіант технології також був стандартизований ANSI.

Не дивлячись на відмінності американської і міжнародних версій технології цифрової ієрархії, для позначення ієрархії швидкостей прийнято використовувати одні і ті ж позначення - DSn (Digital Signal n). У табл. 1.1 приводяться значення для всіх введених стандартами рівнів швидкостей обох технологій.

На практиці в основному використовуються канали Т1/Е1 і ТЗ/E3.

Користувач може орендувати декілька каналів 64 Кбіт/с (56 Кбіт/с) в каналі Т1/Е1. Такий канал називається "дробовим" (fractional) каналом Т1/Е1. В цьому випадку користувачу відводиться декілька тайм - слотів роботи мультиплексора.

Фізичний рівень технології PDH підтримує різні види кабелів: виту пару, коаксіальний кабель і волоконно-оптичний кабель. Основним варіантом абонентного доступу до каналів Т1/Е1 є кабель з двох витих пар з роз'ємами RJ-48. Дві пари потрібні для організації дуплексного режиму передачі даних із швидкістю 1,544/2,048 Мбіт/с.

Таблиця 1.1. Ієрархія цифрових швидкостей

Позначення швидкості

Америка

Європа

Позначення швидкості

Кількість голосових каналів

Кількість каналів попереднього рівня

Швидкість передачі, Мбіт/с

Позначення швидкості

Кількість голосових каналів

Кількість каналів попереднього рівня

Швидкість передачі, Мбіт/с

DS-0

1

1

64 кбіт/с

1

1

64 кбіт/с

DS-1

T1

24

24

1,544

E1

30

30

2,048

DS-2

T2

96

4

6,312

E2

120

4

8,488

DS-3

T3

672

7

44,736

E3

480

4

34,368

DS-4

4032

6

274,176

1920

4

139,264

Коаксіальний кабель завдяки своїй широкій смузі пропускання підтримує канал Т2/Е2 або 4 канали Т1/Е1. Для роботи каналів ТЗ/E3 звичайно використовується або коаксіальний кабель, або волоконно-оптичний кабель, або канали НВЧ.

Фізичний рівень міжнародного варіанту технології визначається стандартом G.703, назвою якого позначається тип інтерфейсу маршрутизатора або моста, що підключається до каналу Е1. Американський варіант інтерфейсу носить назву Т1.

Як американський, так і міжнародний варіанти технології PDH володіють декількома недоліками.

Одним з основних недоліків є складність операцій мультиплексування і демультиплексування призначених для користувача даних. Сам термін "плезіохронний", використовуваний для цієї технології, говорить про причину такого явища - відсутності повної синхронності потоків даних при об'єднанні низько швидкісних каналів в більш високошвидкісні. Спочатку асинхронний підхід до передачі кадрів породив вставку біта або декількох біт синхронізації між кадрами. В результаті для витягання призначених для користувача даних з об'єднаного каналу необхідно повністю демультиплексувати кадри цього об'єднаного каналу. Наприклад, якщо вимагається одержати дані одного абонентного каналу 64 Кбіт/с з кадрів каналу ТЗ, необхідно виробити демультиплексування цих кадрів до рівня кадрів Т2, потім - до рівня кадрів Т1, а потім демультиплексувати і самі кадри Т1. Для подолання цього недоліку в мережах PDH реалізують деякі додаткові прийоми, що зменшують кількість операцій демультиплексування при витягання призначених для користувача даних з високошвидкісних каналів. Наприклад, одним з таких прийомів є "зворотна доставка" (back hauling). Хай комутатор 1 каналу ТЗ приймає потік даних, що складається з 672 призначених для користувача каналів, при цьому він повинен передати дані одного з цих каналів користувачу, підключеному до низькошвидкісного виходу комутатора, а всю решту потоку даних направити транзитом через інші комутатори в деякий кінцевий демультиплексор 2, де потік ТЗ повністю демультиплексувати на канали 64 Кбіт/с. Для економії комутатор 1 не виконує операцію демультиплексування свого потоку, а одержує дані свого користувача тільки при їх "зворотному проході", коли кінцевий демультиплексор виконає операцію розбору кадрів і поверне дані одного з каналів комутатору 1. Природно, такі складні взаємостосунки комутаторів ускладнюють роботу мережі, вимагають її тонкої конфігурації, що веде до великого об'єму ручної роботи і помилок.

Іншим істотним недоліком технології PDH є відсутність розвинених вбудованих процедур контролю і управління мережею. Службові біти дають мало інформації про стан каналу, не дозволяють його конфігурувати і т.п. Немає в технології і процедур підтримки відмовостійкості, які дуже корисні для первинних мереж, на основі яких будуються відповідальні міжміські і міжнародні мережі. У сучасних мережах управлінню надається велика увага, причому вважається, що управляючі процедури бажано вбудовувати в основний протокол передачі даних мережі.

Третій недолік полягає в дуже низьких за сучасними поняттями швидкостях ієрархії PDH. Волоконно-оптичні кабелі дозволяють передавати дані з швидкостями в декілька Гбіт в секунду по одному волокну, що забезпечує консолідацію в одному кабелі десятків тисяч призначених для користувача каналів, але цю властивість технологія PDH не реалізує - її ієрархія швидкостей закінчується рівнем 139 Мбіт/с. Всі ці недоліки усунені в новій технології первинних цифрових мереж, що одержала назву синхронної цифрової ієрархії - Synchronous DigitalHierarchy, SDH.

1.4 Фізична сутність та порядок використання каналів передачі даних в гетерогенних комп'ютерних мережах

Канали передачі даних є фундаментом будь-якої мережі. Якщо в каналах щодня відбуваються короткі замикання, контакти роз'ємів то відходять, то знову входять у щільне з'єднання, додавання нової станції призводить до необхідності тестування десятків контактів роз'ємів через те, що документація на фізичні з'єднання не ведеться [8-10]. Очевидно, що на основі таких каналів передачі даних будь-яке найсучасніше і продуктивне устаткування буде працювати погано. Користувачі будуть незадоволені великими періодами простоїв і низькою продуктивністю мережі, а обслуговуючий персонал буде в постійній "запарці", розшукуючи місця коротких замикань, обривів і поганих контактів. Причому проблем з каналами передачі даних стає набагато більше при збільшенні розмірів мережі.

...

Подобные документы

  • Аналіз організації передачі даних по каналах комп’ютерних мереж. Фізична сутність та порядок організації їх каналів. Сутність існуючих методів доступу до каналів комп’ютерних мереж. Місце процесів авторизації доступу при організації інформаційних систем.

    дипломная работа [2,4 M], добавлен 12.09.2010

  • Мультиплексування абонентських каналів. Комутація каналів на основі поділу часу. Розбиття повідомлення на пакети. Затримки передачі даних у мережах. Високошвидкісні мережі. Типи мережевих користувацьких інтерфейсів. Локалізація трафіку й ізоляція мереж.

    курс лекций [225,9 K], добавлен 28.10.2013

  • Передача даних як важливий вид документального електрозв'язку. Розгляд особливостей та основних етапів проектування середньо-швидкісного тракту передачі даних. Аналіз системи з вирішальним зворотнім зв'язком, неперервною передачею і блокуванням приймача.

    дипломная работа [1,3 M], добавлен 06.04.2013

  • Поняття сигналу, їх види - аналогові і цифрові. Фізичні процеси передачі інформації. Смуга пропускання і пропускна здатність. Цифрове та логічне кодування бітових даних. Гальванічна розв’язка електричних кіл ліній передачі даних комп’ютерних мереж.

    презентация [1,3 M], добавлен 18.10.2013

  • Комп'ютерна мережа - об'єднання деякої кількості комп'ютерів до єдиного каналу передачі даних за допомогою фізичного з'єднання. Опис топологій локальних мереж. Розробка простої комп'ютерної мережі зі стандартом 10Base-2 та перевірка її працездатності.

    курсовая работа [880,9 K], добавлен 14.09.2012

  • Аналіз місця розташування комп’ютерної мережі та потреби в централізованому збереженні даних. Необхідність автоматизації. Вимоги безпеки. Проектування топології локальної мережі. Domain Name Service та Email Service. Адміністративний та інші сервери.

    курсовая работа [33,7 K], добавлен 04.10.2013

  • Поняття, сутність, призначення і класифікація комп’ютерних мереж, особливості передачі даних в них. Загальна характеристика локальних комп’ютерних мереж. Етапи формування та структура мережі Інтернет, а також рекомендації щодо збереження інформації у ній.

    реферат [48,1 K], добавлен 05.12.2010

  • Розробка структурної, функціональної та принципової електричної схеми каналу послідовної передачі даних. Моделювання каналу послідовної передачі даних. Розрахунок параметрів і часових характеристик каналу, токів і потужності та надійності пристрою.

    курсовая работа [208,4 K], добавлен 20.01.2009

  • Загальні вимоги до волоконно-оптичної системи передачі даних. Послідовність та методика інженерного розрахунку. Вибір елементної бази: оптичного кабелю, з`єднувачів та розгалужувачів, випромінювача, фотодетектора. Розрахунок параметрів цифрових ВОСП.

    курсовая работа [142,4 K], добавлен 11.08.2010

  • Характеристика організації. Аналіз вимог до комп’ютерної мережі, опис інформаційних ресурсів і служб, принципи адміністрування. Обґрунтування фізичної топології комп’ютерної мережі. Розрахунок варіантів технічних засобів комунікацій. Технічний проект.

    курсовая работа [97,8 K], добавлен 11.03.2013

  • Можливості технології синхронної ієрархії SDH по створенню транспортних мереж даних і формуванню цифрових каналів в широкому діапазоні швидкостей. Техніка комутації каналів з двоточковою топологією між користувацькими пристроями, підключеними до мережі.

    реферат [158,9 K], добавлен 05.02.2015

  • Принципи побудови й основні особливості волоконнооптичних систем передачі в міських телефонних мережах. Загальні розуміння з розрахунку принципової схеми пристрою. Методи побудови структурних схем оптичних систем передачі. Розрахунок ємностей фільтрів.

    курсовая работа [251,0 K], добавлен 15.03.2014

  • Основні терміни і поняття: складання глосарію. Сучасний рівень документних комунікацій у розвитку підприємництва. Характеристика основних каналів передачі ділової інформації. Схема еволюції комунікаційних каналів за період соціального розвитку людства.

    контрольная работа [79,3 K], добавлен 10.03.2010

  • Специфіка різних сфер застосування систем зв'язку. Структурні схеми каналів передачі інформації, перетворення інформації в кодуючому пристрої. Поняття детермінованого, недетермінованого, випадкового сигналу. Особливості передачі і збереження інформації.

    реферат [286,2 K], добавлен 03.04.2010

  • Характеристика типової системи передачі даних, яка складається з трьох компонентів: передавача, каналу передачі даних і приймача. Принцип дії каналу зв'язку. Класифікація модемів за областю застосування; за методом передачі; за конструктивним виконанням.

    реферат [56,6 K], добавлен 15.01.2011

  • Схема цифрової системи передачі інформації. Кодування коректуючим кодом. Шифрування в системі передачі інформації. Модулятор системи передачі. Аналіз роботи демодулятора. Порівняння завадостійкості систем зв’язку. Аналіз аналогової системи передачі.

    курсовая работа [1,6 M], добавлен 04.02.2013

  • Характеристика системи передачі Flex Gain Megatrans. Розрахунок протяжності всіх трас, параметрів симетричного кабелю, надійності кабельної траси. Вибір волоконно-оптичного кабелю. Визначення відстані між ретрансляторами ВОЛЗ і швидкості передачі даних.

    курсовая работа [770,1 K], добавлен 30.04.2013

  • Базові принципи, що лежать в основі технології ATM. Мережі з встановленням з'єднання. Рівень адаптації ATM і якість сервісу. Типи віртуальних каналів. Стандарти моделі АТМ, архітектура, фізичний рівень. Функції передачі сигналів і управління трафіком.

    реферат [395,7 K], добавлен 05.02.2015

  • Методи й засоби комп'ютерної обробки зображень. Розгляд двох існуючих методів покращення якості зображень, основаних на суб’єктивному сприйнятті роздільної здатності і кількості кольорів. Порівняльна характеристика вейвлет-методу та градієнтського потоку.

    реферат [317,1 K], добавлен 03.12.2009

  • Різноманітність галузей застосування систем передачі інформації і використаних каналів зв’язку. Структурна схема цифрової системи передачі інформації, її розрахунок. Розрахунки джерел повідомлень, кодеру каналу, модулятора, декодера, демодулятора.

    контрольная работа [740,0 K], добавлен 26.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.