Характеристика спутниковых сетей связи

Описание особенностей современных средств связи, основанных на спутниковых системах. Анализ преимуществ передачи связи в цифровом формате. Изучение истории возникновения, основных этапов развития спутниковых систем, характеристика системы Globalstar.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 03.12.2014
Размер файла 38,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Основные данные о работе

Версия шаблона

2.1

Филиал

Вид работы

Курсовая работа

Название дисциплины

Сети ЭВМ и телекоммуникации

Тема

Характеристика спутниковых сетей связи

Фамилия студента

Имя студента

Иван

Отчество студента

№ контракта

Содержание

Введение

1. Знакомство со спутниковой связью

2. Системы спутниковой связи

3. Глобальная спутниковая связь Globalstar

Заключение

Глоссарии

Список используемых источников

Список сокращений

Введение

Современные организации характеризуются большим объемом различной информации, в основном электронной и телекоммуникационной, которая проходит через них каждый день. Поэтому важно иметь высококачественный выход на коммутационные узлы, которые обеспечивают выход на все важные коммуникационные линии. В России, где расстояния между населенными пунктами огромное, а качество наземных линий оставляет желать лучшего, оптимальным решением этого вопроса является применение систем спутниковой связи (ССС).

На сегодняшний день существует большое количество ССС, основанных на различных спутниковых системах, различных принципах и предназначенных для различных применений.

Спутниковая связь обладает важнейшими достоинствами, необходимыми для построения крупномасштабных телекоммуникационных сетей. Во-первых, с ее помощью можно достаточно быстро сформировать сетевую инфраструктуру, охватывающую большую территорию и не зависящую от наличия или состояния наземных каналов связи. Во-вторых, использование современных технологий доступа к ресурсу спутниковых ретрансляторов и возможность доставки информации практически неограниченному числу потребителей одновременно значительно снижают затраты на эксплуатацию сети. Эти достоинства спутниковой связи делают ее весьма привлекательной и высокоэффективной даже в регионах с хорошо развитыми наземными телекоммуникациями. Более того, в настоящее время многие компании с территориально-распределенной структурой крайне заинтересованы в снижении затрат на оплату услуг связи и все чаще отказываются от услуг сети общего пользования, предпочитая создавать собственные более экономичные спутниковые сети связи. Современный рынок услуг и систем спутниковой связи изобилует широким спектром технологических решений для построения такого рода сетей.

Предварительные прогнозы развития систем персональной спутниковой связи показывают, что в начале XXI в число их абонентов составит примерно 1 млн. , а в течении следующего десятилетия - 3млн. В настоящее время число пользователей спутниковой системы Inmarsat составляет 40тыс. По данным различных источников, в России к концу 2010 года можно будет ожидать появления 500тыс. абонентов систем спутниковой персональной связи.

В последние годы в России всё активнее внедряются современные виды и средства связи. Но, если сотовый радиотелефон уже стал привычным, то аппарат персональной спутниковой связи (спутниковый терминал)пока еще редкость. Анализ развития подобных средств связи показывает, что уже в скором будущем мы станем свидетелями повседневного применения систем персональной спутниковой связи (СПСС). Близится время объединения наземных и спутниковых систем в глобальную систему связи. Персональная связь станет возможной в глобальном масштабе, т. е. будет обеспечена досягаемость абонента в любой точке мира путем набора его телефонного номера, не зависящего от местонахождения абонента. Но прежде, чем это станет реальностью, системы спутниковой связи должны будут успешно выдержать испытания и подтвердить заявленные технические характеристики и экономические показатели и процессе коммерческой эксплуатации. Что же касается потребителей, то, чтобы сделать правильный выбор, им придется научиться хорошо ориентироваться во множестве предложений.

Темпы развития ССC объясняются рядом достоинств которыми они обладают. К ним, в частности, относятся большая пропускная способность, неограниченные перекрываемые пространства, высокое качество и надежность каналов связи. Эти достоинства, которые определяют широкие возможности спутниковой связи, делают ее уникальным и эффективным средством связи. Спутниковая связь в настоящее время является основным видом международной и национальной связи на большие и средние расстояния. Использование искусственных спутников Земли для организации связи продолжает расширяться по мере развития существующих сетей связи. Многие страны создают собственные национальные сети спутниковой связи.

Все системы можно разделить на системы двух видов: работающие через спутники на негеостационарных и геостационарных орбитах.

Негеостационарные спутники используются в основном для военных, научных и метеорологических исследований. Их главная особенность - невозможность поддержания круглосуточной связи с ЗС. Однако, перемещаясь по заданной орбите относительно поверхности Земли, они могут собирать данные с большой площади земной поверхности.

Геостационарные спутники выводятся на такую орбиту в плоскости экватора, при которой их угловая скорость совпадает со скоростью вращения Земли вокруг своей оси. Высота над поверхностью Земли, где выполняются условия постоянства скоростей и равенства центробежной и гравитационной сил, составляет 36 тысяч километров. Теоретически, один расположенный таким образом спутник может обеспечить качественную связь для трети земной поверхности. В действительности обслуживаемые территории существенно меньше. Особенностью спутников на геостационарных орбитах является значительная временная задержка (порядка 240 мс) в спутниковом канале, вызванная необходимостью два раза преодолевать расстояние в 36 тысяч километров от ЗС до спутника.

Мы будем рассматривать системы, где применяются спутники связи, обращающиеся на орбитах синхронно с вращением Земли. Это позволяет существенно упростить систему связи. В этом случае каждая земная станция работает непрерывно с одним и тем же спутником связи. Ранее, при использовании не синхронных спутников, существовала необходимость периодического переключения антенной системы каждой земной станции с одного спутника на другой, что естественно вызывало перерывы связи.

К тому же, значительную часть стоимости ЗС составляла не очень надежная аппаратура слежения. Использование стационарных спутников связи обеспечивает бесперебойную связь, но требует дополнительного запаса рабочего тела для проведения многократных коррекцией орбиты ИСЗ.

Считается, что этот дополнительный запас рабочего тела для коррекции орбиты является сравнительно небольшой платой за простоту эксплуатации системы и отсутствие перерывов связи. Земные станции при использовании стационарных спутников упрощаются за счет отказа от сложной и дорогой системы слежения.

Спутниковые системы связи могут различаться также и типом передаваемого сигнала, который может быть цифровым или аналоговым. Передача информации в цифровой форме обладает рядом преимуществ по сравнению с другими методами передачи.

К ним относятся:

простота и эффективность объединения многих независимых сигналов и преобразования цифровых сообщений в “пакеты” для удобства коммутации;

меньшие энергозатраты по сравнению с передачей аналогового сигнала;

относительная нечувствительность цифровых каналов к эффекту накопления искажений при ретрансляциях, обычно представляющему серьезную проблему в аналоговых системах связи;

потенциальная возможность получения очень малых вероятностей ошибок передачи и достижения высокой верности воспроизведения переданных данных путем обнаружения и исправления ошибок;

конфиденциальность связи;

гибкость реализации цифровой аппаратуры, допускающая использование микропроцессоров, цифровую коммутацию и применение микросхем с большей степенью интеграции компонентов.

Еще одним параметром, позволяющим классифицировать ССС, является использование протокола. Первые спутниковые системы были беспротокольными и предлагали пользователю прозрачный канал. Недостатком таких систем являлась, например, передача информации пользователя без, как правило, подтверждения ее доставки принимающей стороной. Иначе говоря, в подобных системах не оговорены правила диалога между участниками обмена информацией.

В этом случае качество ССС определяется качеством спутникового канала. При типичных значениях вероятности ошибки на символ в пределах 10-6..10-7 передача больших файлов через спутниковые системы, даже с использованием различных помехоустойчивых кодов затруднена, если не сказать, что невозможна. Современные ССС используют протокол, повышающий надежность связи при сохранении высокой скорости обмена информацией между абонентами. Так, например, для рассматриваемой ниже системы передачи данных типа PES™ (Personal Earth Station - персональная земная станция) вероятность ошибки на символ не превышает 10-9 для 99% времени связи.

1. Знакомство со спутниковой связью

Спутниковые системы связи (ССC) известны давно, и используются для передачи различных сигналов на протяженные расстояния. С момента своего появления спутниковая связь стремительно развивалась, и по мере накопления опыта, совершенствования аппаратуры, развития методов передачи сигналов произошел переход от отдельных линий спутниковой связи к локальным и глобальным системам.

Темпы развития ССC объясняются рядом достоинств которыми они обладают. К ним, в частности, относятся большая пропускная способность, неограниченные перекрываемые пространства, высокое качество и надежность каналов связи. Эти достоинства, которые определяют широкие возможности спутниковой связи, делают ее уникальным и эффективным средством связи. Спутниковая связь в настоящее время является основным видом международной и национальной связи на большие и средние расстояния. Использование искусственных спутников Земли для организации связи продолжает расширяться по мере развития существующих сетей связи. Многие страны создают собственные национальные сети спутниковой связи.

Впервые годы исследований использовались пассивные спутниковые ретрансляторы (примеры -- спутники «Эхо» и «Эхо-2»), которые представляли собой простой отражатель радиосигнала (часто -- металлическая или полимерная сфера с металлическим напылением), не несущий на борту какого-либо приёмопередающего оборудования. Такие спутники не получили распространения. Все современные спутники связи являются активными.

Активные ретрансляторы оборудованы электронной аппаратурой для приема, обработки, усиления и ретрансляции сигнала. Спутниковые ретрансляторы могут быть нерегенеративными и регенеративными.

Нерегенеративный спутник, приняв сигнал от одной земной станции, переносит его на другую частоту, усиливает и передает другой земной станции. Спутник может использовать несколько независимых каналов, осуществляющих эти операции, каждый из которых работает с определенной частью спектра (эти каналы обработки называются транспондерами).

Регенеративный спутник производит демодуляцию принятого сигнала и заново модулирует его. Благодаря этому исправление ошибок производится дважды: на спутнике и на принимающей земной станции. Недостаток этого метода -- сложность (а значит, гораздо более высокая цена спутника), а также увеличенная задержка передачи сигнала.

Орбиты, на которых размещаются спутниковые ретрансляторы, подразделяют на три класса:

* экваториальные,

* наклонные,

* полярные.

Важной разновидностью экваториальной орбиты является геостационарная орбита, на которой спутник вращается с угловой скоростью, равной угловой скорости Земли, в направлении, совпадающем с направлением вращения Земли. Очевидным преимуществом геостационарной орбиты является то, что приемник в зоне обслуживания «видит» спутник постоянно.

Однако геостационарная орбита одна, и все спутники вывести на неё невозможно. Другим её недостатком является большамя высота, а значит, и бомльшая цена вывода спутника на орбиту. Кроме того, спутник на геостационарной орбите неспособен обслуживать земные станции в приполярной области.

Наклонная орбита позволяет решить эти проблемы, однако, из-за перемещения спутника относительно наземного наблюдателя необходимо запускать не меньше трех спутников на одну орбиту, чтобы обеспечить круглосуточный доступ к связи.

При использовании наклонных орбит земные станции оборудуются системами слежения, осуществляющими наведение антенны на спутник. Станции, работающие со спутниками, находящимися на геостационарной орбите, как правило, также оборудуются такими системами, чтобы компенсировать отклонение от идеальной геостационарной орбиты. Исключение составляют небольшие антенны, используемые для приема спутникового телевидения: их диаграмма направленности достаточно широкая, поэтому они не чувствуют колебаний спутника возле идеальной точки.

Поскольку радиочастоты являются ограниченным ресурсом, необходимо обеспечить возможность использования одних и тех же частот разными земными станциями. Сделать это можно двумя способами: пространственное разделение -- каждая антенна спутника принимает сигнал только с определенного района, при этом разные районы могут использовать одни и те же частоты, поляризационное разделение -- различные антенны принимают и передают сигнал во взаимно перпендикулярных плоскостях поляризации, при этом одни и те же частоты могут применяться два раза (для каждой из плоскостей).

Геостационамрная орбимта (ГСО) -- круговая орбита, расположенная над экватором Земли (0° широты), находясь на которой искусственный спутник обращается вокруг планеты с угловой скоростью, равной угловой скорости вращения Земли вокруг оси. В горизонтальной системе координат направление на спутник не изменяется ни по азимуту ни по высоте над горизонтом, спутник «висит» в небе неподвижно. Геостационарная орбита является разновидностью геосинхронной орбиты и используется для размещения искусственных спутников (коммуникационных, телетрансляционных и т. п.).

Спутник должен обращаться в направлении вращения Земли, на высоте 35 786 км над уровнем моря (вычисление высоты ГСО см. ниже). Именно такая высота обеспечивает спутнику период обращения, равный периоду вращения Земли относительно звёзд (Звёздные сутки: 23 часа 56 минут 4,091 секунды).

Типичная карта покрытия для спутника, находящегося на геостационарной орбите, включает следующие компоненты: глобальный луч -- производит связь с земными станциями по всей зоне покрытия, ему выделены частоты, не пересекающиеся с другими лучами этого спутника. Лучи западной и восточной полусфер -- эти лучи поляризованы в плоскости A, причем в западной и восточной полусферах используется один и тот же диапазон частот. Зонные лучи -- поляризованы в плоскости B (перпендикулярной A) и используют те же частоты, что и лучи полусфер. Таким образом, земная станция, расположенная в одной из зон, может использовать также лучи полусфер и глобальный луч.

При этом все частоты (за исключением зарезервированных за глобальным лучом) используются многократно: в западной и восточной полусферах и в каждой из зон.

Особенностью спутниковых систем связи является необходимость работать в условиях сравнительно низкого отношения сигнал/шум, вызванного несколькими факторами:

- значительной удаленностью приемника от передатчика,

- ограниченной мощностью спутника (невозможностью вести передачу на большой мощности).

В связи с этим спутниковая связь плохо подходит для передачи аналоговых сигналов. Поэтому для передачи речи её предварительно оцифровывают, используя, например, импульсно-кодовую модуляцию (ИКМ).

Для передачи цифровых данных по спутниковому каналу связи они должны быть сначала преобразованы в радиосигнал, занимающий определенный частотный диапазон. Для этого применяется модуляция (цифровая модуляция называется также манипуляцией). Наиболее распространенными видами цифровой модуляции для приложений спутниковой связи являются фазовая манипуляция и квадратурная амплитудная модуляция. Например, в системах стандарта DVB-S2 применяются QPSK, 8-PSK, 16-APSK и 32-APSK.

Модуляция производится на земной станции. Модулированный сигнал усиливается, переносится на нужную частоту и поступает на передающую антенну.

Спутник принимает сигнал, усиливает, иногда регенерирует, переносит на другую частоту и с помощью определённой передающей антенны транслирует на землю. Из-за низкой мощности сигнала возникает необходимость в системах исправления ошибок. Для этого применяются различные схемы помехоустойчивого кодирования, чаще всего различные варианты свёрточных кодов (иногда в сочетании с кодами Рида-Соломона), а также турбо-коды и LDPC-коды.

2. Системы спутниковой связи

связь спутниковый globalstar

Изначально возникновение спутниковой связи было продиктовано потребностями передачи больших объёмов информации. Первой системой спутниковой связи стала система Intelsat, затем были созданы аналогичные региональные организации (Eutelsat, Arabsat и другие). С течением времени доля передачи речи в общем объёме магистрального трафика постоянно снижалась, уступая место передаче данных. С развитием волоконно-оптических сетей последние начали вытеснять спутниковую связь с рынка магистральной связи.

Система VSAT

Немного истории. Развитие сетей VSAT начинается с того, что был запущен первый спутник связи. В конце 60-х годов в ходе экспериментов со спутником АТС-1 была создана экспериментальная сеть, состоящая из 25 земных станций, спутниковой телефонной связи на Аляске.

Фирма Linkabit, одна из первых создавшая VSAT Ku-диапазона, слилась с фирмой M/A-COM, которая в последствии стала ведущим поставщиком оборудования VSAT. Hughes Communications приобрела отделение у М/А-СОМ, преобразовав его в Hughes Network Systems. На данный момент компания Hughes Network Systems, является ведущим мировым поставщиком широкополосных сетей спутниковой связи.

Сеть спутниковой связи на базе VSAT включает в себя три ключевых элемента: центральная управляющая станция (ЦУС), спутник-ретранслятор и абонентские VSAT терминалы.

Высокофункциональная VSAT система SkyEdge Pro - целостное телекоммуникационное решение, в котором воплощены передовые технологии отрасли. Встроенное ускорение TCP и HTTP, встроенный VPN, и полная поддержка полносвязной топологии обуславливают функциональную гибкость VSAT, что открывает широкие возможности для его использования в коммерческих и государственных организациях, обеспечивая работу любых коммуникационных приложений. SkyEdge Pro поддерживает работу каналов в полносвязной топологии для приложений стандартной телефонии, VoIP, видеоконференцсвязи и передачи данных, что обеспечивает работу "в один скачок" с минимальной задержкой, повышенным качеством при экономически эффективном использовании космического сегмента. Поддержка технологий QoS для всего трафика, позволяющая использовать систему приоритетов и равноправный доступ на основе DiffServ для данных и резервирование полосы пропускания для голоса, гарантирует необходимый уровень качества обслуживания для всех приложений.

Центральная управляющая станция

В состав ЦУС входит приемо-передающая аппаратура, антенно-фидерные устройства и комплекс оборудования, осуществляющий функции контроля и управления работой всей сети, перераспределение ее ресурсов, выявление неисправностей, тарификацию услуг сети и сопряжение с наземными линиями связи. Для обеспечения надежности связи аппаратура имеет как минимум 100% резервирование. Центральная станция сопрягается с любыми наземными магистральными линиями связи и имеет возможность коммутации информационных потоков, благодаря чему поддерживается информационное взаимодействие пользователей сети между собой и с абонентами внешних сетей (Интернет, сотовые сети, ТФоП и т. д.).

Спутник-ретранслятор

Сети VSAT строятся на базе геостационарных спутников-ретрансляторов. Важнейшими характеристиками спутника являются мощность бортовых передатчиков и количество радиочастотных каналов (стволов или транспондеров) на нем. Стандартный ствол имеет полосу пропускания 36 МГц, что соответствует максимальной пропускной способности около 40 Мбит/с.

В среднем, мощность передатчиков колеблется от 20 до 100 Ватт. В России в качестве примеров спутников-ретрансляторов можно привести спутники связи и вещания "Ямал". Они предназначены для развития космического сегмента ОАО "Газком" и были установлены в орбитальные позиции 49° в. д. и 90° в. д.

Абонентские VSAT терминалы

Абонентский VSAT терминал - это небольшая станция спутниковой связи с антенной диаметром от 0,9 до 2,4 м., предназначенная, главным образом, для надежного обмена данными по спутниковым каналам. Станция состоит из антенно-фидерного устройства, наружного внешнего радиочастотного блока и внутреннего блока (спутникового модема). Внешний блок представляет собой небольшой приемо-передатчик или только приемник. Внутренний блок обеспечивает сопряжение спутникового канала с терминальным оборудованием пользователя (компьютер, сервер ЛВС, телефон, факс и т. д.).

Технология VSAT

Можно выделить два основных вида доступа к спутниковому каналу: двусторонний (дуплексный) и односторонний (симплексный, асимметричный или комбинированный).

Односторонний доступ

При организации одностороннего доступа наряду со спутниковым оборудованием обязательно используется наземный канал связи (телефонная линия, оптоволокно, сотовые сети, радиоэзернет), который используется в качестве запросного канала (еще его называют обратным каналом).

Спутниковый канал используется в качестве прямого канала для получения данных на абонентский терминал (используется стандарт DVB[2]). В качестве приемного оборудования используется стандартный комплект, состоящий из приёмной параболической антенны, конвертора и спутникового DVB приемника в виде PCI-платы, устанавливаемой в компьютер или внешнего USB блока.

Двусторонний доступ

При организации двустороннего доступа VSAT-оборудование может быть использовано и для прямого и для обратного канала. Наличие наземных линий в данном случае не обязательно, но они также могут быть использованы (например, с целью резервирования).

Прямой канал обычно формируется в соответствии со спецификациями стандарта DVB-S и транслируется через спутник связи всем абонентским станциям сети, расположенным в рабочей зоне. В обратном канале формируются отдельные относительно низкоскоростные потоки TDMA. При этом для повышения пропускной способности сети используется так называемая многочастотная технология ТDМА (MF-TDMA), предусматривающая скачкообразные изменения частоты при перегрузке одного из обратных каналов.

Сети VSAT могут быть организованы по следующим топологиям: полносвязная («каждый с каждым»), радиальная («звезда») и радиально-узловая (комбинированная) топология. У каждой топологии свои достоинства и недостатки, выбор той или иной топологии необходимо осуществлять с учетом индивидуальных особенностей проекта. Спутниковая связь является разновидностью радиосвязи. Спутниковые сигналы, особенно высокочастотных диапазонов Ku и Ка, подвержены ослаблению во влажной атмосфере (дождь, туман, облачность). Этот недостаток легко преодолевается при проектировании системы.

Спутниковая связь подвержена помехам от других радиосредств. Однако, для спутниковой связи выделяются полосы частот, не используемые другими радиосистемами и, кроме того, в спутниковых системах используются узконаправленные антенны, позволяющие полностью избавиться от помех. Таким образом, большинство недостатков спутниковых систем связи устраняются путем грамотного проектирования сети, выбора технологии и места установки антенн.

Технология VSAT является очень гибкой системой, которая позволяет создавать сети, отвечающие самым жестким требованиям и предоставляющие широкий спектр услуг по передаче данных. Реконфигурация сети, включая смену протоколов обмена, добавление новых терминалов или изменение их географического положения осуществляется очень быстро. Популярность VSAT в сравнении с другими видами связи при создании корпоративных сетей объясняются следующими соображениями: для сетей с большим количеством терминалов и при значительных расстояниях между абонентами эксплуатационные расходы значительно ниже, чем при использовании наземных сетей.

3. Глобальная спутниковая система связи Globalstar

Спутниковая система "Глобалстар" является необходимым элементом в профессиональной деятельности людей, занятых в различных сферах бизнеса, когда требуется множество различных услуг связи на удаленных территориях, где не доступна сотовая связь и отсутствуют современные наземные телефонные сети. Компании нефтегазовой промышленности, строительные организации, правительственные организации, водный и наземный транспорт, другие организации, использующие услуги спутниковой системы "Глобалстар", в настоящее время успешно применяют современные и доступные с финансовой стороны решения в области спутниковых телекоммуникаций в любой точке Российской Федерации. Абоненты, пользующиеся услугами сотовой связи, всегда смогут быть на связи по всей единой зоне покрытия спутниковой сети "Глобалстар", используя компактные двухмодовые (GSM/Глобалстар) терминалы.

Система Globalstar представляет собой консорциум Globalstar L. P из международных телекоммуникационных компаний Loral Space & Telecommunications, Qualcomm, Elsag Baily, Space Systems/Loral, Daimler-Benz Aerospace, Alenia, Alcatel, Hyundai, Dacom и операторов связи - France Telecom, Vodafone Goup. Консорциум был основан в 1991 году. Система Globalstar формировалась как система, предназначенная для взаимодействия с существующими сотовыми сетями, дополняя и расширяя их возможности за счет осуществления связи за пределами зон покрытия. Кроме того, система предоставляет возможность использования ее в качестве альтернативы для стационарной связи в удаленных районах, где пользование сотовой связью или сетью общего пользования по каким-либо причинам невозможно.

Компания Globalstar L.P. - ведущий оператор мобильных услуг передачи голосовой информации и данных. Компания предоставляет эти услуги юридическим и физическим лицам более чем в 120 странах мира, общее число абонентов на начало 2009 года превышает 350 000. Globalstar L.P. зарегистрирована в штате Делавэр (США), главный офис находится в г. Милпитэс (Milpitas), штат Калифорния.

В России оператором спутниковой системы связи Globalstar является закрытое акционерное общество «ГлобалТел». Как эксклюзивный поставщик услуг глобальной подвижной спутниковой связи системы Globalstar, ЗАО «ГлобалТел» предоставляет услуги связи на территории всей Российской Федерации. Благодаря созданию компании ЗАО «ГлобалТел», у жителей России появилась еще одна возможность связаться через спутник из любой точки России практически с любой точкой мира.

Система Globalstar предоставляет спутниковую связь высокого качества для своих абонентов с помощью 48 рабочих и 8 запасных низкоорбитальных спутников, находящихся на высоте 1410 км. (876 миль) от поверхности Земли.

Система обеспечивает глобальное покрытие практически всей поверхности земного шара между 700 Северной и Южной широты с расширением до 740. Спутники способны принимать сигналы до 80% поверхности Земли, т. е. практически из любой точки земного шара за исключением полярных областей и некоторых зон центральной части океанов. Спутники системы просты и надежны.

Наземный сегмент Globalstar

Наземный сегмент системы Globalstar состоит из центров управления космическими аппаратами, центров управления связью, сети региональных наземных узловых станций сопряжения и сети обмена данными.

Станции сопряжения предназначены для организации радиодоступа пользователей системы Globalstar к центрам коммутации системы при установлении связи между пользователями системы, а также с пользователями наземных и спутниковых сетей фиксированной и подвижной связи, с операторами которых осуществляется межсетевое взаимодействие.

Станции сопряжения являются частью системы Globalstar и обеспечивают надежные телекоммуникационные услуги связи для стационарных и мобильных абонентских терминалов по всей глобальной зоне обслуживания Наземные центры управления планируют графики связи для станций сопряжения, а также контролируют выделение спутниковых ресурсов каждой станций сопряжения.

Центр управления спутниковым сегментом следит за системой спутников. Вместе со средствами резервного Центра он производит контроль орбит, обработку телеметрической информации и выдачу команд на спутниковую группировку. Спутники системы Globalstar непрерывно передают данные телеметрии, контролирующие исправность системы, а также информацию об общем состоянии спутников. Центр также отслеживает запуски спутников и процесс их развертывания в космосе. Центр управления спутниковым сегментом и наземные центры управления поддерживают между собой постоянный контакт через сеть передачи данных Globalstar.

Наземный сегмент Globalstar в России

Российский наземный сегмент системы Globalstar включает 3 станции сопряжения, расположенные под Москвой, Новосибирском и Хабаровском. Они покрывают территорию России от южной границы до 74 гр. с. ш. и от западной границы до 180 меридиана, обеспечивая гарантированное качество обслуживания южнее 70 параллели.

Российские станции сопряжения Globalstar подключаются к сети ТФОП через узлы автоматической коммутации, имеют соединительные линии с международными центрами коммутации, а также соединены между собой цифровыми трактами "каждая с каждой". Каждая станция сопряжения интегрирована с действующими стационарными и сотовыми сетями России. Станции сопряжения имеют статус междугородной станции национальной сети Российской Федерации. Российский сегмент спутниковой системы Globalstar при этом рассматривается как новая сеть связи на территории Российской Федерации.

Технология работы системы Globalstar

Спутники работают по архитектуре "согнутой трубы" (bent-pipe) - принимая сигнал абонента, несколько спутников, используя технологию CDMA, одновременно транслируют его на ближайшую наземную станцию сопряжения. Наземная станция сопряжения, выбирает наиболее сильный сигнал, авторизует его и маршрутизирует его до вызываемого абонента.

Сферы применения системы Globalstar

Система Globalstar разработана для предоставления высококачественных спутниковых услуг для широкого круга пользователей, включающих: голосовую связь, службу коротких сообщений, роуминг, позиционирование, факсимильную связь, передачу данных, мобильный Интернет.

Абонентами, пользующимися портативными и мобильными аппаратами, могут стать деловые и частные лица, работающие на территориях, которые не охвачены сотовыми сетями, либо специфика работы которых предполагает частые деловые поездки туда, где нет связи или плохое качество связи.

Система рассчитана на широкого потребителя: представители средств массовой информации, геологи, работники добычи и переработки нефти и газа, драгметаллов, инженеры-строители, энергетики.

Сотрудники государственных структур России - министерств и ведомств (например, МЧС), могут активно использовать спутниковую связь в своей деятельности. Специальные комплекты для установки на транспортных средствах могут быть эффективны при использовании на коммерческом автотранспорте, на рыболовных и других видах морских и речных судов, на железнодорожном транспорте и т. д.

Системы подвижной спутниковой связи

Особенностью большинства систем подвижной спутниковой связи является маленький размер антенны терминала, что затрудняет прием сигнала. Для того, чтобы мощность сигнала, достигающего приемника, была достаточной, применяют одно из двух решений:

Спутники располагаются на геостационарной орбите. Поскольку эта орбита удалена от Земли на расстояние 35786 км, на спутник требуется установить мощный передатчик. Этот подход используется системой Inmarsat (основной задачей которой является предоставление услуг связи морским судам) и некоторыми региональными операторами персональной спутниковой связи (например, Thuraya).

Множество спутников располагается на наклонных или полярных орбитах. При этом требуемая мощность передатчика не так высока, и стоимость вывода спутника на орбиту ниже.

Однако такой подход требует не только большого числа спутников, но и разветвленной сети наземных коммутаторов. Подобный метод используется операторами Iridium и Globalstar.

С операторами персональной спутниковой связи конкурируют операторы сотовой связи. Характерно, что как Globalstar, так и Iridium испытывали серьёзные финансовые затруднения, которые довели Iridium до реорганизационного банкротства в 1999 г.

В декабре 2006 года был запущен экспериментальный геостационарный спутник Кику-8[3] с рекордно большой площадью антенны, который предполагается использовать для отработки технологии работы спутниковой связи с мобильными устройствами, не превышающими по размерам сотовые телефоны.

Спутниковый Интернет

Спутниковый Интернет -- способ обеспечения доступа к сети Интернет с использованием технологий спутниковой связи (как правило, в стандарте DVB-S или DVB-S2).

Варианты обеспечения доступа

Существует два способа обмена данными через спутник:

* односторонний (one-way), иногда называемый также «асимметричным» -- когда для приема данных используется спутниковый канал, а для передачи -- доступные наземные каналы

* двухсторонний (two-way), иногда называемый также «симметричным» -- когда и для приема, и для передачи используются спутниковые каналы;

Односторонний спутниковый Интернет

Односторонний спутниковый Интернет подразумевает наличие у пользователя какого-то существующего способа подключения к Интернету. Как правило это медленный и/или дорогой канал (GPRS/EDGE, ADSL-подключение там, где услуги доступа в Интернет развиты плохо и ограничены по скорости и т. п.). Через этот канал передаются только запросы в Интернет. Эти запросы поступают на узел оператора одностороннего спутникового доступа (используются различные технологии VPN-подключения или проксирования трафика), а данные, полученные в ответ на эти запросы, передают пользователю через широкополосный спутниковый канал. Поскольку большинство пользователей в основном получает данные из Интернета, то такая технология позволяет получить более скоростной и более дешевый трафик, чем медленные и дорогие наземные подключения. Объем же исходящего трафика по наземному каналу (а значит и затраты на него) становится достаточно скромным (соотношение исходящий/входящий -- примерно от 1/10 при веб-серфинге, от 1/100 и лучше при загрузке файлов).

Естественно, использовать односторонний спутниковый Интернет имеет смысл тогда, когда доступные наземные каналы слишком дорогие и/или медленные. При наличии недорого и быстрого «наземного» Интернета -- спутниковый Интернет имеет смысл как резервный вариант подключения, на случай пропадания или плохой работы «наземного».

Двухсторонний спутниковый Интернет

Двухсторонний спутниковый Интернет подразумевает приём данных со спутника и отправку их обратно также через спутник. Этот способ является очень качественным, так как позволяет достигать больших скоростей при передаче и отправке, но он является достаточно дорогим и требует получения разрешения на радиопередающее оборудование (впрочем, последнее провайдер часто берет на себя). Высокая стоимость двустороннего интернета оказывается полностью оправданной за счет в первую очередь намного более надежной связи. В отличие от одностороннего доступа, двусторонний спутниковый интернет не нуждается ни в каких дополнительных ресурсах (не считая электропитания, конечно же).

Особенностью «двустороннего» спутникового доступа в Интернет является достаточная большая задержка на канале связи. Пока сигнал дойдет от абонента до спутника и от спутника до Центральной станции спутниковой связи -- пройдёт около 250 мс. Столько же нужно на путешествие обратно. Плюс неизбежные задержки сигнала на обработке и на то, чтобы пройти «по Интернету». В результате время пинга на двустороннем спутниковом канале составляет около 600 мс и более. Это накладывает некоторую специфику на работу приложений через спутниковый Интернет и особенно печально для заядлых геймеров.

Ещё одна особенность состоит в том, что оборудование различных производителей практически несовместимо друг с другом. То есть, если вы выбрали одного оператора, работающего на определенном типе оборудования (например, ViaSat, Hughes, Gilat EMS, Shiron и т. п.), то перейти вы сможете только к оператору, использующему такое же оборудование.

Попытка реализовать совместимость оборудования различных производителей (стандарт DVB-RCS) была поддержана очень небольшим количеством компаний, и на сегодня является скорее ещё одной из «частных» технологий, чем общепринятым стандартом.

Заключение

В настоящее время станции спутниковой связи объединяются в сети передачи данных. Объединение группы территориально-распределенных станций в сеть позволяет обеспечить пользователям широкий спектр услуг и возможностей, а также эффективно использовать ресурсы спутника. В таких сетях обычно имеется одна или несколько управляющих станций, которые обеспечивают работу земных станций как в обслуживаемом администратором, так и в полностью автоматическом режиме.

Преимущество спутниковой связи основано на обслуживании географически удаленных пользователей без дополнительных расходов на промежуточное хранение и коммутацию.

ССС постоянно и ревниво сравниваются с волоконно-оптическими сетями связи. Внедрение этих сетей ускоряется в связи с быстрым технологическим развитием соответствующих областей волоконной оптики, что заставляет задаться вопросом о судьбе ССС.

Например, разработка и планирование, главное, внедрение конкатенирующего (составного) кодирования резко уменьшает вероятность возникновения неисправленной побитовой ошибки, что, в свою очередь, позволяет преодолеть главную проблему ССС - туман и дождь.

Глоссарий

№ п/п

Понятие

Определение

1

интернет

глобальная телекоммуникационная сеть информационных и вычислительных ресурсов

2

корпоративная сеть

коммуникационная система, принадлежащая и/или управляемая единой организацией в соответствии с правилами этой организации

3

орбита

путь небесного тела в гравитационном поле другого тела

4

передача данных

перенос данных в виде сигналов средствами электросвязи, как правило, для последующей обработки средствами вычислительной техники

5

система Aloha

протокол множественного доступа

6

система Odyssey

предназначена для обеспечения глобальной радиотелефонной связи и предоставления других видов услуг персональной связи

7

система ICO

использует для связи L - и С-диапазоны частот, поддерживая цифровую обработку сигнала на борту спутника

8

спутник

первая серия искусственных спутников Земли

9

спутниковая связь

один из видов радиосвязи, основанный на использовании искусственных спутников земли в качестве ретрансляторов

10

ширина полосы спутникового канала

характеризует количество информации, которую он может передавать в единицу времени

Список использованных источников

Голенищев, Э. П. Информационное обеспечение систем управления / Э. П. Голенищев, И. В. Клименко. - Ростов н/Д : Феникс, 2003

Анкудинов Г.И. Сети ЭВМ и телекоммуникации. Учебное пособие.

А.В.Велихов, К.С.Строчников, Б.К.Леонтьев. Учебное пособие по администрированию локальных и объединенных сетей.

С.А.Пескова, А.В.Кузин, А.Н.Волков. Учебное пособие для студентов высших учебных заведений.

Бертсекас Д. Галлагер Р. Сети передачи данных. М.: Мир, 2000 г.

Блэк Ю. Сети ЭВМ: протоколы, стандарты, интерфейсы, М.: Мир, 2001 г.

Большова Г. "Спутниковая связь в России: "Памир", Iridium, Globalstar ..." «Сети» - 2000 - №9.

Невдяев Л. М. Современные технологии спутниковой связи // "Вестник Связи" - 2000 - № 12.

Смирнова А. А. Корпоративные системы спутниковой и КВ связи Москва, 2000 г.

Смирнова А. А. Персональная спутниковая связь, Том 64, Москва, 2001г.

Список сокращений

СDМА - многостанционный доступ с кодовым разделением каналов

FCC - Federal Communications Commission, Федеральная комиссия по связи США

FDM - Frequency Division Multiplexing, мультиплексирование с разделением частот

ICO - Intermediate Circular Orbit ICONET - ICO Network промежуточная круговая орбита (новое название системы INMARSAT-Р)

ICONET - наземная сеть ICO

IMO - международная морская организация

LEO - низкоорбитальные спутниковые системы (Low Earth Orbit)

MES - Master Earth Station

NMC - центр управления наземной сетью (Network Management Centre)

OTI - Odyssey Telecommunication International

TDM - Time Division Multiplexing, мультиплексирование с временным разделением

SAN - спутниковый узловой доступ (Satellite Access Node)

SCC - центр управления спутниковой группировкой (Satellite Control Centre)

TDMA - многостанционный доступ с временным разделением каналов

VSAT - Very small aperture terminal, терминал cо сверхмалой апертурой антенны

ССС - система спутниковой связи

КА - космический аппарат

ЗС - земная станция

ПСС - подвижная спутниковая служба

Размещено на Allbest.ru

...

Подобные документы

  • Построение радиорелейных и спутниковых линий передачи, виды применяемых модуляций. Характеристика цифровых волоконно-оптических систем передачи. Применение программно-аппаратного комплекса LabView для тестирования сигнализации сети абонентского доступа.

    дипломная работа [2,9 M], добавлен 26.06.2011

  • История развития спутниковой связи. Абонентские VSAT терминалы. Орбиты спутниковых ретрансляторов. Расчет затрат по запуску спутника и установке необходимого оборудования. Центральная управляющая станция. Глобальная спутниковая система связи Globalstar.

    курсовая работа [189,0 K], добавлен 23.03.2015

  • Общее описание системы спутникового телевизионного вещания. Качественные показатели каналов спутниковых линий. Расчет цифровой линии связи. Методы формирования и передачи сигналов телевидения и звукового вещания. Краткое описание параметров системы связи.

    курсовая работа [773,8 K], добавлен 27.01.2010

  • Передача цифровых данных по спутниковому каналу связи. Принципы построения спутниковых систем связи. Применение спутниковой ретрансляции для телевизионного вещания. Обзор системы множественного доступа. Схема цифрового тракта преобразования ТВ сигнала.

    реферат [2,7 M], добавлен 23.10.2013

  • Классификации и наземные установки спутниковых систем. Расчет высокочастотной части ИСЗ - Земля. Основные проблемы в производстве и эксплуатации систем приема спутникового телевидения. Перспективы развития систем спутникового телевизионного вещания.

    дипломная работа [280,1 K], добавлен 18.05.2016

  • Знакомство с видами деятельности ООО "Антенн-Сервис": монтаж и ввод в эксплуатацию эфирных и спутниковых антенных комплексов, проектирование телекоммуникационных сетей. Общая характеристика основных свойств и области применения спутниковых антенн.

    дипломная работа [3,4 M], добавлен 18.05.2014

  • Основы построения аналоговых радиорелейных линий. Радиорелейные линии синхронной цифровой иерархии. Принципы построения спутниковых систем связи. Многостанционный доступ с разделением по частоте и времени. Требования к видеодисплейным терминалам.

    дипломная работа [813,6 K], добавлен 17.05.2012

  • Обоснование, выбор типа модуляции. Кодирование информации. Определение необходимой полосы частот. Расчет основных параметров системы передачи информации с космического аппарата на сеть наземных станций. Выбор оптимального варианта построения радиосистемы.

    курсовая работа [522,8 K], добавлен 21.02.2016

  • Расчет основных электрических характеристик схемы питания и направленных свойств антенн, входящих в состав спутниковых систем радиосвязи, телевидения и радиорелейных линий связи. Определение коэффициента полезного действия фидера бортовой антенны.

    курсовая работа [38,9 K], добавлен 12.02.2012

  • Орбиты спутниковых ретрансляторов. Модуляция-демодуляция и помехоустойчивое кодирование. Коды Боуза-Чоудхури-Хоквингема. Наиболее широко известные сверточные коды. Протоколы множественного доступа. Проблема статистического мультиплексирования потоков.

    контрольная работа [1,8 M], добавлен 20.12.2012

  • Этапы развития различных средств связи: радио, телефонной, телевизионной, сотовой, космической, видеотелефонной связи, интернета, фототелеграфа (факса). Виды линии передачи сигналов. Устройства волоконно-оптических линий связи. Лазерная система связи.

    презентация [301,0 K], добавлен 10.02.2014

  • Характеристика современных цифровых систем передачи. Знакомство с технологией синхронной цифровой иерархии для передачи информации по оптическим кабелям связи. Изучение универсальной широкополосной пакетной транспортной сети с распределенной коммутацией.

    курсовая работа [961,6 K], добавлен 28.01.2014

  • Предназначение связи на пожаре. Характеристика и сущность структурной системы оперативной связи гарнизона пожарной охраны. Выбор основных технических средств проводной, оперативной, радиопоисковой связи. Схемы размещения средств связи во время пожара.

    контрольная работа [726,1 K], добавлен 20.02.2012

  • Развитие радиорелейной связи и спутниковых коммуникаций: проблемы и пути оптимизации. Изучение проектирования ВОЛС на производстве с учетом топографии. Выбор действенной технологии и оборудования. Проведение технических расчетов. Создание бизнес-плана.

    презентация [554,8 K], добавлен 01.03.2016

  • Общие характеристики систем радиорелейной связи. Особенности построения радиорелейных линий связи прямой видимости. Классификация радиорелейных линий. Виды модуляции, применяемые в радиорелейных системах передачи. Тропосферные радиорелейные линии.

    дипломная работа [1,1 M], добавлен 23.05.2016

  • Тенденция развития оптических сетей связи. Анализ состояния внутризоновой связи Республики Башкортостан. Принципы передачи информации по волоконно-оптическим линиям связи. Выбор оборудования, оптического кабеля, организация работ по строительству.

    дипломная работа [3,1 M], добавлен 20.10.2011

  • Изучение закономерностей и методов передачи сообщений по каналам связи и решение задачи анализа и синтеза систем связи. Проектирование тракта передачи данных между источником и получателем информации. Модель частичного описания дискретного канала.

    курсовая работа [269,2 K], добавлен 01.05.2016

  • Изучение функционирования систем связи, которые можно разделить на: радиорелейные, тропосферные, спутниковые, волоконно-оптические. Изучение истории возникновения, сфер применения систем связи. Спутниковые ретрансляторы, магистральная спутниковая связь.

    реферат [54,6 K], добавлен 09.06.2010

  • Характеристика основных функций и возможностей спутниковых радионавигационных систем - всепогодных систем космического базирования, которые позволяют определять текущие местоположения подвижных объектов. Система спутникового мониторинга автотранспорта.

    реферат [2,9 M], добавлен 15.11.2010

  • Первичная сеть, включающая линии передачи и соответствующие узлы связи, образующие магистральную, дорожную и отделенческую сеть связи как основа железнодорожной связи. Конструкция и характеристика оптических кабелей связи, особенности ее строительства.

    курсовая работа [428,0 K], добавлен 21.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.