Узел дроссельной заслонки

Виды узла дроссельной заслонки: карбюраторная, с механическим и электронным приводом. Чистка и демонтаж дроссельного узла. Использование шагового мотора для стабилизации оборотов холостого хода двигателя. Схема регулировки подачи воздуха шагового мотора.

Рубрика Транспорт
Вид курсовая работа
Язык русский
Дата добавления 15.10.2013
Размер файла 1,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

4

Содержание

узел дроссельный заслонка мотор

1. Узел дроссельной заслонки

2. Неисправности узла

3. Шаговый мотор (регулятор ХХ)

4. Датчик положения дроссельной заслонки

4.1 Устройство ДПДЗ

4.2 Неисправности ДПДЗ

5. Виды узла дроссельной заслонки

5.1 Дроссельная заслонка с механическим приводом

5.2 Дроссельная заслонка с электронным приводом

5.3 Карбюраторная дроссельная заслонка

6. Чистка дроссельного узла

7. Демонтаж дроссельного узла

Список используемой литературы

1. Узел дроссельной заслонки

Рис. 1

На первый взгляд, узел дроссельной заслонки (Рис. 1) представляет собой несложное механическое устройство. Дроссельный узел закреплен на ресивере двигателя. Он дозирует количество воздуха, поступающего во впускную трубу. Поступлением воздуха в двигатель управляет дроссельная заслонка, соединенная с приводом педали акселератора.

Дроссельная заслонка является конструктивным элементом впускной системы бензиновых двигателей внутреннего сгорания с впрыском топлива и предназначена для регулирования количества воздуха, поступающего в двигатель для образования топливно-воздушной смеси, по своей сути дроссельная заслонка является воздушным клапаном. При открытой заслонке давление во впускной системе соответствует атмосферному давлению, при закрытии - уменьшается до состояния вакуума. Это свойство дроссельной заслонки используется в работе вакуумного усилителя тормозов, для продувки адсорбера системы улавливания паров бензина.

Устанавливается дроссельная заслонка между воздушным фильтром и впускным коллектором. На нем располагается датчик положения дроссельной заслонки и шаговый мотор (регулятор ХХ). В комплексе этот узел должен соответствовать строгим техническим условиям. Отклонение характеристик узла дроссельной заслонки от этих ТУ существенно влияет на поведение двигателя в переходных режимах: разгон, торможение, движение накатом, работа на режиме холостого хода, запуск двигателя. Исправность датчика положения дроссельной заслонки и шагового двигателя не гарантируют правильную работу системы при некачественном исполнении механики и конструкции дроссельной заслонки.

Узел дроссельной заслонки является в системе устройством, через которое водитель задает требуемую скорость движения автомобиля. Нажимая на педаль дроссельной заслонки (газа), он изменяет пропускную способность впускного коллектора для подачи воздуха в двигатель.

Вторая задача дроссельного узла заключается в поддержании байпасного канала (канал ХХ) в таком режиме, чтобы при отказе водителя от управления дросселем (выключение КПП, торможение, движение накатом - во всех этих случаях дроссельная заслонка закрыта) этот канал обеспечивал необходимое наполнение двигателя воздухом для поддержания заданных системой оборотов вращения коленчатого вала. Этот режим реализуется с помощью шагового мотора, установленного в узле дроссельной заслонки. Узел дроссельной заслонки является одним из исполнительных механизмов системы впрыска.

Корпус дроссельной заслонки включает в себя механический привод дроссельной заслонки, штуцеры для подключения шлангов системы подогрева КДЗ, штуцер для подключения шланга системы вентиляции картера двигателя на ХХ (холостом ходу), штуцер для подключения шланга системы продувки адсорбера (при отсутствии в системе адсорбера на данный штуцер установлена заглушка),

Для более качественного смесеобразования в корпусе дроссельной заслонки предусмотрен подогрев. Данный канал связан с системой охлаждения двигателя. Во время работы двигателя охлаждающая жидкость циркулирует через корпус дроссельной заслонки и после прогрева двигателя обеспечивает подогрев КДЗ. При прохождении через корпус дроссельной заслонки подогревается и всасываемый двигателем воздух. В процессе эксплуатации автомобиля необходимо следить за состоянием шлангов, т.к. в некоторых местах они подвержены перетиранию из-за соприкосновения с другими элементами двигателя. Также имеется шланг соединяющий канал корпуса дроссельной заслонки для отвода картерных газов двигателя с головкой блока цилиндров. Данный канал обеспечивает подачу газов из картера двигателя в задроссельное пространство. Далее по впускному тракту картерные газы смешиваются с воздухом и попадают вместе с ним в камеры сгорания двигателя. Таким образом производится отвод картерных газов из двигателя на ХХ (холостом ходу). Соответственно неисправности двигателя или маслоотделителя могут привести к повышению содержания СО в выхлопных газах.

Если на автомобиле устанавливается адсорбер, для его продувки в корпусе дроссельной заслонки предусмотрен канал подачи паров топлива в задроссельное пространство через канал дополнительной подачи воздуха регулятора холостого хода (РХХ). Как и воздух через РХХ, пары топлива из адсорбера попадают во впускной тракт в обход дроссельной заслонки. Соответственно при неисправности клапана продувки адсорбера (КПА) на некоторых режимах работы двигателя топливная смесь может быть недостаточно обогащенной, что может отразиться на работе двигателя. При исправной работе всех элементов в каких-либо настройках корпус дроссельной заслонки, как правило, не нуждается. Однако, в данной конструкции, на мой взгляд, есть досадный недостаток. Дело в том, что хотя в корпусе дроссельной заслонки и есть отдельный канал для минимальной подачи воздуха, он не используется и заглушен. Таким образом, если происходит ситуация, когда дроссельная заслонка закрыта, а РХХ по каким-либо причинам (например неисправен) не обеспечил подачу воздуха в обход дроссельной заслонки, двигатель просто заглохнет (т.к. нет расхода воздуха, не будет и подачи топлива). Такая ситуация возможна и по ряду других причин. Тем не менее добраться до места стоянки автомобиля или автосервиса можно и без особых проблем, если соответственно настроить начальное положение дроссельной заслонки. На корпусе дроссельной заслонки есть винт для этой регулировки. С помощью этого винта нужно попытаться настроить минимальные обороты холостого хода (обычно ~600-650 об/мин.).

Но следует помнить, что приоткрытая дроссельная заслонка неминуемо сместит начальное положение ДПДЗ (датчика положения дроссельной заслонки). В связи с этим потребуется и регулировка начального положения ДПДЗ. Регулировку минимальных оборотов холостого хода следует производить на прогретом до рабочей температуры двигателе и при выключенных потребителях мощности двигателя.

2. Неисправности узла

Некачественное исполнение узла дроссельной заслонки (несоответствие ТУ), как правило, вызывает следующие неисправности в работе:

1. Медленное снижение оборотов двигателя после закрытия дроссельной заслонки.

2. Двигатель глохнет при резком снижении нагрузки (выключение КПП, движение накатом). Затрудненный пуск горячего двигателя с закрытым дросселем.

После замены неисправного узла дроссельной заслонки на исправный водитель, как правило, субъективно ощущает резкий прирост динамики при разгоне автомобиля. Перечисленные неисправности могут быть вызваны и другими причинами, например, сбоями в системе зажигания, топливоподачи, неисправностью датчика расхода воздуха. Но эти неисправности, если они есть, проявляются и на других режимах работы двигателя.

Помимо этого описанные недостатки в работе двигателя могут быть вызваны загрязнением полостей узла или повреждением элементов уплотнения. При данных неисправностях сначала попробуйте отрегулировать привод дроссельной заслонки или замените трос. Если это не приведет к положительному результату, промойте или отремонтируйте дроссельный узел, а если принятые меры будут безуспешными, замените узел.

3. Шаговый мотор (регулятор ХХ)

Рис. 2

Регулятор холостого хода (Рис.2) является устройством, которое необходимо в системе для стабилизации оборотов холостого хода двигателя. Представляет из себя шаговый электродвигатель с подпружиненной конусной иглой. Шаговый мотор установлен в байпасном канале узла дроссельной заслонки.

Положение вала шагового мотора определяет проходное сечение байпасного канала, необходимое для устойчивой работы двигателя при закрытой дроссельной заслонке.

В системе управления шаговый мотор выполняет несколько основных функций:

Прогрев двигателя после запуска. Система определяет тепловое состояние двигателя по датчику температуры охлаждающей жидкости и автоматически устанавливает обороты холостого хода (минимальные обороты при закрытой дроссельной заслонке). С помощью шагового мотора в этом случае задается такое сечение байпасного канала, при котором двигатель способен поддерживать эти обороты.

При открытии дроссельной заслонки весь воздух в двигатель поступает через сечение дроссельной заслонки, а байпасный канал должен быть подготовлен к резкому закрытию дросселя и сбросу нагрузки (отключение КПП). Система отслеживает с помощью шагового мотора такое сечение байпасного канала (в зависимости от оборотов двигателя, скорости автомобиля и положения дроссельной заслонки) при котором в случае сброса нагрузки должно быть обеспечено плавное снижение оборотов коленчатого вала до заданных оборотов холостого хода.

Третьей функцией шагового мотора является компенсация контролируемой блоком управления нагрузки (включение/выключение вентилятора, кондиционера и т.д.). В режиме холостого хода система корректирует положение шагового мотора до включения/выключения нагрузки. Тем самым компенсируется мощность, подключаемой этой нагрузки (компенсирует провал оборотов в режиме холостого хода).

Шаговый мотор и называют регулятором холостого хода, но он выполняет лишь перечисленные функции. Заданные обороты холостого хода в пределах ±50 об/мин поддерживаются в основном быстрым контуром управления - регулятором по углу опережения зажигания. Раскачка оборотов в режиме холостого хода зависит именно от этого контура и влияния возмущений в системе топливоподачи. Шаговый мотор определяет медленную составляющую в регулировании, отслеживая режимные переходы системы управления.

Рис. 3

Во время работы двигателя на холостом ходу, за счет изменения проходного сечения дополнительного канала подачи воздуха в обход закрытой заслонки дросселя (Рис.3), в двигатель поступает, необходимое для его стабильной работы, количество воздуха. Этот воздух учитывается датчиком массового расхода воздуха (ДМРВ) и, в соответствии с его количеством, контроллер осуществляет подачу топлива в двигатель через топливные форсунки. По датчику положения коленчатого вала (ДПКВ) контроллер отслеживает количество оборотов двигателя и в соответствии с режимом работы двигателя управляет РХХ, таким образом добавляя или снижая по дачу воздуха в обход закрытой дроссельной заслонки.

На прогретом до рабочей температуры двигателе, контроллер поддерживает обороты холостого хода. Если же двигатель не прогрет, контроллер за счет РХХ увеличивает обороты и, таким образом, обеспечивает прогрев двигателя на повышенных оборотах коленвала. Данный режим работы двигателя позволяет начинать движение автомобиля сразу и не прогревая двигатель.

Регулятор холостого хода установлен на корпусе дроссельной заслонки. и крепится к нему двумя винтами. К сожалению, на некоторых автомобилях головки этих крепежных винтов могут быть рассверлены или винты посажены на лак, что может значительно усложнить демонтаж для его замены или прочистки воздушного канала.

В таких случаях редко удается обойтись без демонтажа всего корпуса дроссельной заслонки. РХХ является исполнительным устройством и его самодиагностика в системе не предусмотрена. Поэтому при неисправностях регулятора холостого хода лампа "CHECK ENGINE" не загорается. Симптомы неисправностей РХХ во многом схожи с неисправностями ДПДЗ (датчика положения дроссельной заслонки), но во втором случае чаще всего на неисправность ДПДЗ явно указывает лампа "CHECK ENGINE".

К неисправностям регулятора холостого хода можно отнести следующие симптомы:

· неустойчивые обороты двигателя на холостом ходу,

· самопроизвольное повышение или снижение оборотов двигателя,

· остановка работы двигателя при выключении передачи,

· отсутствие повышенных оборотов при запуске холодного двигателя,

· снижение оборотов холостого хода двигателя при включении нагрузки (фары, печка и т.д.).

4. Еще одним датчиком дроссельного узла является Датчик положения дроссельной заслонки

Рис.4

ДПДЗ -- устройство, предназначенное для преобразования углового положения дроссельной заслонки в напряжение постоянного тока. Является одним из датчиков электронных систем управления двигателем автомобиля с впрыском топлива.

По сигналу ДПДЗ контроллер определяет текущее положение дроссельной заслонки, а по скорости изменения сигнала отслеживается динамика нажатия педали акселератора, что в свою очередь является определяющим фактором для включения режимов кикдауна или активации подачи воздуха в обход дроссельной заслонки через клапан холостого хода. По сигналу ДПДЗ контроллер отслеживает угол отклонения дроссельной заслонки. В режиме запуска двигателя контроллер отслеживает угол отклонения дроссельной заслонки и, если заслонка открыта более чем на 75%, переходит на режим продувки двигателя. По сигналу ДПДЗ о крайнем положении дроссельной заслонки - в закрытом состоянии (<0.7V), контроллер начинает управлять регулятором холостого хода (РХХ) и, таким образом, осуществляет дополнительную подачу воздуха в двигатель в обход закрытой дроссельной заслонки.

4.1 Устройство ДПДЗ

Ось вращения токосъёмника, совмещена с дроссельной заслонкой. При нажатии на педаль акселератора происходит открытие дроссельной заслонки и перемещение токосъёмника по поверхности резистивного элемента, вместе с тем меняется электрическое сопротивление потенциометра.

Установлен сбоку на дроссельном патрубке и связан с осью дроссельной заслонки. Датчик представляет собой потенциометр (Рис.5)

Рис.5

на один конец, которого подаётся плюс напряжения питания (5 В), а другой конец соединен с массой. С третьего вывода потенциометра (от ползунка) идёт выходной сигнал к контроллеру. Когда дроссельная заслонка поворачивается (от воздействия на педаль управления), изменяется напряжение на выходе датчика.

При закрытой дроссельной заслонки оно ниже 0.7 В. Когда заслонка открывается, напряжение на выходе датчика растёт и при полностью открытой заслонки должно быть более 4 В. Отслеживая выходное напряжение датчика контроллер корректирует подачу топлива в зависимости от угла открытия дроссельной заслонки (т.е. по желанию водителя). Датчик положения дроссельной заслонки не требует никакой регулировки, т.к. контроллер воспринимает холостой ход (т.е. полное закрытие дроссельной заслонки) как нулевую отметку.

Самый ненадёжный элемент в системе, если он отечественный.. Датчик крайне тяжело менять без специального качественного инструмента. Дело в том, что нижний винт крепления неудобно отворачивать обычной отвёрткой, да ещё при закручивании на заводе винты смазывают герметиком, который так их прихватывает, что при отворачивании нередко срывает шляпку винта. Нередко для замены датчика мы снимаем весь дроссельный узел в сборе. В худшем варианте приходится просто выламывать датчик, но только в том случае если мы уверены что это 100% неисправный датчик.

Разумеется, предпочтительнее ставить импортный датчик дроссельной заслонки, хоть он и дороже в 3 раза. Он практически "не убиваемый".

Нужно понимать, что система пользуется показаниями датчика положения дросселя не только для определения режима работы (холостой ход, мощностной режим, продувка двигателя при запуске, работа в резервных режимах), но и проводит коррекцию подачи топлива в двигатель в зависимости от скорости изменения положения дроссельной заслонки (в аналогии с карбюратором - ускорительный насос).

Ресурсу работы датчиков российских производителей оставляет желать лучшего.

Стирание резистивного слоя на внутренних контактах датчика может приводить к ряду сбоев в работе системы. Переход на бесконтактный датчик поможет выправить ситуацию. Как правило, показания датчика нарушаются в положениях, где он чаще всего и работает. Это нулевое (или близкое к нему ) положение дроссельной заслонки.

Рис.6 Схема ДПДЗ.

4.2 Неисправности датчика положения дроссельной заслонки

Неисправность датчика положения дроссельной заслонки достаточно хорошо определяется системой самодиагностики блока управления. При плохом датчике загорается лампа "Проверь двигатель" CHECK ENGINE. и в память блока заносится соответствующий код неисправности. Когда появляется такой код неисправности, а вы не заметили сбоев в работе системы, проверьте крепление датчика и его разъем. И будьте готовы к замене датчика через некоторое время. Если при наличии перечисленных неисправностей система самодиагностики не выдает кода неисправности по датчику дроссельной заслонки, не торопитесь его менять.

К типичным неисправностям цепи и датчика положения дроссельной заслонки можно отнести следующие симптомы:

· затрудненный запуск двигателя;

· неравномерные обороты двигателя на холостом ходу;

· большие обороты холостого хода;

· перебои при разгоне;

· повышенный расход топлива;

· остановка двигателя при резком сбросе педали акселератора;

· ограничение максимальной мощности двигателя.

5. Виды узла дроссельной заслонки

Дроссельная заслонка может иметь следующие виды привода:

· механический привод;

· электрический привод с электронным управлением.

5.1 Дроссельная заслонка с механическим приводом

Рис. 7

1.патрубок подвода охлаждающей жидкости;

2.патрубок системы вентиляции картера;

3.патрубок отвода охлаждающей жидкости;

4.датчик положения дроссельной заслонки;

5.регулятор холостого хода;

6.патрубок системы улавливания паров бензина;

7.дроссельная заслонка.

Механический привод дроссельной заслонки в настоящее время применяется на большинстве бюджетных машин. Привод предполагает связь педали газа и дроссельной заслонки с помощью металлического троса.

Элементы дроссельной заслонки объединены в отдельный блок, который включает корпус, дроссельную заслонку на валу, датчик положения дроссельной заслонки, регулятор холостого хода. Корпус дроссельной заслонки включен в систему охлаждения двигателя. В нем также выполнены патрубки, обеспечивающие работу системы вентиляции картера и системы улавливания паров бензина. Регулятор холостого хода поддерживает заданную частоту вращения коленчатого вала двигателя при закрытой дроссельной заслонке во время пуска, прогрева и при изменении нагрузки во время включения дополнительного оборудования. Он состоит из шагового электродвигателя и соединенного с ним клапана, которые изменяют количество воздуха, поступающего во впускную систему в обход дроссельной заслонки.

5.2 Дроссельная заслонка с электрическим приводом

Рис. 8

1.корпус;

2.электродвигатель;

3.двухступенчатый цилиндрический редуктор;

4.пружинный возвратный механизм;

5.датчик положения дроссельной заслонки;

6.вал дроссельной заслонки;

7.дроссельная заслонка.

На современных автомобилях механический привод дроссельной заслонки заменен на электрический привод с электронным управлением, что позволяет достичь оптимальной величины крутящего момента на всех режимах работы двигателя. При этом обеспечивается снижение расхода топлива, выполнение экологических требований, безопасность движения.

Отличительными особенностями дроссельной заслонки с электрическим приводом являются:

· отсутствие механической связи между педалью газа и дроссельной заслонкой;

· регулирование холостого хода путем перемещения дроссельной заслонки.

Так как между педалью газа и дроссельной заслонкой нет жесткой связи, используется электронная система управления дроссельной заслонкой. Электроника в управлении дроссельной заслонкой позволяет влиять на величину крутящего момента двигателя, даже если водитель не воздействует на педаль газа. Система включает входные датчики, блок управления двигателем и исполнительное устройство.

Помимо датчика положения дроссельной заслонки в системе управления используются:

· датчик положения педали газа;

· выключатель положения педали сцепления;

· выключатель положения педали тормоза.

В работе системы управления дроссельной заслонкой также используются сигналы от автоматической коробки передач, тормозной системы, климатической установки, круиз-контроля.

Блок управления двигателем воспринимает сигналы от датчиков и преобразует их в управляющие воздействия на модуль дроссельной заслонки.

Модуль дроссельной заслонки состоит из корпуса, собственно дроссельной заслонки, электродвигателя, редуктора, возвратного пружинного механизма и датчиков положения дроссельной заслонки.

Для повышения надежности в модуле устанавливается два датчика положения дроссельной заслонки. В качестве датчиков используются потенциометры со скользящим контактом или бесконтактные магниторезистивные датчики. Графики изменения выходных сигналов датчиков направлены навстречу друг другу, что позволяет их различать блоку управления двигателем.

В конструкции модуля предусмотрено аварийное положение дроссельной заслонки при неисправности привода, которое осуществляется с помощью возвратного пружинного механизма. Неисправный модуль дроссельной заслонки заменяется в сборе.

5.3 Карбюраторная дроссельная заслонка

Одним из видов дросселя является карбюраторная дроссельная заслонка, регулирующая поступление воздуха в цилиндры двигателя внутреннего сгорания. Рабочий орган представляет собой пластину, закрепленную на вращающейся оси, помещенную в трубу, в которой протекает регулируемая среда. В просторечии всегда именовалась "газ". В автомобилях управление дросселем производится с места водителя, причём в некоторых случаях (как правило, в автомобилях с карбюраторным двигателем) предусматривается двойная система привода: от руки рычажком или кнопкой (обычно именуется "ручной газ") и от ноги педалью (собственно, "педаль газа"). Их обычно (например, в ГАЗ-21) связывают между собой так, что при нажатии водителем на педаль кнопка ручного управления остаётся неподвижной, а при вытягивании кнопки ручного управления педаль опускается. Дальнейшее открывание дросселя можно производить педалью. При отпускании педали дроссель остаётся в положении, установленном ручным управлением, если таковое имеется. При закрывании воздушной заслонки карбюратора (обычно именуется "подсос", пользуются при запуске холодного двигателя) дроссельная заслонка приоткрывается.

При использовании системы электронного впрыска управление дросселем на холостых оборотах осуществляет шаговый электромотор либо подача воздуха производится клапаном холостого хода (КХХ), поэтому на современных автомобилях рычаг или кнопку "подсоса" можно встретить крайне редко. Для увеличения подачи воздуха в непрогретый бензиновый двигатель также может применяться т. н. "прогревочный" клапан.

Дроссельная заслонка также может применяться на дизельных моторах с электронным управлением впрыска топлива.

6. Чистка узла дроссельной заслонки

Педаль газа связана с механическим приводом дроссельной заслонки через тросик газа. Механический привод дроссельной заслонки жестко закреплен с дроссельной заслонкой таким образом, что при воздействии на него механический привод передает вращательное движение на саму заслонку, открывая или закрывая ее, в зависимости от степени натяжения тросика (силы нажатия на педаль газа).

Механическая дроссельная заслонка одна из тех деталей в автомобиле, которая не требует к себе много внимания. Без прямого нанесения вреда дроссельная заслонка способна прослужить весь срок эксплуатации автомобиля. Тем не менее, в процессе эксплуатации автомобиля дроссельная заслонка имеет свойство загрязняться. Проявляется это в темных масляных отложениях на стенках корпуса дроссельной заслонки, на самой заслонке, а также во внутренних воздушных каналах заслонки.

Причин образования загрязнений несколько, но самая основная - масляная пыль, которая проникает из под клапанной крышки через трубку вентиляции картерных газов.

Картерные газы - что это? При работе двигателя в моторное масло и, в конечном итоге, в масляный картер всегда поступает некоторое количество газов из камер сгорания (цилиндров). Во-первых, это часть топливно-воздушной смеси, которая просачивается в масло из цилиндра на такте сжатия, в процессе скольжения цилиндра по стенкам цилиндра. Во-вторых, отработанные газы, которые также просачиваются из цилиндра, но уже на такте расширения. У двигателей с большим пробегом преобладают последние.

Все это, конечно, неблагоприятно воздействует на моторное масло. К примеру, пары бензина, попадая в масло, разжижают его и ухудшают его смазывающие свойства. А имеющиеся в составе отработавших газов пары воды, конденсируясь в масляном картере, способствуют вспениванию масла и приводят к образованию густых и липких сгустков. Кроме двух зол, существует и третье - масляный туман.

Насыщение моторного масла картерными газами и их накапливание в масляной системе кроме снижения эффективности смазочных свойств способствует повышению давления в системе, что рано или поздно приводит к выдавливанию моторного масла через различные резиновые уплотнения (сальники, прокладки, щуп). Поэтому, существует острая необходимость отвода этих газов за пределы двигателя. Этим занимается система вентиляции картерных газов, задача которой передавать картерные газы с двигателя в воздушную систему, непосредственно перед дроссельной заслонкой. Почему в воздушную систему, а не в атмосферу? Ответ прост - чтобы не загрязнять окружающую среду.

Речь о картерных газах зашла не зря. Если картерные газы лишенные кислорода, попадая в дроссель и смешиваясь с воздухом просто ухудшают топливно-воздушную смесь, то масляная пыль, которая сопровождает движение картерных газов в воздушную систему, смешиваясь с грязной сущностью вышеупомянутых газов способна изрядно испачкать дроссель.

Именно, поэтому "дроссель" периодически нуждается в очистке. Чтобы понять, есть ли необходимость в очистке именно в вашем случае рассмотрим самые популярные симптомы грязной дроссельной заслонки:

· неустойчивый запуск двигателя автомобиля;

· плавают обороты холостого хода;

· автомобиль дёргает на скорости ниже 15 км/час;

· провал в районе холостого хода.

Природу и симптомы загрязнений дроссельной заслонки мы выяснили, осталось приступить к делу и первое, что мы должны сделать - демонтировать дроссельную заслонку с автомобиля. Эта процедура на столько простая что ее можно описать несколькими абзацами.

В отличие от промывки форсунок для чистки дроссельной заслонки не требуется никаких дополнительных приспособлений. Из необходимых материалов потребуется лишь аэрозоль с очистительной жидкостью и несколько кусков ветоши.

Перед непосредственной чисткой снимите все резиновые уплотнители (прокладка MAP-сенсора, например) с блок а дроссельной заслонки, чтобы предостеречь их от агрессивного воздействия очистительной жидкости.

Процесс чистки заключается в направлении аэрозольной струи на очищаемые поверхности блока дроссельной заслонки. Очищать необходимо непосредственно саму заслонку, внутреннюю стенку блока дроссельной заслонки, воздушные каналы. Поливать жидкостью внешний корпус дросселя не имеет смысла. Кроме того, есть вероятность (хоть и минимальная) повредить датчик TPS, который мы не сняли. Жидкость очень едкая и очень агрессивно воздействует на резиновые и пластиковые материалы.

Чистку проводим в несколько этапов. Обильно поливаем жидкостью все очищаемые элементы и ждем 10-15 минут, чтобы грязь "отмокла". На втором этапе делаем тоже самое, аккуратно помогая ветошью в тех местах, где жидкость в одиночку справилась не идеально.

Запрещается использовать чистящую жидкость, содержащую метилэтилкетон. Это сильный растворитель, который не подходит для этого типа загрязнений.

Металлические детали дроссельного патрубка можно очистить после разборки погружением в холодную чистящую жидкость.

Для исключения повреждений не допускается попадание на датчик положения дроссельной заслонки и регулятор холостого хода растворителей или чистящих жидкостей.

При очистке поверхностей от остатков прокладок соблюдать осторожность, не допуская повреждения уплотняющих поверхностей.

Не стоит применять для очистки различные щетки. Есть вероятность что внутренняя стенка блока дроссельной заслонки покрыта специальным покрытием (молибден) для более гладкого протекания воздуха, которое щетка с помощью жидкости бесцеремонно удалит. Щетка также легко удалит уплотнительное черное покрытие по контуру самой дроссельной заслонки.

7. Демонтаж дроссельной заслонки

Прежде всего освобождаем корпус дросселя от воздушной гофры и отсоединяем электропроводку с датчика положения дроссельной заслонки (TPS) и с датчика абсолютного давления (МАР) - их месторасположение можно изучить на вышерасположенном изображении. Отсоединяем тросик газа от механического привода дроссельной заслонки - для этого просто выталкиваем "грузик" тросика газа со своего посадочного места в механическом приводе.

Отсоединяем шланги подвода охлаждающей жидкости (входной и выходной). Желательно эту процедуру выполнять на "холодную", когда давление и температура в охлаждающей системе невысокие, чтобы избежать ожогов и минимизировать потери охлаждающей жидкости, которая неизбежно вытечет из шлангов. После снятия шлангов убедитесь в том, что утечка охлаждающей жидкости прекратилась.

После того, как корпус дроссельной заслонки освободили от проводов и шлангов приступаем к ее непосредственному демонтажу. Дроссельная заслонка крепится, двумя болтами либо двумя гайками. Отпускаем крепежные болты с гайками и отделяем корпус дроссельной заслонки от впускного коллектора.

Если в активе нет новой прокладки дроссельной заслонки, то будьте предельно осторожны перед отделением дросселя от впускного коллектора - бумажная прокладка между ними могла прикипеть к горячему выпускному коллектору и при резком отсоединении корпуса дросселя есть вероятность ее повредить. Негерметичность соединения дроссельной заслонки к выпускному коллектору приводит к подсосу воздуха, неучтенного воздуха, которого не увидит ни один из датчиков. Конечно, в этом случае двигатель начинает работать нестабильно, т.к. смесь становится бедной - воздуха больше.

После снятия прокладки убедитесь, что на прилегающих поверхностях впускного коллектора и блока дроссельной заслонки не осталось кусочков порванной прокладки либо использованного герметика. Поверхности должны быть чистыми, чтобы обеспечить плотное прилегание поверхностей и исключение подсоса воздуха.

Из "навесных дополнений" откручиваем с корпуса дроссельной заслонки датчик положения дроссельной заслонки (TPS) и регулятор холостого хода (РХХ). Кроме того, что в этом нет необходимости эти два элемента откалиброваны и малейшее изменение их положения приведет к неприятным последствиям, что, в конечном итоге, скажется на работе двигателя. Метки яркой краской на этих элементах лишний раз напоминают об их "откалиброванном" статусе.

Список используемой литературы

1. http://systemsauto.ru/vpusk/throttle_body.html

2. http://avto-remont.com/catalog/stat/17/1/68.html

3. http://whatisvehicle.wordpress.com/chapter1/

4. http://smanuals.ru/electronics-repair/electronic-akselerator.html#.URiGiZBFVok

5. http://www.vp.nails-k.ru/archive/2012/09/a5fe375725e35afbde308c5be0400f14/

6. http://www.vazclub.com/lada/priora/remont/dvigatel/sistema-pitaniya/zamena-drosselnog-uzl.html

7. http://www.procivic.ru/logbook/service/honda-civic-trottle-body-cleaning/

8. http://www.priorovod.ru/showthread.php?t=27903

9. http://cxem.net/avto/injectors/inject6.php

10. http://avto3.com/Info/ganuary3.html

Размещено на Allbest.ru

...

Подобные документы

  • Классификация датчиков холостого хода, предназначенных для поддержания установленных оборотов двигателя на холостом ходу. Особенности шагового, соленоидного и роторного регуляторов. Основные неисправности и диагностика регулятора холостого хода.

    реферат [829,3 K], добавлен 01.06.2015

  • Модель системы управления электронной дроссельной заслонкой автомобиля, область работоспособности. Оптимизация по критерию "среднеквадратической ошибки", "минимум времени регулирования". Построение множества Парето. Трехмерное моделирование в AutoCAD.

    курсовая работа [2,0 M], добавлен 21.01.2013

  • Датчики массового расхода воздуха, положения дроссельной заслонки. Назначение датчика температуры охлаждающей жидкости. Регулятор давления топлива. Клапаны продувки адсорбера, бензонасос. Методика проверки датчиков фазы и положения коленчатого вала.

    курсовая работа [1,9 M], добавлен 17.12.2009

  • Понятия датчика и датчиковой аппаратуры. Диагностика электронной системы управления двигателем. Описание принципа работы датчика дроссельной заслонки двигателя внутреннего сгорания. Выбор и обоснование типа устройства, произведение патентный поиска.

    курсовая работа [3,4 M], добавлен 13.10.2014

  • Принцип действия и основные элементы контактной системы зажигания, ее отличительные черты от транзисторной, бесконтактной и микропроцессорной систем. Зависимость скорости сгорания от угла открытия дроссельной заслонки. Причины возникновения детонации.

    реферат [33,5 K], добавлен 07.06.2009

  • Назначение, конструкция и технические данные буксового узла. Основные неисправности, причины возникновения и способы их предупреждения. Периодичность ремонта и технического обслуживания буксового узла. Процесс ремонта и испытание буксового узла.

    курсовая работа [4,6 M], добавлен 01.03.2012

  • Наименование горючей смеси для режимов работы двигателя. Назначение, устройство и работа карбюратора. Система пуска холодного двигателя. Система холостого хода. Главная дозирующая система. Система ускорительного насоса. Ограничитель максимальных оборотов.

    контрольная работа [1,6 M], добавлен 03.01.2013

  • Основные неисправности механизмов двигателя. Работы, выполняемые при ТО систем питания. Установка уровня топлива в поплавковой камере. Регулировки пусковых зазоров и холостого хода. Основные неисправности системы питания дизеля, обслуживание форсунки.

    лабораторная работа [1,4 M], добавлен 31.10.2013

  • Структура и свойство коленчатого вала. Диагностика и ремонт коренных подшипников. Регулировка частоты вращения коленвала двигателей ВАЗ с замером в отработавших газах в режиме холостого хода. Инструменты, оборудования и правила техники безопасности.

    курсовая работа [462,4 K], добавлен 13.02.2009

  • Понятие компрессии, ее зависимость от степени сжатия, влияние на свойства мотора. Приборы для ее измерения. Замеры для дизельного и бензинового двигателя. Проверка акселератора и аккумулятора. Проверка причины низкой компрессии "народным" способом.

    реферат [27,5 K], добавлен 23.12.2014

  • Конструкция топливной системы дизеля автомобиля. Анализ и отказ ее неисправностей. Методы обеспечения работоспособности. Техническое обслуживание системы питания мотора. Разработка технологического процесса регулировки топливного насоса высокого давления.

    курсовая работа [502,9 K], добавлен 23.05.2014

  • Кинематический и динамический расчет кривошипно-шатунного механизма. Определение крутящего момента двигателя и равномерности его хода. Характеристика конструктивного узла. Вычисление параметров клапана, пружины и вала газораспределительного механизма.

    курсовая работа [2,0 M], добавлен 22.05.2012

  • Определение периодичности, срока ремонта и контроля технического состояния локомотивов. Рассмотрение основных элементов узла, их назначения и работы. Характеристика способа очистки, осмотра и контроля. Особенности заполнения ведомости дефектации узла.

    курсовая работа [406,0 K], добавлен 17.05.2017

  • Компоновка кривошипно-шатунного механизма. Система охлаждения двигателя. Температурный режим двигателя внутреннего сгорания. Схема системы холостого хода карбюратора. Работа и устройство топливоподкачивающего насоса. Типы фильтров очистки топлива.

    контрольная работа [3,8 M], добавлен 20.06.2013

  • Параметры рабочего процесса двигателя; расчёт мощности, расхода топлива, воздуха и газов. Расчёт сил, действующих в шатунно-кривошипном механизме двигателя, построение зависимости сил от угла поворота коленчатого вала. Чертеж форсунки и описание узла.

    курсовая работа [842,4 K], добавлен 10.10.2013

  • Разработка принципиальных схем развития узла, выбор лучшего варианта. Расчет размеров движения в узле и пропускной способности линий. Расчет объемов работы и разработка схем станций. Разработка продольного профиля главных путей в узле, включая развязки.

    курсовая работа [433,2 K], добавлен 20.12.2013

  • Устройство ремонтируемой машины, принцип работы. Техническая характеристика, устройство и работа ремонтируемого узла. Контроль, сортировка и дефектация деталей. Технологический процесс ремонта. Маршрутно-операционная карта ремонта одной детали узла.

    курсовая работа [3,5 M], добавлен 06.02.2009

  • Общие понятия о техническом обслуживании и ремонте узла. Назначение, типы узлов. Назначение, устройство составных частей узла. Карта смазки. Ремонт узла и его составных частей. Расчет себестоимости ремонта узла. Охрана труда.

    курсовая работа [4,0 M], добавлен 15.06.2006

  • Тепловой расчет автотракторного двигателя: определение основных размеров, построение индикаторной диаграммы и теоретической скоростной (регуляторной) характеристики мотора. Вычисление температуры и давления остаточных газов, показателя адиабаты сжатия.

    курсовая работа [1005,3 K], добавлен 16.06.2011

  • Классификация электровозов и их основные данные. Электроснабжение железных дорог. Назначение, устройство и принцип действия буксового узла, технологический процесс его ремонта. Неисправности, с которыми запрещается выпускать локомотив в эксплуатацию.

    курсовая работа [627,6 K], добавлен 17.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.