Особенности транкинговых систем связи

Основные архитектурные принципы радиально-зоновой системы наземной подвижной радиосвязи, осуществляющей автоматическое распределение каналов связи ретрансляторов между абонентами. Структура транкинговой сети с централизованной межзональной коммутацией.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид контрольная работа
Язык русский
Дата добавления 16.11.2019
Размер файла 441,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Ташкентский университет информационных технологий имени Мухаммада аль-Хоразмий

КАФЕДРА «СИСТЕМЫ МОБИЛЬНОЙ СВЯЗИ»

САМОСТОЯТЕЛЬНАЯ РАБОТА

ПО “ СИСТЕМЫ БЕСПРОВОДНОЙ СВЯЗИ”

ТЕМА

«Особенности транкинговых систем связи»

ВЫПОЛНИЛ:

Рахматжонов А.

ТАШКЕНТ 2019

1. Архитектура транкинговых систем

Транкинговыми системами называются радиально-зоновые системы наземной подвижной радиосвязи, осуществляющие автоматическое распределение каналов связи ретрансляторов между абонентами. Это достаточно общее определение, но оно содержит совокупность признаков, объединяющих все транкинговые системы, от простейших SmarTrunk до современных TETRA. Термин "транкинг" происходит от английского Trunking, что можно перевести как "объединение в пучок".

Однозоновые системы

Основные архитектурные принципы транкинговых систем легко просматриваются на обобщенной структурной схеме однозоновойтранкинговой системы, представленной на рис. 1. Инфраструктура транкинговой системы представлена базовой станцией (БС), в состав которой, помимо радиочастотного оборудования (ретрансляторы, устройство объединения радиосигналов, антенны), входят также коммутатор, устройство управления и интерфейсы различных внешних сетей.

Ретранслятор. Ретранслятор (РТ) - набор приемопередающего оборудования, обслуживающего одну пару несущих частот. До последнего времени в подавляющем большинстве ТСС одна пара несущих означала один канал трафика (КТ). В настоящее время, с появлением систем стандарта TETRA и системы EDACS ProtoCALL, предусматривающих временное уплотнение, один РТ может обеспечить два или четыре КТ.

Антенны. Важнейший принцип построения транкинговых систем заключается в том, чтобы создавать зоны радиопокрытия настолько большими, насколько это возможно. Поэтому антенны базовой станции, как правило, размещаются на высоких мачтах или сооружениях и имеют круговую диаграмму направленности. Разумеется, при расположении базовой станции на краю зоны применяются направленные антенны. Базовая станция может располагать как единой приемопередающей антенной, так и раздельными антеннами для приема и передачи. В некоторых случаях на одной мачте могут размещаться несколько приемных антенн для борьбы с замираниями, вызванными многолучевым распространением.

Рис. 1. Структурная схема однозоновой транкинговой системы

радиосвязь абонент транкинговый коммутация

Устройство объединения радиосигналов позволяет использовать одно и то же антенное оборудование для одновременной работы приемников и передатчиков на нескольких частотных каналах. Ретрансляторы транкинговых систем работают только в дуплексном режиме, причем разнос частот приема и передачи (дуплексный разнос) в зависимости от рабочего диапазона составляет от 3 МГц до 45 МГц.

Коммутатор в однозоновой транкинговой системе обслуживает весь ее трафик, включая соединение подвижных абонентов с телефонной сетью общего пользования (ТФОП) и все вызовы, связанные с передачей данных.

Устройство управления обеспечивает взаимодействие всех узлов базовой станции. Оно также обрабатывает вызовы, осуществляет аутентификацию вызывающих абонентов (проверку "свой-чужой"), ведение очередей вызовов и внесение записей в базы данных повременной оплаты. В некоторых системах управляющее устройство регулирует максимально допустимую продолжительность соединения с телефонной сетью. Как правило, используются два варианта регулирования: уменьшение продолжительности соединений в заранее заданные часы наибольшей нагрузки, или адаптивное изменение продолжительности соединения в зависимости от текущей нагрузки.

Интерфейс ТФОП реализуется в транкинговых системах различными способами. В недорогих системах (например, SmarTrunk) подключение может производиться по двухпроводным коммутируемым линиям. Более современные ТСС имеют в составе интерфейса к ТфОП аппаратуру прямого набора номера DID (DirectInwardDialing), обеспечивающую доступ к абонентам транкинговой сети с использованием стандартной нумерации АТС. Ряд систем использует цифровое ИКМ-соединение с аппаратурой АТС.

Одной из основных проблем при регистрации и использовании транкинговых систем в России является проблема их сопряжения с ТфОП. При исходящих вызовах транкинговых абонентов в телефонную сеть сложность заключается в том, что некоторые транкинговые системы не могут набирать номер в декадном режиме по абонентским линиям в электромеханических АТС. Таким образом, необходимо использовать дополнительное устройство преобразования тонального набора в декадный.

Входящая связь от абонентов ТфОП к радиоабонентам оказывается также проблематичной но ряду причин. Большинство транкинговых сетей сопрягаются с телефонной сетью по двухпроводным абонентским линиям или линиям типа Е&М. В этом случае после набора номера ТфОП требуется донабор номера радиоабонента. Однако после полного набора номера абонентской липни и замыкания шлейфа управляющим устройством транкинговой системы телефонное соединение считается установленным, и дальнейший набор номера в импульсном режиме затруднен, а в некоторых случаях невозможен. Применяемый в системе SmarTrunk II детектор "щелчков" не гарантирует правильности импульсного донабора, так как качество приходящих из абонентской линии "импульсов-щелчков" зависит от ее электрических характеристик, длины и т.д.

Для выхода из сложившейся ситуации в лаборатории фирмы ИВП вместе со специалистами компании ELTA-R был разработан телефонный интерфейс (ТИ) ELTA 200 для сопряжения транкинговых систем связи разных типов с ТфОП. Такой интерфейс позволяет сопрягать транкинговые системы связи и ТфОП по цифровым каналам (2,048 Мбит с), трехпроводным соединительным линиям с декадным набором номера, а также по четырехпроводным каналам ТЧ с системами сигнализации различных типов при сопряжении с ведомственными телефонными сетями.

Соединение с ТфОП является традиционным для ТСС, но в последнее время все более возрастает число приложений, предполагающих ПД, в связи с чем наличие интерфейса к СКП также становится обязательным.

Терминал технического обслуживания и эксплуатации (терминал ТОЭ) располагается, как правило, на базовой станции однозоновой сети. Терминал предназначен для контроля за состоянием системы, проведения диагностики неисправностей, учета тарификационной информации, внесения изменений в базу данных абонентов. Подавляющее большинство выпускаемых и разрабатываемых транкинговых систем имеют возможность удаленного подключения терминала ТОЭ через ТФОП или СКП.

Диспетчерский пульт. Необязательными, но очень характерными элементами инфраструктуры транкинговой системы являются диспетчерские пульты. Дело в том, что транкинговые системы используются в первую очередь теми потребителями, чья работа не обходится без диспетчера. Это службы охраны правопорядка, скорая медицинская помощь, пожарная охрана, транспортные компании, муниципальные службы.

Диспетчерские пульты могут включаться в систему по абонентским радиоканалам, или подключаться по выделенным линиям непосредственно к коммутатору базовой станции. Следует отметить, что в рамках одной транкинговой системы может быть организовано несколько независимых сетей связи, каждая из которых может иметь свой диспетчерский пульт. Пользователи каждой из таких сетей не будут замечать работы соседей, и что не менее важно, не смогут вмешиваться в работу других сетей.

Абонентское оборудованиетранкинговых систем включает в себя широкий набор устройств. Как правило, наиболее многочисленными являются полудуплексные радиостанции, т.к. именно они в наибольшей степени подходят для работы в замкнутых группах. В большинстве своем это радиостанции с ограниченным числом функций, не имеющие цифровой клавиатуры. Их пользователи, как правило, имеют возможность связываться лишь с абонентами внутри своей рабочей группы, а также посылать экстренные вызовы диспетчеру. Впрочем, этого вполне достаточно для большинства потребителей услуг связи транкинговых систем. Выпускаются и полудуплексные радиостанции с широким набором функций и цифровой клавиатурой, но они, будучи несколько дороже, предназначены для более узкого привилегированного круга абонентов.

В транкинговых системах, особенно рассчитанных на коммерческое использование, применяются также дуплексные радиостанции, скорее напоминающие сотовые телефоны, но обладающие значительно большей функциональностью по сравнению с последними. Дуплексные радиостанции транкинговых систем обеспечивают пользователям полноценное соединение с ТФОП. Что же касается групповой работы в радиосети, то она производится в полудуплексном режиме. В корпоративных транкинговых сетях дуплексные радиостанции применяются в первую очередь для персонала высшего звена управления.

Как полудуплексные, так и дуплексные транкинговые радиостанции выпускаются не только в портативном, но и в автомобильном исполнении. Как правило, выходная мощность передатчиков автомобильных радиостанций в 3-5 раз выше, чем у портативных радиостанций.

Относительно новым классом устройств для транкинговых систем являются терминалы передачи данных. В аналоговых транкинговых системах терминалы передачи данных - это специализированные радиомодемы, поддерживающие соответствующий протокол радиоинтерфейса. Для цифровых систем более характерно встраивание интерфейса передачи данных в абонентские радиостанции различных классов. В состав автомобильного терминала передачи данных иногда включают и спутниковый навигационный приемник системы GPS (GlobalPositioningSystem), предназначенный для определения текущих координат и последующей передачи их диспетчеру на пульт.

В транкинговых системах используются также стационарные радиостанции, преимущественно для подключения диспетчерских пультов. Выходная мощность передатчиков стационарных радиостанций приблизительно такая же, как у автомобильных радиостанций.

Многозоновые системы

Ранние стандарты транкинговых систем не предусматривали каких-либо механизмов взаимодействия различных зон обслуживания. Между тем, требования потребителей значительно возросли, и хотя оборудование для однозоновых систем до сих пор производится и успешно продается, все вновь разрабатываемые транкинговые системы и стандарты являются многозоновыми.

Архитектура многозоновыхтранкинговых систем может строиться по двум различным принципам. В том случае, если определяющим фактором является стоимость оборудования, используется распределенная межзональная коммутация. Структура такой системы показана на рис. 2. Каждая базовая станция в такой системе имеет свое собственное подключение к ТФОП. Этого уже вполне достаточно для организации многозоновой системы - при необходимости вызова из одной зоны в другую он производится через интерфейс ТФОП, включая процедуру набора телефонного номера. Кроме того, базовые станции могут быть непосредственно соединены с помощью физических выделенных линий связи (чаще всего используются малоканальные радиорелейные линии).

Каждая БС в такой системе имеет свое собственное подключение к ТфОП. При необходимости вызова из одной зоны в другую он производится через интерфейс ТфОП, включая процедуру набора телефонного номера. Кроме того, БС могут быть непосредственно соединены с помощью физических выделенных линий связи.

Использование распределенной межзональной коммутации целесообразно лишь для систем с небольшим количеством зон и с невысокими требованиями к оперативности межзональных вызовов (особенно в случае соединения через коммутируемые каналы ТфОП). В системах с высоким качеством обслуживания используется архитектура с ЦК. Структура многозоновой ТСС с ЦК изображена на рис. 2.

Основной элемент этой схемы - межзональный коммутатор. Он обрабатывает все виды межзональных вызовов, т.е. весь межзональный трафик проходит через один коммутатор, соединенный с БС по выделенным линиям. Это обеспечивает быструю обработку вызовов, возможность подключения централизованных ДП. Информация о местонахождении абонентов системы с ЦК хранится в единственном месте, поэтому ее легче защитить. Кроме того, межзональный коммутатор осуществляет также функции централизованного интерфейса к ТфОП и СКП, что позволяет при необходимости полностью контролировать как речевой трафик ТС, так и трафик всех приложений ПД, связанный с внешними СКП, например Интернет. Таким образом, система с ЦК обладает более высокой управляемостью.

Рис. 2. Структурная схема транкинговой сети с распределенной межзональной коммутацией

Рис. 3. Структурная схема транкинговой сети с централизованной межзональной коммутацией

2. Особенности транкинговых систем связи

Трамнкинговые системмы (англ. trunking -- объединение в пучок) -- радиально-зоновые системы наземной подвижной радиосвязи, осуществляющие автоматическое распределение каналов связи ретрансляторов (базовых станций) между абонентами. Под термином «транкинг» понимается метод доступа абонентов к общему выделенному пучку каналов, при котором свободный канал выделяется абоненту на время сеанса связи.

Рисунок 4

Особенности:

· Малое время установления связи (300мс).

· Возможность группового вызова.

· Возможность работы без инфраструктуры, напрямую без базовой станции.

· Размер зоны обслуживания одной базовой станции достигает 10км.

· Повышенная защищённость каналов связи.

Пример двух способов организации сети транкинга:

Включают наземную инфраструктуру (стационарное оборудование) и абонентские станции. Основным элементом наземной инфраструктуры сети транкинговой радиосвязи является базовая станция (БС), включающая несколько ретрансляторов с соответствующим антенным оборудованием и контроллер, который управляет работой БС, коммутирует каналы ретрансляторов, обеспечивает выход на телефонную сеть общего пользования (ТфОП) или другую сеть фиксированной связи. Сеть транкинговой радиосвязи может содержать одну БС (однозоновая сеть) или несколько базовых станций (многозоновая сеть). Многозоновая сеть обычно содержит соединённый со всеми БС по выделенным линиям межзональный коммутатор, который обрабатывает все виды межзональных вызовов.

Классификация

1) По способу передачи голосовых сообщений:

· аналоговые (SmartrunkII,Smartlink, EDACS, LTR, MPT 1327)

· цифровые (EDACS, APCO 25, TETRA, Tetrapol)

2) По организации доступа к системе:

· без канала управления (Smartrunk II)

· с распределенным каналом управления (LTR, Smartlink)

· с выделенным каналом управления (MPT 1327)

3) По способу удержания канала:

· с удержанием канала на весь сеанс переговоров (Smartrunk II, MPT)

· с удержанием канала на время одной передачи (LTR, Smartlink)

4) По конфигурации радиосети:

· однозоновые системы (Smartrunk)

· многозоновые системы (MPT, LTR, Smartlink, TETRA, APCO, EDACS, tetrapol)

5) По способу организации радиоканала:

· полудуплексные (Smartrunk II, MPT 1327, LTR, Smartlink, TETRA, APCO25, TETRAPOL)

· дуплексные (TETRA, APCO25, TETRAPOL)

(ниже написано на простом языке)

Сегодня наряду с привычной сотовой связью существуют так называемые системы профессиональной мобильной радиосвязи (ПМР) (ProfessionalMobileRadio -- PMR), или транкинговой подвижной радиосвязи. Они занимают свой сектор рынка оборудования мобильной связи для корпоративных пользователей, различных ведомств и социальных служб, выполняя функции, необходимые именно этим пользователям.

Таблица 1

Чем же транкинговая связь отличается от сотовой, если, не считая разницы между пользовательским терминалом (рацией/телефоном), все устроено одинаково? Сотовая связь позиционируется как «телефон в кармане», а транкинговая предназначена для решения узкого круга профессиональных задач. Сотовая связь, к примеру, предоставляет разнообразные мультимедийные услуги, однако нефтяник, дежурящий на буровой платформе в Балтийском море, или спасатель МЧС навряд ли уповают на возможность загрузить новый альбом Мадонны. Транкинговую связь выбирают такие организации, как МЧС, охранные агентства, таксомоторные компании и др. Для рядовых же офисных работников вполне подойдет вариант «сотовый телефон + корпоративный тарифный план».

1. Симплексная связь использует одну частоту -- для приёма и передачи. Возможен только обмен репликами. По причине ограничений, которые накладывает физика, пользоваться этим, самым экономичным видом беспроводных радиокоммуникаций, получится на дистанции не более 5 км. Для устойчивого сигнала крайне желательна открытая местность. Связь осуществляется посредством пользовательских терминалов.

2. Полудуплексная связь также задействует две частоты, однако общаться придётся, как и в симплексном режиме. Базовая станция (БС) на одной частоте постоянно принимает сигналы абонентов, а затем на другой частоте транслирует то, что приняла. Рация использует для приёма частоту, на которой вещает БС, и должна содержать радиочастотный переключатель. Принцип полудуплекса лежит в основе недорогих сетей, которые связывают десятки абонентов в различных точках города и открытой местности.

3. Дуплексная связь задействует две частоты -- одну на приём, другую -- на передачу и предназначена, чтобы вести привычный диалог. Естественно, задействованы базовые станции для ретрансляции сигналов. Аналоговые системы дуплекса требуют два канала (4 радиочастоты) для соединения абонентов. Терминал оснащают габаритным дуплексным фильтром, чья роль дать приёмнику и передатчику одновременный доступ к антенне. Цифровой дуплекс реализован иначе и не требует громоздкого фильтра - в каждый момент времени аппарат абонента принимает либо передаёт. К примеру, в стандарте TETRA переключение происходит 18 раз в секунду.

Выводы

Итак, можно выделить несколько важнейших архитектурных признаков, присущих транкинговым системам.

Во-первых, это ограниченная (а значит, недорогая) инфраструктура. В многозоновых транкинговых системах она более развита, но все равно не идет ни в какое сравнение с мощью инфраструктуры сотовых сетей.

Во-вторых, это большой пространственный охват зон обслуживания базовых станций, который объясняется необходимостью поддержания групповой работы на обширных территориях и требованиями минимизации стоимости системы. В сотовых сетях, где инвестиции в инфраструктуру быстро окупаются, а трафик постоянно растет, базовые станции размещаются все более плотно, а радиус зон покрытия (сот) уменьшается. При развертывании транкинговых систем все обстоит несколько иначе - объем финансирования, как правило, ограничен, и для достижения высокой эффективности капиталовложений нужно обслужить с помощью одного комплекта оборудования базовой станции возможно более обширную территорию.

В-третьих, широкий набор абонентского оборудования позволяет транкинговым системам охватить практически весь спектр потребностей корпоративного потребителя в подвижной связи. Возможность обслуживания разнородных по функциональному назначению устройств в единой системе - это еще один путь к минимизации расходов.

В-четвертых, транкинговые системы позволяют на базе своих каналов организовать независимые выделенные сети связи (или, как принято говорить в последнее время, частные виртуальные сети). Это означает, что несколько организаций могут совместными усилиями развернуть единую систему вместо установки отдельных систем. При этом достигается ощутимая экономия радиочастотного ресурса, а также снижение стоимости инфраструктуры.

Все сказанное выше свидетельствует о прочности позиций транкинговых систем в корпоративном секторе рынка систем и средств подвижной связи.

Размещено на Allbest.ru

...

Подобные документы

  • Организация сетей радиосвязи. Частотно-территориальное планирование. Модель сотовой сети связи. Применение кластеров минимального размера. Интерференция частотных каналов в сети. Сота-ретранслятор, ее предназначение. Функции одночастотных ретрансляторов.

    презентация [1,5 M], добавлен 16.03.2014

  • Определение числа радиочастотных каналов при одной зоне обслуживания без выхода на автоматическую телефонную станцию. Структурная схема однозоновой, многозоновой транкинговых систем. Расчет помех, дальности радиосвязи в пункте размещения базовой станции.

    курсовая работа [492,4 K], добавлен 05.08.2011

  • Понятие и значение, принципы построения транкинговых систем, их общая структурная схема и используемое оборудование: ретранслятор, антенна и устройство объединения радиосигналов. Многоголовая система с централизованной коммутацией, ее структура.

    презентация [160,9 K], добавлен 03.03.2014

  • Освоение космоса, космические исследования. Технические характеристики ракетно-космических систем. Полеты человека в космос и проблема дальней радиосвязи. Использование искусственных спутников Земли как ретрансляторов в системах наземной связи.

    курсовая работа [333,4 K], добавлен 14.12.2012

  • Перспективы мобильности беспроводных сетей связи. Диапазон частот радиосвязи. Возможности и ограничения телевизионных каналов. Расчет принимаемого антенной сигнала. Многоканальные системы радиосвязи. Структурные схемы радиопередатчика и приемника.

    презентация [2,9 M], добавлен 20.10.2014

  • Главные особенности систем транкинговой радиосвязи. Организация связи в системе SmarTrunk II: состав, база данных, перспективы развития, основные преимущества. Основные функции, использованные в программе. Даталогическая и инфологическая модель.

    курсовая работа [41,2 K], добавлен 08.02.2012

  • Транкинговые системы со сканирующим поиском свободного канала и с выделенным каналом управления. Сущность процесса установления соединения. Перспективы развития цифровых транкинговых систем. Пропускная способность системы с общедоступным пучком каналов.

    презентация [771,3 K], добавлен 16.03.2014

  • Принципы построения систем сотовой связи, структура многосотовой системы. Элементы сети подвижной связи и блок-схема базовой станции. Принцип работы центра коммутации. Классификация интерфейсов в системах стандарта GSM. Методы множественного доступа.

    реферат [182,3 K], добавлен 16.10.2011

  • Структура Кандыагашской дистанции сигнализации и связи. Необходимость перехода на цифровые стандарты радиосвязи. Проектирование и строительство системы TETRA на участке железной дороги Кандыагаш-Никельтау. Функции и технические характеристики стандарта.

    дипломная работа [1,9 M], добавлен 16.04.2014

  • Распространение цифровых стандартов в области сотовых сетей подвижной радиосвязи. Максимальное число обслуживаемых абонентов как основная характеристика системы подвижной радиосвязи. Достоинствами транкинговых сетей. Европейский проект стандарта W-CDMA.

    контрольная работа [26,3 K], добавлен 18.09.2010

  • Обмен речевой, факсимильной и цифровой информацией между абонентскими системами. Общие принципы построения сетей стандарта GSM. Принципы построения наземной радиосети. Основные модели предсказания мощности сигнала. Модель для квазигладкой местности.

    контрольная работа [732,9 K], добавлен 15.09.2015

  • Расчет интенсивности нагрузки от абонентов фрагмента ГТС с коммутацией каналов. Распределение номерной ёмкости, числа соединительных линий на направлениях межстанционной связи. Транспортный ресурс для передачи сообщений SIGTRAN. Число плат для MSAN1.

    курсовая работа [3,7 M], добавлен 25.12.2014

  • Анализ услуг транкинговой сети связи Tetra, определение интенсивности нагрузки от базовых станций Новосибирска. Сущность стационарного оборудования Motorola CTS200. Особенности диспетчерских стационарных радиостанций DT-410 и Motorola MTM800 Enhanced.

    контрольная работа [2,1 M], добавлен 24.05.2012

  • Принципы построения сельских сетей связи. Характеристика Пружанского района. Автоматизация процессов управления на проектируемой сети связи, базы данных сельских сетей связи. Экономический расчет эффективности сети, определение эксплуатационных затрат.

    курсовая работа [1,6 M], добавлен 06.01.2014

  • Структура протокола TCP/IP. Взаимодействие систем коммутации каналов и пакетов. Характеристика сети с коммутацией пакетов. Услуги, предоставляемые ОАО "МГТС" с использованием сети с пакетной коммутацией. Расчет эффективности внедрения проектируемой сети.

    дипломная работа [2,3 M], добавлен 22.05.2012

  • Использование для построения модели сети сухопутной подвижной связи технологии IMT Advanced, которая относится к четвертому поколению мобильной связи. Расчет частотно-территориального планирования, построение модели блока системы подвижной связи.

    курсовая работа [871,7 K], добавлен 16.02.2013

  • Анализ оснащенности участка проектирования системами связи. Требования к стандартам радиосвязи. Преимущества GSM-R, принципы построения, организация каналов доступа, особенности базовой структуры. Энергетический расчет проектируемой системы радиосвязи.

    дипломная работа [4,5 M], добавлен 24.06.2011

  • Назначение и виды станционной радиосвязи. Условия обеспечения необходимой дальности связи между стационарной радиостанцией и локомотивом. Определение дальности действия радиосвязи и высоты антенны. Определение территориального и частотного разносов.

    курсовая работа [140,0 K], добавлен 16.12.2012

  • Обмен радиовещательных и телевизионных программ. Размещение наземных ретрансляторов. Идея размещения ретранслятора на космическом аппарате. Особенности системы спутниковой связи (ССС), ее преимущества и ограничения. Космический и наземный сегменты.

    реферат [29,1 K], добавлен 29.12.2010

  • Системы связи как наиболее распространенный вариант радиоэлектронных систем передачи информации, их классификация и типы, принципы функционирования и структура, управление. УКВ- и СВЧ-системы радиосвязи: сравнительное описание, условия применения.

    реферат [697,0 K], добавлен 21.08.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.